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I Suppose each Xi is 1 with probability p and 0 with probability
q = 1− p.

I DeMoivre-Laplace limit theorem:

lim
n→∞

P{a ≤ Sn − np
√
npq

≤ b} → Φ(b)− Φ(a).

I Here Φ(b)− Φ(a) = P{a ≤ Z ≤ b} when Z is a standard
normal random variable.

I Sn−np√
npq describes “number of standard deviations that Sn is

above or below its mean”.

I Question: Does a similar statement hold if the Xi are i.i.d. but
have some other probability distribution?

I Central limit theorem: Yes, if they have finite variance.

Recall: DeMoivre-Laplace limit theorem 

I Let Xi be an i.i.d. sequence of random variables. Write P n = Sn i=1 Xn. 
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I DeMoivre-Laplace limit theorem:

lim
n→∞

P{a ≤ Sn − np
√
npq

≤ b} → Φ(b)− Φ(a).

I Here Φ(b)− Φ(a) = P{a ≤ Z ≤ b} when Z is a standard
normal random variable.

I Sn−np√
npq describes “number of standard deviations that Sn is

above or below its mean”.

I Question: Does a similar statement hold if the Xi are i.i.d. but
have some other probability distribution?

I Central limit theorem: Yes, if they have finite variance.
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I Here Φ(b)− Φ(a) = P{a ≤ Z ≤ b} when Z is a standard
normal random variable.

I Sn−np√
npq describes “number of standard deviations that Sn is

above or below its mean”.

I Question: Does a similar statement hold if the Xi are i.i.d. but
have some other probability distribution?

I Central limit theorem: Yes, if they have finite variance.

Recall: DeMoivre-Laplace limit theorem 

I Let Xi be an i.i.d. sequence of random variables. Write P n Sn = i=1 Xn. 
I Suppose each Xi is 1 with probability p and 0 with probability 

q = 1 − p. 
I DeMoivre-Laplace limit theorem: 

Sn − np 
lim P{a ≤ √ ≤ b} → Φ(b) − Φ(a). 
n→∞ npq 
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I Sn−np√
npq describes “number of standard deviations that Sn is

above or below its mean”.

I Question: Does a similar statement hold if the Xi are i.i.d. but
have some other probability distribution?

I Central limit theorem: Yes, if they have finite variance.

Recall: DeMoivre-Laplace limit theorem 

I Let Xi be an i.i.d. sequence of random variables. Write P n = Xn. Sn i=1 

I Suppose each Xi is 1 with probability p and 0 with probability 
q = 1 − p. 

I DeMoivre-Laplace limit theorem: 

Sn − np 
lim P{a ≤ √ ≤ b} → Φ(b) − Φ(a). 
n→∞ npq 

I Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard 
normal random variable. 
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I Question: Does a similar statement hold if the Xi are i.i.d. but
have some other probability distribution?

I Central limit theorem: Yes, if they have finite variance.

Recall: DeMoivre-Laplace limit theorem 

I Let Xi be an i.i.d. sequence of random variables. Write P n = Sn i=1 Xn. 
I Suppose each Xi is 1 with probability p and 0 with probability 

q = 1 − p. 
I DeMoivre-Laplace limit theorem: 

Sn − np 
lim P{a ≤ √ ≤ b} → Φ(b) − Φ(a). 
n→∞ npq 

I Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard 
normal random variable. 
Sn−np I √ 

npq describes “number of standard deviations that Sn is 
above or below its mean”. 
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I Central limit theorem: Yes, if they have finite variance.

Recall: DeMoivre-Laplace limit theorem 

I Let Xi be an i.i.d. sequence of random variables. Write P n Sn = i=1 Xn. 
I Suppose each Xi is 1 with probability p and 0 with probability 

q = 1 − p. 
I DeMoivre-Laplace limit theorem: 

Sn 
lim P{a ≤ √

− np ≤ b} → Φ(b) − Φ(a). 
n→∞ npq 

I Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard 
normal random variable. 
Sn−np I √ 

npq describes “number of standard deviations that Sn is 
above or below its mean”. 

I Question: Does a similar statement hold if the Xi are i.i.d. but 
have some other probability distribution? 9



Recall: DeMoivre-Laplace limit theorem 

I Let Xi be an i.i.d. sequence of random variables. Write P n Sn = i=1 Xn. 
I Suppose each Xi is 1 with probability p and 0 with probability 

q = 1 − p. 
I DeMoivre-Laplace limit theorem: 

Sn − np 
lim P{a ≤ √ ≤ b} → Φ(b) − Φ(a). 
n→∞ npq 

I Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard 
normal random variable. 
Sn−np I √ 

npq describes “number of standard deviations that Sn is 
above or below its mean”. 

I Question: Does a similar statement hold if the Xi are i.i.d. but 
have some other probability distribution? 

I Central limit theorem: Yes, if they have finite variance. 
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I Let Xi be the number on the ith die. Let X =
P106

i=1 Xi be the
total of the numbers rolled.

I What is E [X ]?

I 106 · (7/2)
I What is Var[X ]?

I 106 · (35/12)
I How about SD[X ] =

p
Var[X ]?

I 1000
p
35/12

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Say we roll 106 ordinary dice independently of each other. 
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total of the numbers rolled. 
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I 106 · (7/2)
I What is Var[X ]?

