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I Interpret Xn as state of the system at time n.

I Sequence is called a Markov chain if we have a fixed
collection of numbers Pij (one for each pair
i , j ∈ {0, 1, . . . ,M}) such that whenever the system is in state
i , there is probability Pij that system will next be in state j .

I Precisely,
P{Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X1 = i1,X0 = i0} = Pij .

I Kind of an “almost memoryless” property. Probability
distribution for next state depends only on the current state
(and not on the rest of the state history).

Markov chains 

I Consider a sequence of random variables X0, X1, X2, . . . each 
taking values in the same state space, which for now we take 
to be a finite set that we label by {0, 1, . . . , M}. 
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I If it’s rainy one day, there’s a .5 chance it will be rainy the
next day, a .5 chance it will be sunny.

I If it’s sunny one day, there’s a .8 chance it will be sunny the
next day, a .2 chance it will be rainy.

I In this climate, sun tends to last longer than rain.

I Given that it is rainy today, how many days to I expect to
have to wait to see a sunny day?

I Given that it is sunny today, how many days to I expect to
have to wait to see a rainy day?

I Over the long haul, what fraction of days are sunny?

Simple example 

I For example, imagine a simple weather model with two states: 
rainy and sunny. 
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I If it’s sunny one day, there’s a .8 chance it will be sunny the
next day, a .2 chance it will be rainy.

I In this climate, sun tends to last longer than rain.

I Given that it is rainy today, how many days to I expect to
have to wait to see a sunny day?
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I Over the long haul, what fraction of days are sunny?

Simple example 

I For example, imagine a simple weather model with two states: 
rainy and sunny. 

I If it’s rainy one day, there’s a .5 chance it will be rainy the 
next day, a .5 chance it will be sunny. 
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Simple example 
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I It is convenient to represent the collection of transition
probabilities Pij as a matrix:

A =

⎛⎜⎜⎜⎜⎜⎜⎝

P00 P01 . . . P0M

P10 P11 . . . P1M

·
·
·

PM0 PM1 . . . PMM

⎞⎟⎟⎟⎟⎟⎟⎠
I For this to make sense, we require Pij ≥ 0 for all i , j andPM

j=0 Pij = 1 for each i . That is, the rows sum to one.

Matrix representation 

I To describe a Markov chain, we need to define Pij for any 
i , j ∈ {0, 1, . . . , M}. 
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Matrix representation 
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I It is convenient to represent the collection of transition 
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A = 

⎜⎜⎜⎜⎜⎜⎝ 

P00 P01 . . . P0M 

P10 P11 . . . P1M 

· 
· 
· 

PM0 PM1 . . . PMM 

⎟⎟⎟⎟⎟⎟⎠ 

I For this to make sense, we require Pij ≥ 0 for all i , j and PM = 1 for each i . That is, the rows sum to one. 
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I What does the following product represent?

�
p0 p1 . . . pM

�
⎛⎜⎜⎜⎜⎜⎜⎝

P00 P01 . . . P0M

P10 P11 . . . P1M

·
·
·

PM0 PM1 . . . PMM

⎞⎟⎟⎟⎟⎟⎟⎠
I Answer: the probability distribution at time one.

I How about the following product?�
p0 p1 . . . pM

�
An

I Answer: the probability distribution at time n.

Transitions via matrices 

I Suppose that pi is the probability that system is in state i at 
time zero. 
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� 

Transitions via matrices 

I Suppose that pi is the probability that system is in state i at 
time zero. 
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I From the matrix point of view⎛⎜⎜⎜⎜⎜⎜⎜⎝

P
(n)
00 P

(n)
01 . . . P

(n)
0M

P
(n)
10 P

(n)
11 . . . P

(n)
1M

·
·
·

P
(n)
M0 P

(n)
M1 . . . P

(n)
MM

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

P00 P01 . . . P0M

P10 P11 . . . P1M

·
·
·

PM0 PM1 . . . PMM

⎞⎟⎟⎟⎟⎟⎟⎠

n

I If A is the one-step transition matrix, then An is the n-step
transition matrix.

Powers of transition matrix 

I We write P(n) 
for the probability to go from state i to state j ij 

over n steps. 
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I If A is the one-step transition matrix, then An is the n-step
transition matrix.

Powers of transition matrix 

I We write P(n) 
for the probability to go from state i to state j ij 

over n steps. 

I From the matrix point of view ⎛ ⎞ ⎛ ⎞ 
(n) (n) (n) n P P P P00 P01 . . . P0M 01 . . . 00 0M ⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

= 

⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎠ 

(n) (n) (n) P10 P11 . . . P1M 

· 
· 
· 

P P P 11 . . . 10 1M 
· 
· 
· 
(n) (n) (n) PM0 PM1 . . . PMM P P P . . . M0 M1 MM 
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Powers of transition matrix 

I We write P(n) 
for the probability to go from state i to state j ij 

over n steps. 

