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I Familiar on some level to everyone who has studied chemistry
or statistical physics.

I Kind of means amount of randomness or disorder.

I But can we give a mathematical definition? In particular, how
do we define the entropy of a random variable?

What is entropy? 

I Entropy is an important notion in thermodynamics, 
information theory, data compression, cryptography, etc. 
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I Then the state space S is the set of 2k possible heads-tails
sequences.

I If X is the random sequence (so X is a random variable), then
for each x ∈ S we have P{X = x} = 2−k .

I In information theory it’s quite common to use log to mean
log2 instead of loge . We follow that convention in this lecture.
In particular, this means that

logP{X = x} = −k

for each x ∈ S .

I Since there are 2k values in S , it takes k “bits” to describe an
element x ∈ S .

I Intuitively, could say that when we learn that X = x , we have
learned k = − logP{X = x} “bits of information”.

Information 

I Suppose we toss a fair coin k times. 
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I Goal is to define a notion of how much we “expect to learn”
from a random variable or “how many bits of information a
random variable contains” that makes sense for general
experiments (which may not have anything to do with coins).

I If a random variable X takes values x1, x2, . . . , xn with positive
probabilities p1, p2, . . . , pn then we define the entropy of X by

H(X ) =
nX

i=1

pi (− log pi ) = −
nX

i=1

pi log pi .

I This can be interpreted as the expectation of (− log pi ). The
value (− log pi ) is the “amount of surprise” when we see xi .

Shannon entropy 

I Shannon: famous MIT student/faculty member, wrote The 
Mathematical Theory of Communication in 1948. 
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I Can learn animal with H(X ) questions on average.
I General: expect H(X ) questions if probabilities powers of 2.

Otherwise H(X )+ 1 suffice. (Try rounding down to 2 powers.)

Twenty questions with Harry 

I Harry always thinks of one of the following animals: 
x P{X = x} − log P{X = x} 

Dog 1/4 2 
Cat 1/4 2 
Cow 1/8 3 
Pig 1/16 4 

Squirrel 1/16 4 
Mouse 1/16 4 
Owl 1/16 4 
Sloth 1/32 5 
Hippo 1/32 5 
Yak 1/32 5 
Zebra 1/64 6 
Rhino 1/64 6 

18



I General: expect H(X ) questions if probabilities powers of 2.
Otherwise H(X )+ 1 suffice. (Try rounding down to 2 powers.)

Twenty questions with Harry 

I Harry always thinks of one of the following animals: 
x P{X = x} − log P{X = x} 

Dog 1/4 2 
Cat 1/4 2 
Cow 1/8 3 
Pig 1/16 4 

Squirrel 1/16 4 
Mouse 1/16 4 
Owl 1/16 4 
Sloth 1/32 5 
Hippo 1/32 5 
Yak 1/32 5 
Zebra 1/64 6 
Rhino 1/64 6 

I Can learn animal with H(X ) questions on average. 
19



Twenty questions with Harry 

I Harry always thinks of one of the following animals: 
x P{X = x} − log P{X = x} 

Dog 1/4 2 
Cat 1/4 2 
Cow 1/8 3 
Pig 1/16 4 

Squirrel 1/16 4 
Mouse 1/16 4 
Owl 1/16 4 
Sloth 1/32 5 
Hippo 1/32 5 
Yak 1/32 5 
Zebra 1/64 6 
Rhino 1/64 6 

I Can learn animal with H(X ) questions on average. 
20

I General: expect H(X ) questions if probabilities powers of 2. 
Otherwise H(X ) + 1 suffice. (Try rounding down to 2 powers.) 



I If X takes one value with probability 1, what is H(X )?

I If X takes k values with equal probability, what is H(X )?

I What is H(X ) if X is a geometric random variable with
parameter p = 1/2?

Other examples 

I Again, if a random variable X takes the values x1, x2, . . . , xn 

with positive probabilities p1, p2, . . . , pn then we define the 
entropy of X by 

n n X X 
H(X ) = pi (− log pi ) = − pi log pi . 

i=1 i=1 
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I Then we write

H(X ,Y ) = −
X
i

X
j

p(xi , yj) log p(xi , yi ).