I 106 · (35/12)
I How about SD[X ] =

p
Var[X ]?

I 1000
p
35/12

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Say we roll 106 ordinary dice independently of each other. P106 
I Let Xi be the number on the ith die. Let X = i=1 Xi be the 

total of the numbers rolled. 

I What is E [X ]? 
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I What is Var[X ]?

I 106 · (35/12)
I How about SD[X ] =

p
Var[X ]?

I 1000
p
35/12

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Say we roll 106 ordinary dice independently of each other. P106 
I Let Xi be the number on the ith die. Let X = i=1 Xi be the 

total of the numbers rolled. 

I What is E [X ]? 

I 106 · (7/2) 
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I 106 · (35/12)
I How about SD[X ] =

p
Var[X ]?

I 1000
p
35/12

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Say we roll 106 ordinary dice independently of each other. P106 
I Let Xi be the number on the ith die. Let X = i=1 Xi be the 

total of the numbers rolled. 

I What is E [X ]? 

I 106 · (7/2) 
I What is Var[X ]? 
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I How about SD[X ] =
p
Var[X ]?

I 1000
p
35/12

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Say we roll 106 ordinary dice independently of each other. P106 
I Let Xi be the number on the ith die. Let X = be the i=1 Xi 

total of the numbers rolled. 

I What is E [X ]? 

I 106 · (7/2) 
I What is Var[X ]? 

I 106 · (35/12) 
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I 1000
p
35/12

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Say we roll 106 ordinary dice independently of each other. P106 
I Let Xi be the number on the ith die. Let X = i=1 Xi be the 

total of the numbers rolled. 

I What is E [X ]? 

I 106 · (7/2) 
I What is Var[X ]? 

I 106 · (35/12) p 
I How about SD[X ] = Var[X ]? 
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I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Say we roll 106 ordinary dice independently of each other. P106 
I Let Xi be the number on the ith die. Let X = be the i=1 Xi 

total of the numbers rolled. 

I What is E [X ]? 

I 106 · (7/2) 
I What is Var[X ]? 

I 106 · (35/12) p 
I How about SD[X ] = Var[X ]? p 
I 1000 35/12 
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I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Say we roll 106 ordinary dice independently of each other. 

I Let Xi be the number on the ith die. Let X = 
P10 

i=1

6 
Xi be the 

total of the numbers rolled. 

I What is E [X ]? 

I 106 · (7/2) 
I What is Var[X ]? 

I 106 · (35/12) p 
I How about SD[X ] = Var[X ]? p 
I 1000 35/12 

I What is the probability that X is less than a standard 
deviations above its mean? 
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Example 

I Say we roll 106 ordinary dice independently of each other. P106 
I Let Xi be the number on the ith die. Let X = be the i=1 Xi 

total of the numbers rolled. 

I What is E [X ]? 

I 106 · (7/2) 
I What is Var[X ]? 

I 106 · (35/12) p 
I How about SD[X ] = Var[X ]? p 
I 1000 35/12 

I What is the probability that X is less than a standard 
deviations above its mean? R a 

I Central limit theorem: should be about √1 e−x
2/2dx . −∞ 2π 20



I Let X be the number of earthquakes that occur over a
ten-thousand year period. Should be a Poisson random
variable with rate 10000.

I What is E [X ]?

I 10000

I What is Var[X ]?

I 10000

I How about SD[X ]?

I 100

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Suppose earthquakes in some region are a Poisson point 
process with rate λ equal to 1 per year. 
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I What is E [X ]?

I 10000

I What is Var[X ]?

I 10000

I How about SD[X ]?

I 100

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Suppose earthquakes in some region are a Poisson point 
process with rate λ equal to 1 per year. 

I Let X be the number of earthquakes that occur over a 
ten-thousand year period. Should be a Poisson random 
variable with rate 10000. 
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I 10000

I What is Var[X ]?

I 10000

I How about SD[X ]?

I 100

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Suppose earthquakes in some region are a Poisson point 
process with rate λ equal to 1 per year. 

I Let X be the number of earthquakes that occur over a 
ten-thousand year period. Should be a Poisson random 
variable with rate 10000. 

I What is E [X ]? 
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I What is Var[X ]?

I 10000

I How about SD[X ]?

I 100

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Suppose earthquakes in some region are a Poisson point 
process with rate λ equal to 1 per year. 

I Let X be the number of earthquakes that occur over a 
ten-thousand year period. Should be a Poisson random 
variable with rate 10000. 

I What is E [X ]? 

I 10000 
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I 10000

I How about SD[X ]?

I 100

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Suppose earthquakes in some region are a Poisson point 
process with rate λ equal to 1 per year. 

I Let X be the number of earthquakes that occur over a 
ten-thousand year period. Should be a Poisson random 
variable with rate 10000. 

I What is E [X ]? 

I 10000 

I What is Var[X ]? 
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I How about SD[X ]?

I 100

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Suppose earthquakes in some region are a Poisson point 
process with rate λ equal to 1 per year. 

I Let X be the number of earthquakes that occur over a 
ten-thousand year period. Should be a Poisson random 
variable with rate 10000. 

I What is E [X ]? 

I 10000 

I What is Var[X ]? 