I From the matrix point of view ⎛ ⎞ ⎛ ⎞ 
(n) (n) (n) n P P P P00 P01 . . . P0M 01 . . . 00 0M ⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

= 

⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎠ 

(n) (n) (n) P10 P11 . . . P1M 

· 
· 
· 

P P P 11 . . . 10 1M 
· 
· 
· 
(n) (n) (n) PM0 PM1 . . . PMM P P P . . . M0 M1 MM 

I If A is the one-step transition matrix, then An is the n-step 
transition matrix. 
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I Answer: state sequence Xi consists of i.i.d. random variables.

I What if matrix is the identity?

I Answer: states never change.

I What if each Pij is either one or zero?

I Answer: state evolution is deterministic.

Questions 

I What does it mean if all of the rows are identical? 
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Questions 

I What does it mean if all of the rows are identical? 

I Answer: state sequence Xi consists of i.i.d. random variables. 

I What if matrix is the identity? 

I Answer: states never change. 

I What if each Pij is either one or zero? 
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I Let rainy be state zero, sunny state one, and write the
transition matrix by

A =

�
.5 .5
.2 .8

�
I Note that

A2 =

�
.64 .35
.26 .74

�
I Can compute A10 =

�
.285719 .714281
.285713 .714287

�

Simple example 

I Consider the simple weather example: If it’s rainy one day, 
there’s a .5 chance it will be rainy the next day, a .5 chance it 
will be sunny. If it’s sunny one day, there’s a .8 chance it will 
be sunny the next day, a .2 chance it will be rainy. 
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I Can we assign a probability to each arrow?

I Markov model implies time spent in any state (e.g., a
marriage) before leaving is a geometric random variable.

I Not true... Can we make a better model with more states?

Does relationship status have the Markov property? 

Single

In a relationship

It’s complicated

EngagedMarried
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Does relationship status have the Markov property? 

Single

In a relationship

It’s complicated

EngagedMarried

I Can we assign a probability to each arrow? 

I Markov model implies time spent in any state (e.g., a 
marriage) before leaving is a geometric random variable. 

I Not true... Can we make a better model with more states? 
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I Turns out that if chain has this property, then

πj := limn→∞ P
(n)
ij exists and the πj are the unique

non-negative solutions of πj =
PM

k=0 πkPkj that sum to one.

I This means that the row vector

π =
�
π0 π1 . . . πM

�
is a left eigenvector of A with eigenvalue 1, i.e., πA = π.

I We call π the stationary distribution of the Markov chain.

I One can solve the system of linear equations
πj =

PM
k=0 πkPkj to compute the values πj . Equivalent to

considering A fixed and solving πA = π. Or solving
(A− I )π = 0. This determines π up to a multiplicative
constant, and fact that

P
πj = 1 determines the constant.

Ergodic Markov chains 

I Say Markov chain is ergodic if some power of the transition 
matrix has all non-zero entries. 
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Ergodic Markov chains 

I Say Markov chain is ergodic if some power of the transition 
matrix has all non-zero entries. 

I Turns out that if chain has this property, then 
πj := limn→∞ P
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I We call π the stationary distribution of the Markov chain. 
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constant, and fact that πj = 1 determines the constant. 
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I This means that .5π0 + .2π1 = π0 and .5π0 + .8π1 = π1 and
we also know that π0 + π1 = 1. Solving these equations gives
π0 = 2/7 and π1 = 5/7, so π =

�
2/7 5/7

�
.

I Indeed,

πA =
�
2/7 5/7

�� .5 .5
.2 .8

�
=

�
2/7 5/7

�
= π.

I Recall that

A10 =

�
.285719 .714281
.285713 .714287

�
≈

�
2/7 5/7
2/7 5/7

�
=

�
π
π

�

Simple example 

� � 
.5 .5 

I If A = , then we know 
.2 .8 � � � � .5 .5 � � 

πA = π0 π1 = π0 π1 = π. 
.2 .8 
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Simple example 

� � 
.5 .5 

I If A = , then we know 
.2 .8 � � � � .5 .5 � � 

πA = π0 π1 = π0 π1 = π. 
.2 .8 

I This means that .5π0 + .2π1 = π0 and .5π0 + .8π1 = π1 and 
we also know that π0 + π1 = 1. Solving these equations gives � � 
π0 = 2/7 and π1 = 5/7, so π = 2/7 5/7 . 

I Indeed, � � � � .5 .5 � � 
πA = 2/7 5/7 = 2/7 5/7 = π. 

.2 .8 

I Recall that� � � � � � 
.285719 .714281 2/7 5/7 π 

A10 = ≈ = 
.285713 .714287 2/7 5/7 π 
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