I H(X ,Y ) is just the entropy of the pair (X ,Y ) (viewed as a
random variable itself).

I Claim: if X and Y are independent, then

H(X ,Y ) = H(X ) + H(Y ).

Why is that?

Entropy for a pair of random variables 

I Consider random variables X , Y with joint mass function 
p(xi , yj ) = P{X = xi , Y = yj }. 
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I Or by
A↔ 0

B ↔ 10

C ↔ 110

D ↔ 111

I No sequence in code is an extension of another.
I What does 100111110010 spell?
I A coding scheme is equivalent to a twenty questions strategy.

Coding values by bit sequences 
I David Huffman (as MIT student) published in “A Method for 

the Construction of Minimum-Redundancy Code” in 1952. 
I If X takes four values A, B, C , D we can code them by: 

A ↔ 00 

B ↔ 01 

C ↔ 10 

D ↔ 11 
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I Note: The expected number of questions is the entropy if
each question divides the space of possibilities exactly in half
(measured by probability).

I In this case, let X take values x1, . . . , xN with probabilities
p(x1), . . . , p(xN). Then if a valid coding of X assigns ni bits
to xi , we have

NX
i=1

nip(xi ) ≥ H(X ) = −
NX
i=1

p(xi ) log p(xi ).

I Data compression: X1,X2, . . . ,Xn be i.i.d. instances of X .
Do there exist encoding schemes such that the expected
number of bits required to encode the entire sequence is
about H(X )n (assuming n is sufficiently large)?

I Yes. Consider space of Nn possibilities. Use “rounding to 2
power” trick, Expect to need at most H(x)n + 1 bits.

Twenty questions theorem 

I Noiseless coding theorem: Expected number of questions 
you need is always at least the entropy. 
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I But now let’s not assume they are independent.

I We can define a conditional entropy of X given Y = yj by

HY=yj (X ) = −
X
i

p(xi |yj) log p(xi |yj).

I This is just the entropy of the conditional distribution. Recall
that p(xi |yj) = P{X = xi |Y = yj}.

I We similarly define HY (X ) =
P

j HY=yj (X )pY (yj). This is
the expected amount of conditional entropy that there will be
in Y after we have observed X .

Conditional entropy 

I Let’s again consider random variables X , Y with joint mass 
function p(xi , yj ) = P{X = xi , Y = yj } and write XX 

H(X , Y ) = − p(xi , yj ) log p(xi , yi ). 
i j 
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I Important property one: H(X ,Y ) = H(Y ) + HY (X ).

I In words, the expected amount of information we learn when
discovering (X ,Y ) is equal to expected amount we learn when
discovering Y plus expected amount when we subsequently
discover X (given our knowledge of Y ).

I To prove this property, recall that p(xi , yj) = pY (yj)p(xi |yj).
I Thus, H(X ,Y ) = −

P
i

P
j p(xi , yj) log p(xi , yj) =

−
P

i

P
j pY (yj)p(xi |yj)[log pY (yj) + log p(xi |yj)] =

−
P

j pY (yj) log pY (yj)
P

i p(xi |yj)−P
j pY (yj)

P
i p(xi |yj) log p(xi |yj) = H(Y ) + HY (X ).

Properties of conditional entropy 

P 
I Definitions: HY (X ) = − i p(xi |yj ) log p(xi |yj ) and =yj P 

HY (X ) = (X )pY (yj ). j HY =yj 
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I Thus, H(X ,Y ) = −

P
i

P
j p(xi , yj) log p(xi , yj) =

−
P

i

P
j pY (yj)p(xi |yj)[log pY (yj) + log p(xi |yj)] =

−
P

j pY (yj) log pY (yj)
P

i p(xi |yj)−P
j pY (yj)

P
i p(xi |yj) log p(xi |yj) = H(Y ) + HY (X ).