I 10000 
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I 100

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Suppose earthquakes in some region are a Poisson point 
process with rate λ equal to 1 per year. 

I Let X be the number of earthquakes that occur over a 
ten-thousand year period. Should be a Poisson random 
variable with rate 10000. 

I What is E [X ]? 

I 10000 

I What is Var[X ]? 

I 10000 

I How about SD[X ]? 

27



I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Suppose earthquakes in some region are a Poisson point 
process with rate λ equal to 1 per year. 

I Let X be the number of earthquakes that occur over a 
ten-thousand year period. Should be a Poisson random 
variable with rate 10000. 

I What is E [X ]? 

I 10000 

I What is Var[X ]? 

I 10000 

I How about SD[X ]? 

I 100 
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I Central limit theorem: should be about 1√
2π

R a
−∞ e−x

2/2dx .

Example 

I Suppose earthquakes in some region are a Poisson point 
process with rate λ equal to 1 per year. 

I Let X be the number of earthquakes that occur over a 
ten-thousand year period. Should be a Poisson random 
variable with rate 10000. 

I What is E [X ]? 

I 10000 

I What is Var[X ]? 

I 10000 

I How about SD[X ]? 

I 100 

I What is the probability that X is less than a standard 
deviations above its mean? 
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Example 

I Suppose earthquakes in some region are a Poisson point 
process with rate λ equal to 1 per year. 

I Let X be the number of earthquakes that occur over a 
ten-thousand year period. Should be a Poisson random 
variable with rate 10000. 

I What is E [X ]? 

I 10000 

I What is Var[X ]? 

I 10000 

I How about SD[X ]? 

I 100 

I What is the probability that X is less than a standard 
deviations above its mean? R a √1 −x I Central limit theorem: should be about e 

2/2dx . −∞ 2π 
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I Write Sn =
Pn

i=1 Xi . So E [Sn] = nµ and Var[Sn] = nσ2 and
SD[Sn] = σ

√
n.

I Write Bn = X1+X2+...+Xn−nµ
σ
√
n

. Then Bn is the difference

between Sn and its expectation, measured in standard
deviation units.

I Central limit theorem:

lim
n→∞

P{a ≤ Bn ≤ b} → Φ(b)− Φ(a).

General statement 

I Let Xi be an i.i.d. sequence of random variables with finite 
mean µ and variance σ2 . 
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I Write Bn = X1+X2+...+Xn−nµ
σ
√
n

. Then Bn is the difference

between Sn and its expectation, measured in standard
deviation units.

I Central limit theorem:

lim
n→∞

P{a ≤ Bn ≤ b} → Φ(b)− Φ(a).

General statement 

I Let Xi be an i.i.d. sequence of random variables with finite 
mean µ and variance σ2 . Pn I Write Sn = √ Xi . So E [Sn] = nµ and Var[Sn] = nσ2 and i=1 
SD[Sn] = σ n. 

32



I Central limit theorem:

lim
n→∞

P{a ≤ Bn ≤ b} → Φ(b)− Φ(a).

General statement 

I Let Xi be an i.i.d. sequence of random variables with finite 
mean µ and variance σ2 . Pn I Write Sn = √ Xi . So E [Sn] = nµ and Var[Sn] = nσ2 and i=1 
SD[Sn] = σ n. 

X1+X2+...+Xn−nµ I Write Bn = 
σ 
√ 
n . Then Bn is the difference 

between Sn and its expectation, measured in standard 
deviation units. 
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General statement 

I Let Xi be an i.i.d. sequence of random variables with finite 
mean µ and variance σ2 . P 

I Write Sn = √ 
n Xi . So E [Sn] = nµ and Var[Sn] = nσ2 and i=1 

SD[Sn] = σ n. 
X1+X2+...+Xn−nµ I Write Bn = 

σ 
√ 
n . Then Bn is the difference 

between Sn and its expectation, measured in standard 
deviation units. 

I Central limit theorem: 

lim P{a ≤ Bn ≤ b} → Φ(b) − Φ(a). 
n→∞ 
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Outline 

Central limit theorem 

Proving the central limit theorem 

35



Outline 

Central limit theorem 

Proving the central limit theorem 
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I The characteristic function of X is defined by
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in.

I Recall that by definition e it = cos(t) + i sin(t).

I Characteristic functions are similar to moment generating
functions in some ways.

I For example, φX+Y = φXφY , just as MX+Y = MXMY , if X
and Y are independent.

I And φaX (t) = φX (at) just as MaX (t) = MX (at).

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I Characteristic functions are well defined at all t for all random
variables X .

Recall: characteristic functions 

I Let X be a random variable. 
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I Recall that by definition e it = cos(t) + i sin(t).

I Characteristic functions are similar to moment generating
functions in some ways.
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φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in. 
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I Characteristic functions are similar to moment generating
functions in some ways.

I For example, φX+Y = φXφY , just as MX+Y = MXMY , if X
and Y are independent.

I And φaX (t) = φX (at) just as MaX (t) = MX (at).

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I Characteristic functions are well defined at all t for all random
variables X .

Recall: characteristic functions 

I Let X be a random variable. 

I The characteristic function of X is defined by 
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in. 

it I Recall that by definition e = cos(t) + i sin(t). 
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I For example, φX+Y = φXφY , just as MX+Y = MXMY , if X
and Y are independent.

I And φaX (t) = φX (at) just as MaX (t) = MX (at).

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I Characteristic functions are well defined at all t for all random
variables X .

Recall: characteristic functions 

I Let X be a random variable. 

I The characteristic function of X is defined by 
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in. 

it I Recall that by definition e = cos(t) + i sin(t). 

I Characteristic functions are similar to moment generating 
functions in some ways. 
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I And φaX (t) = φX (at) just as MaX (t) = MX (at).

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I Characteristic functions are well defined at all t for all random
variables X .

Recall: characteristic functions 

I Let X be a random variable. 

I The characteristic function of X is defined by 
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in. 

it I Recall that by definition e = cos(t) + i sin(t). 

I Characteristic functions are similar to moment generating 
functions in some ways. 

I For example, φX +Y = φX φY , just as MX +Y = MX MY , if X 
and Y are independent. 
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I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I Characteristic functions are well defined at all t for all random
variables X .

Recall: characteristic functions 

I Let X be a random variable. 

I The characteristic function of X is defined by 
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in. 

it I Recall that by definition e = cos(t) + i sin(t). 

I Characteristic functions are similar to moment generating 
functions in some ways. 

I For example, φX +Y = φX φY , just as MX +Y = MX MY , if X 
and Y are independent. 

I And φaX (t) = φX (at) just as MaX (t) = MX (at). 
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I Characteristic functions are well defined at all t for all random
variables X .

Recall: characteristic functions 

I Let X be a random variable. 

I The characteristic function of X is defined by 
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in. 

it I Recall that by definition e = cos(t) + i sin(t). 

I Characteristic functions are similar to moment generating 
functions in some ways. 

I For example, φX +Y = φX φY , just as MX +Y = MX MY , if X 
and Y are independent. 

I And φaX (t) = φX (at) just as MaX (t) = MX (at). 
(m) 

I And if X has an mth moment then E [X m] = imφ (0). X 
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Recall: characteristic functions 

I Let X be a random variable. 

I The characteristic function of X is defined by 
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in. 

it I Recall that by definition e = cos(t) + i sin(t). 

I Characteristic functions are similar to moment generating 
functions in some ways. 

I For example, φX +Y = φX φY , just as MX +Y = MX MY , if X 
and Y are independent. 

I And φaX (t) = φX (at) just as MaX (t) = MX (at). 

I And if X has an mth moment then E [X m] = imφ(m)
(0). X 

I Characteristic functions are well defined at all t for all random 
variables X . 
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I Say Xn converge in distribution or converge in law to X if
limn→∞ FXn(x) = FX (x) at all x ∈ R at which FX is
continuous.

I Recall: the weak law of large numbers can be rephrased as the
statement that An = X1+X2+...+Xn

n converges in law to µ (i.e.,
to the random variable that is equal to µ with probability one)
as n→∞.

I The central limit theorem can be rephrased as the statement
that Bn = X1+X2+...+Xn−nµ

σ
√
n

converges in law to a standard

normal random variable as n→∞.

Rephrasing the theorem 

I Let X be a random variable and Xn a sequence of random 
variables. 
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I Recall: the weak law of large numbers can be rephrased as the
statement that An = X1+X2+...+Xn

n converges in law to µ (i.e.,
to the random variable that is equal to µ with probability one)
as n→∞.

I The central limit theorem can be rephrased as the statement
that Bn = X1+X2+...+Xn−nµ

σ
√
n

converges in law to a standard

normal random variable as n→∞.

Rephrasing the theorem 

I Let X be a random variable and Xn a sequence of random 
variables. 

I Say Xn converge in distribution or converge in law to X if 
limn→∞ FXn (x) = FX (x) at all x ∈ R at which FX is 
continuous. 
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I The central limit theorem can be rephrased as the statement
that Bn = X1+X2+...+Xn−nµ

σ
√
n

converges in law to a standard

normal random variable as n→∞.

Rephrasing the theorem 

I Let X be a random variable and Xn a sequence of random 
variables. 

I Say Xn converge in distribution or converge in law to X if 
limn→∞ FXn (x) = FX (x) at all x ∈ R at which FX is 
continuous. 

I Recall: the weak law of large numbers can be rephrased as the 
X1+X2+...+Xn statement that An = converges in law to µ (i.e., n 

to the random variable that is equal to µ with probability one) 
as n →∞. 
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Rephrasing the theorem 

I Let X be a random variable and Xn a sequence of random 
variables. 

I Say Xn converge in distribution or converge in law to X if 
limn→∞ FXn (x) = FX (x) at all x ∈ R at which FX is 
continuous. 

I Recall: the weak law of large numbers can be rephrased as the 
X1+X2+...+Xn statement that An = converges in law to µ (i.e., n 

to the random variable that is equal to µ with probability one) 
as n →∞. 

I The central limit theorem can be rephrased as the statement 
X1+X2+...+Xn−nµ that Bn = 

σ 
√ 
n converges in law to a standard 

normal random variable as n →∞. 
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I By this theorem, we can prove the central limit theorem by
showing limn→∞ φBn(t) = e−t

2/2 for all t.

I Moment generating function continuity theorem: if
moment generating functions MXn(t) are defined for all t and
n and limn→∞MXn(t) = MX (t) for all t, then Xn converge in
law to X .

I By this theorem, we can prove the central limit theorem by
showing limn→∞MBn(t) = et

2/2 for all t.

Continuity theorems 

I Lévy’s continuity theorem (see Wikipedia): if 

lim φXn (t) = φX (t) 
n→∞ 

for all t, then Xn converge in law to X . 
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I Moment generating function continuity theorem: if
moment generating functions MXn(t) are defined for all t and
n and limn→∞MXn(t) = MX (t) for all t, then Xn converge in
law to X .

I By this theorem, we can prove the central limit theorem by
showing limn→∞MBn(t) = et

2/2 for all t.

Continuity theorems 

I Lévy’s continuity theorem (see Wikipedia): if 

lim φXn (t) = φX (t) 
n→∞ 

for all t, then Xn converge in law to X . 

I By this theorem, we can prove the central limit theorem by 
showing limn→∞ φBn (t) = e−t

2/2 for all t. 
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I By this theorem, we can prove the central limit theorem by
showing limn→∞MBn(t) = et

2/2 for all t.

Continuity theorems 

I Lévy’s continuity theorem (see Wikipedia): if 

lim φXn (t) = φX (t) 
n→∞ 

for all t, then Xn converge in law to X . 

I By this theorem, we can prove the central limit theorem by 
showing limn→∞ φBn (t) = e−t

2/2 for all t. 

I Moment generating function continuity theorem: if 
moment generating functions MXn (t) are defined for all t and 
n and limn→∞ MXn (t) = MX (t) for all t, then Xn converge in 
law to X . 
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Continuity theorems 

I Lévy’s continuity theorem (see Wikipedia): if 

lim φXn (t) = φX (t) 
n→∞ 

for all t, then Xn converge in law to X . 

I By this theorem, we can prove the central limit theorem by 
showing limn→∞ φBn (t) = e−t

2/2 for all t. 

I Moment generating function continuity theorem: if 
moment generating functions MXn (t) are defined for all t and 
n and limn→∞ MXn (t) = MX (t) for all t, then Xn converge in 
law to X . 

I By this theorem, we can prove the central limit theorem by 
showing limn→∞ MBn (t) = et

2/2 for all t. 
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I Write MY (t) = E [etY ] and g(t) = logMY (t). So
MY (t) = eg(t).

I We know g(0) = 0. Also M 0
Y (0) = E [Y ] = 0 and

M 00
Y (0) = E [Y 2] = Var[Y ] = 1.

I Chain rule: M 0
Y (0) = g 0(0)eg(0) = g 0(0) = 0 and

M 00
Y (0) = g 00(0)eg(0) + g 0(0)2eg(0) = g 00(0) = 1.

I So g is a nice function with g(0) = g 0(0) = 0 and g 00(0) = 1.
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero.

I Now Bn is 1√
n
times the sum of n independent copies of Y .

I So MBn(t) =
�
MY (t/

√
n)
�n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

Proof of central limit theorem with moment generating 
functions 

I Write Y = X 
σ 
−µ . Then Y has mean zero and variance 1. 
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I We know g(0) = 0. Also M 0
Y (0) = E [Y ] = 0 and

M 00
Y (0) = E [Y 2] = Var[Y ] = 1.

I Chain rule: M 0
Y (0) = g 0(0)eg(0) = g 0(0) = 0 and

M 00
Y (0) = g 00(0)eg(0) + g 0(0)2eg(0) = g 00(0) = 1.

I So g is a nice function with g(0) = g 0(0) = 0 and g 00(0) = 1.
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero.

I Now Bn is 1√
n
times the sum of n independent copies of Y .

I So MBn(t) =
�
MY (t/

√
n)
�n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

Proof of central limit theorem with moment generating 
functions 

X −µ I Write Y = σ . Then Y has mean zero and variance 1. 
I Write MY (t) = E [etY ] and g(t) = log MY (t). So 

g(t) MY (t) = e . 
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I Chain rule: M 0
Y (0) = g 0(0)eg(0) = g 0(0) = 0 and

M 00
Y (0) = g 00(0)eg(0) + g 0(0)2eg(0) = g 00(0) = 1.

I So g is a nice function with g(0) = g 0(0) = 0 and g 00(0) = 1.
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero.

I Now Bn is 1√
n
times the sum of n independent copies of Y .

I So MBn(t) =
�
MY (t/

√
n)
�n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

Proof of central limit theorem with moment generating 
functions 

X −µ I Write Y = . Then Y has mean zero and variance 1. σ 

I Write MY (t) = E [etY ] and g(t) = log MY (t). So 
g(t) MY (t) = e . 

I We know g(0) = 0. Also M 0 (0) = E [Y ] = 0 and Y 
M 00 (0) = E [Y 2] = Var[Y ] = 1. Y 
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I So g is a nice function with g(0) = g 0(0) = 0 and g 00(0) = 1.
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero.

I Now Bn is 1√
n
times the sum of n independent copies of Y .

I So MBn(t) =
�
MY (t/

√
n)
�n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

Proof of central limit theorem with moment generating 
functions 

X −µ I Write Y = σ . Then Y has mean zero and variance 1. 
I Write MY (t) = E [etY ] and g(t) = log MY (t). So 

g(t) MY (t) = e . 
I We know g(0) = 0. Also M 0 (0) = E [Y ] = 0 and Y 

M 00 (0) = E [Y 2] = Var[Y ] = 1. Y 

I Chain rule: M 0 (0) = g 0(0)eg(0) = g 0(0) = 0 and Y 
M 00 g (0) + g g(0) (0) = g 00(0)e 0(0)2e = g 00(0) = 1. Y 
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I Now Bn is 1√
n
times the sum of n independent copies of Y .

I So MBn(t) =
�
MY (t/

√
n)
�n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

Proof of central limit theorem with moment generating 
functions 

I Write Y = X 
σ 
−µ . Then Y has mean zero and variance 1. 

I Write MY (t) = E [etY ] and g(t) = log MY (t). So 
g(t) MY (t) = e . 

I We know g(0) = 0. Also M 0 (0) = E [Y ] = 0 and Y 
M 00 (0) = E [Y 2] = Var[Y ] = 1. Y 

I Chain rule: M 0 (0) = g 0(0)eg(0) = g 0(0) = 0 and Y 
M 00 g (0) + g g(0) (0) = g 00(0)e 0(0)2e = g 00(0) = 1. Y 

I So g is a nice function with g(0) = g 0(0) = 0 and g 00(0) = 1. 
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero. 
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I So MBn(t) =
�
MY (t/

√
n)
�n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

Proof of central limit theorem with moment generating 
functions 

X −µ I Write Y = . Then Y has mean zero and variance 1. σ 

I Write MY (t) = E [etY ] and g(t) = log MY (t). So 
g(t) MY (t) = e . 

I We know g(0) = 0. Also M 0 (0) = E [Y ] = 0 and Y 
M 00 (0) = E [Y 2] = Var[Y ] = 1. Y 

I Chain rule: M 0 (0) = g 0(0)eg(0) = g 0(0) = 0 and Y 
M 00 g (0) + g g(0) (0) = g 00(0)e 0(0)2e = g 00(0) = 1. Y 

I So g is a nice function with g(0) = g 0(0) = 0 and g 00(0) = 1. 
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero. 

1 I Now Bn is √ times the sum of n independent copies of Y . 
n 
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I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

Proof of central limit theorem with moment generating 
functions 

X −µ I Write Y = σ . Then Y has mean zero and variance 1. 
I Write MY (t) = E [etY ] and g(t) = log MY (t). So 

g(t) MY (t) = e . 
I We know g(0) = 0. Also M 0 (0) = E [Y ] = 0 and Y 

M 00 (0) = E [Y 2] = Var[Y ] = 1. Y 

I Chain rule: M 0 (0) = g 0(0)eg(0) = g 0(0) = 0 and Y 
M 00 g (0) + g g(0) (0) = g 00(0)e 0(0)2e = g 00(0) = 1. Y 

I So g is a nice function with g(0) = g 0(0) = 0 and g 00(0) = 1. 
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero. 

1 I Now Bn is √ times the sum of n independent copies of Y . 
n � � t √ n ng ( √ ) 

I So MBn (t) = MY (t/ n) = e n . 
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Proof of central limit theorem with moment generating 
functions 

X −µ I Write Y = σ . Then Y has mean zero and variance 1. 
I Write MY (t) = E [etY ] and g(t) = log MY (t). So 

g(t) MY (t) = e . 
I We know g(0) = 0. Also M 0 (0) = E [Y ] = 0 and Y 

M 00 (0) = E [Y 2] = Var[Y ] = 1. Y 

I Chain rule: M 0 (0) = g 0(0)eg(0) = g 0(0) = 0 and Y 
M 00 g (0) + g g(0) (0) = g 00(0)e 0(0)2e = g 00(0) = 1. Y 

I So g is a nice function with g(0) = g 0(0) = 0 and g 00(0) = 1. 
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero. 

1 I Now Bn is √ times the sum of n independent copies of Y . 
n � � t √ n ng ( √ ) 

n I So MBn (t) = MY (t/ n) = e . 
t t ng( √ ) n( √ )2/2 t2/2 n n I But e ≈ e = e , in sense that LHS tends to 

t2/2 e as n tends to infinity. 
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I But the proof can be repeated almost verbatim using
characteristic functions instead of moment generating
functions.

I Then it applies for any X with finite variance.

Proof of central limit theorem with characteristic functions 

I Moment generating function proof only applies if the moment 
generating function of X exists. 
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I Then it applies for any X with finite variance.

Proof of central limit theorem with characteristic functions 

I Moment generating function proof only applies if the moment 
generating function of X exists. 

I But the proof can be repeated almost verbatim using 
characteristic functions instead of moment generating 
functions. 
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Proof of central limit theorem with characteristic functions 

I Moment generating function proof only applies if the moment 
generating function of X exists. 

I But the proof can be repeated almost verbatim using 
characteristic functions instead of moment generating 
functions. 

I Then it applies for any X with finite variance. 
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I Write φY (t) = E [e itY ] and g(t) = log φY (t). So
φY (t) = eg(t).

I We know g(0) = 0. Also φ0Y (0) = iE [Y ] = 0 and
φ00Y (0) = i2E [Y 2] = −Var[Y ] = −1.

I Chain rule: φ0Y (0) = g 0(0)eg(0) = g 0(0) = 0 and
φ00Y (0) = g 00(0)eg(0) + g 0(0)2eg(0) = g 00(0) = −1.

I So g is a nice function with g(0) = g 0(0) = 0 and
g 00(0) = −1. Taylor expansion: g(t) = −t2/2 + o(t2) for t
near zero.

I Now Bn is 1√
n
times the sum of n independent copies of Y .

I So φBn(t) =
�
φY (t/

√
n)
�n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

−n( t√
n
)2/2

= e−t
2/2, in sense that LHS tends

to e−t
2/2 as n tends to infinity.

Almost verbatim: replace MY (t) with φY (t) 
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I We know g(0) = 0. Also φ0Y (0) = iE [Y ] = 0 and
φ00Y (0) = i2E [Y 2] = −Var[Y ] = −1.

I Chain rule: φ0Y (0) = g 0(0)eg(0) = g 0(0) = 0 and
φ00Y (0) = g 00(0)eg(0) + g 0(0)2eg(0) = g 00(0) = −1.

I So g is a nice function with g(0) = g 0(0) = 0 and
g 00(0) = −1. Taylor expansion: g(t) = −t2/2 + o(t2) for t
near zero.

I Now Bn is 1√
n
times the sum of n independent copies of Y .

I So φBn(t) =
�
φY (t/

√
n)
�n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

−n( t√
n
)2/2

= e−t
2/2, in sense that LHS tends

to e−t
2/2 as n tends to infinity.

Almost verbatim: replace MY (t) with φY (t) 

I Write φY (t) = E [e itY ] and g(t) = log φY (t). So 
g(t) φY (t) = e . 
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I Chain rule: φ0Y (0) = g 0(0)eg(0) = g 0(0) = 0 and
φ00Y (0) = g 00(0)eg(0) + g 0(0)2eg(0) = g 00(0) = −1.

I So g is a nice function with g(0) = g 0(0) = 0 and
g 00(0) = −1. Taylor expansion: g(t) = −t2/2 + o(t2) for t
near zero.
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= e−t
2/2, in sense that LHS tends

to e−t
2/2 as n tends to infinity.

Almost verbatim: replace MY (t) with φY (t) 

I Write φY (t) = E [e itY ] and g(t) = log φY (t). So 
g(t) φY (t) = e . 

I We know g(0) = 0. Also φ0 (0) = iE [Y ] = 0 and Y 
φ00 (0) = i2E [Y 2] = −Var[Y ] = −1. Y 
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I So g is a nice function with g(0) = g 0(0) = 0 and
g 00(0) = −1. Taylor expansion: g(t) = −t2/2 + o(t2) for t
near zero.

I Now Bn is 1√
n
times the sum of n independent copies of Y .

I So φBn(t) =
�
φY (t/

√
n)
�n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

−n( t√
n
)2/2

= e−t
2/2, in sense that LHS tends

to e−t
2/2 as n tends to infinity.

Almost verbatim: replace MY (t) with φY (t) 

I Write φY (t) = E [e itY ] and g(t) = log φY (t). So 
g(t) φY (t) = e . 

I We know g(0) = 0. Also φ0 (0) = iE [Y ] = 0 and Y 
φ00 (0) = i2E [Y 2] = −Var[Y ] = −1. Y 

g (0) I Chain rule: φ0 (0) = g 0(0)e = g 0(0) = 0 and Y 
φ00 g(0) + g g(0) (0) = g 00(0)e 0(0)2e = g 00(0) = −1. Y 
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I Now Bn is 1√
n
times the sum of n independent copies of Y .

I So φBn(t) =
�
φY (t/

√
n)
�n

= e
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.

I But e
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n
) ≈ e
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)2/2

= e−t
2/2, in sense that LHS tends

to e−t
2/2 as n tends to infinity.

Almost verbatim: replace MY (t) with φY (t) 

I Write φY (t) = E [e itY ] and g(t) = log φY (t). So 
g(t) φY (t) = e . 

I We know g(0) = 0. Also φ0 (0) = iE [Y ] = 0 and Y 
φ00 (0) = i2E [Y 2] = −Var[Y ] = −1. Y 

g (0) I Chain rule: φ0 (0) = g 0(0)e = g 0(0) = 0 and Y 
φ00 g(0) + g g(0) (0) = g 00(0)e 0(0)2e = g 00(0) = −1. Y 

I So g is a nice function with g(0) = g 0(0) = 0 and 
g 00(0) = −1. Taylor expansion: g(t) = −t2/2 + o(t2) for t 
near zero. 
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I So φBn(t) =
�
φY (t/

√
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�n

= e
ng( t√

n
)
.

I But e
ng( t√
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−n( t√
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)2/2

= e−t
2/2, in sense that LHS tends

to e−t
2/2 as n tends to infinity.

Almost verbatim: replace MY (t) with φY (t) 

I Write φY (t) = E [e itY ] and g(t) = log φY (t). So 
g(t) φY (t) = e . 

I We know g(0) = 0. Also φ0 (0) = iE [Y ] = 0 and Y 
φ00 (0) = i2E [Y 2] = −Var[Y ] = −1. Y 

g (0) I Chain rule: φ0 (0) = g 0(0)e = g 0(0) = 0 and Y 
φ00 g(0) + g g(0) (0) = g 00(0)e 0(0)2e = g 00(0) = −1. Y 

I So g is a nice function with g(0) = g 0(0) = 0 and 
g 00(0) = −1. Taylor expansion: g(t) = −t2/2 + o(t2) for t 
near zero. 

1 I Now Bn is √ times the sum of n independent copies of Y . 
n 
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I But e
ng( t√

n
) ≈ e

−n( t√
n
)2/2

= e−t
2/2, in sense that LHS tends

to e−t
2/2 as n tends to infinity.

Almost verbatim: replace MY (t) with φY (t) 

I Write φY (t) = E [e itY ] and g(t) = log φY (t). So 
g(t) φY (t) = e . 

I We know g(0) = 0. Also φ0 (0) = iE [Y ] = 0 and Y 
φ00 (0) = i2E [Y 2] = −Var[Y ] = −1. Y 

g (0) I Chain rule: φ0 (0) = g 0(0)e = g 0(0) = 0 and Y 
φ00 g(0) + g g(0) (0) = g 00(0)e 0(0)2e = g 00(0) = −1. Y 

I So g is a nice function with g(0) = g 0(0) = 0 and 
g 00(0) = −1. Taylor expansion: g(t) = −t2/2 + o(t2) for t 
near zero. 

1 I Now Bn is √ times the sum of n independent copies of Y . 
n � √ � t n ng( √ ) 

I So φBn (t) = φY (t/ n) = e n . 
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Almost verbatim: replace MY (t) with φY (t) 

I Write φY (t) = E [e itY ] and g(t) = log φY (t). So 
g(t) φY (t) = e . 

I We know g(0) = 0. Also φ0 (0) = iE [Y ] = 0 and Y 
φ00 (0) = i2E [Y 2] = −Var[Y ] = −1. Y 

g (0) I Chain rule: φ0 (0) = g 0(0)e = g 0(0) = 0 and Y 
φ00 g(0) + g g(0) (0) = g 00(0)e 0(0)2e = g 00(0) = −1. Y 

I So g is a nice function with g(0) = g 0(0) = 0 and 

√ 

g 00(0) = −1. Taylor expansion: g(t) = −t2/2 + o(t2) for t 
near zero. 

1 I Now Bn is √ times the sum of n independent copies of Y . 
n 

t � √ � ng( ) n 
I So φBn (t) = φY (t/ n) 

t√ 

n = e . 
t√ )2/2 

= e −t
2/2 ng( ) −n( 

I But e ≈ e , in sense that LHS tends n n 

−t2/2 to e as n tends to infinity. 71



I We won’t formulate these variants precisely in this course.

I But, roughly speaking, if you have a lot of little random terms
that are “mostly independent” — and no single term
contributes more than a “small fraction” of the total sum —
then the total sum should be “approximately” normal.

I Example: if height is determined by lots of little mostly
independent factors, then people’s heights should be normally
distributed.

I Not quite true... certain factors by themselves can cause a
person to be a whole lot shorter or taller. Also, individual
factors not really independent of each other.

I Kind of true for homogenous population, ignoring outliers.

Perspective 

I The central limit theorem is actually fairly robust. Variants of 
the theorem still apply if you allow the Xi not to be identically 
distributed, or not to be completely independent. 

72



I But, roughly speaking, if you have a lot of little random terms
that are “mostly independent” — and no single term
contributes more than a “small fraction” of the total sum —
then the total sum should be “approximately” normal.

I Example: if height is determined by lots of little mostly
independent factors, then people’s heights should be normally
distributed.

I Not quite true... certain factors by themselves can cause a
person to be a whole lot shorter or taller. Also, individual
factors not really independent of each other.

I Kind of true for homogenous population, ignoring outliers.

Perspective 

I The central limit theorem is actually fairly robust. Variants of 
the theorem still apply if you allow the Xi not to be identically 
distributed, or not to be completely independent. 

I We won’t formulate these variants precisely in this course. 
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I Example: if height is determined by lots of little mostly
independent factors, then people’s heights should be normally
distributed.

I Not quite true... certain factors by themselves can cause a
person to be a whole lot shorter or taller. Also, individual
factors not really independent of each other.

I Kind of true for homogenous population, ignoring outliers.

Perspective 

I The central limit theorem is actually fairly robust. Variants of 
the theorem still apply if you allow the Xi not to be identically 
distributed, or not to be completely independent. 

I We won’t formulate these variants precisely in this course. 

I But, roughly speaking, if you have a lot of little random terms 
that are “mostly independent” — and no single term 
contributes more than a “small fraction” of the total sum — 
then the total sum should be “approximately” normal. 

74



I Not quite true... certain factors by themselves can cause a
person to be a whole lot shorter or taller. Also, individual
factors not really independent of each other.

I Kind of true for homogenous population, ignoring outliers.

Perspective 

I The central limit theorem is actually fairly robust. Variants of 
the theorem still apply if you allow the Xi not to be identically 
distributed, or not to be completely independent. 

I We won’t formulate these variants precisely in this course. 

I But, roughly speaking, if you have a lot of little random terms 
that are “mostly independent” — and no single term 
contributes more than a “small fraction” of the total sum — 
then the total sum should be “approximately” normal. 

I Example: if height is determined by lots of little mostly 
independent factors, then people’s heights should be normally 
distributed. 
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