Properties of conditional entropy 

P 
I Definitions: HY (X ) = − i p(xi |yj ) log p(xi |yj ) and =yj P 

HY (X ) = HY (X )pY (yj ). j =yj 

I Important property one: H(X , Y ) = H(Y ) + HY (X ). 
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I To prove this property, recall that p(xi , yj) = pY (yj)p(xi |yj).
I Thus, H(X ,Y ) = −

P
i

P
j p(xi , yj) log p(xi , yj) =

−
P

i

P
j pY (yj)p(xi |yj)[log pY (yj) + log p(xi |yj)] =

−
P

j pY (yj) log pY (yj)
P

i p(xi |yj)−P
j pY (yj)

P
i p(xi |yj) log p(xi |yj) = H(Y ) + HY (X ).

Properties of conditional entropy 

P 
I Definitions: HY (X ) = − i p(xi |yj ) log p(xi |yj ) and =yj P 

HY (X ) = HY =yj (X )pY (yj ). j 

I Important property one: H(X , Y ) = H(Y ) + HY (X ). 

I In words, the expected amount of information we learn when 
discovering (X , Y ) is equal to expected amount we learn when 
discovering Y plus expected amount when we subsequently 
discover X (given our knowledge of Y ). 

50



I Thus, H(X ,Y ) = −
P

i

P
j p(xi , yj) log p(xi , yj) =

−
P

i

P
j pY (yj)p(xi |yj)[log pY (yj) + log p(xi |yj)] =

−
P

j pY (yj) log pY (yj)
P

i p(xi |yj)−P
j pY (yj)

P
i p(xi |yj) log p(xi |yj) = H(Y ) + HY (X ).

Properties of conditional entropy 

P 
I Definitions: HY (X ) = − i p(xi |yj ) log p(xi |yj ) and =yj P 

HY (X ) = HY =yj (X )pY (yj ). j 

I Important property one: H(X , Y ) = H(Y ) + HY (X ). 

I In words, the expected amount of information we learn when 
discovering (X , Y ) is equal to expected amount we learn when 
discovering Y plus expected amount when we subsequently 
discover X (given our knowledge of Y ). 

I To prove this property, recall that p(xi , yj ) = pY (yj )p(xi |yj ). 

51



Properties of conditional entropy 

P 
I Definitions: HY (X ) = − i p(xi |yj ) log p(xi |yj ) and =yj P 

HY (X ) = HY (X )pY (yj ). j =yj 

I Important property one: H(X , Y ) = H(Y ) + HY (X ). 

I In words, the expected amount of information we learn when 
discovering (X , Y ) is equal to expected amount we learn when 
discovering Y plus expected amount when we subsequently 
discover X (given our knowledge of Y ). 

I To prove this property, recall that p(xi , yj ) = pY (yj )p(xi |yj ). P P 
I Thus, H(X , Y ) = − j p(xi , yj ) log p(xi , yj ) = i 
− j pY (yj )p(xi |yj )[log pY (yj ) + log p(xi |yj )] = 
P P 

iP P 
− j pY (yj ) log pY (yj ) i p(xi |yj ) − P P 

j pY (yj ) i p(xi |yj ) log p(xi |yj ) = H(Y ) + HY (X ). 
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I Important property two: HY (X ) ≤ H(X ) with equality if
and only if X and Y are independent.

I In words, the expected amount of information we learn when
discovering X after having discovered Y can’t be more than
the expected amount of information we would learn when
discovering X before knowing anything about Y .

I Proof: note that E(p1, p2, . . . , pn) := −
P

pi log pi is concave.

I The vector v = {pX (x1), pX (x2), . . . , pX (xn)} is a weighted
average of vectors vj := {pX (x1|yj), pX (x2|yj), . . . , pX (xn|yj)}
as j ranges over possible values. By (vector version of)
Jensen’s inequality,
H(X ) = E(v) = E(

P
pY (yj)vj) ≥

P
pY (yj)E(vj) = HY (X ).

Properties of conditional entropy 

P 
I Definitions: HY (X ) = − i p(xi |yj ) log p(xi |yj ) and =yj P 

HY (X ) = (X )pY (yj ). j HY =yj 
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I In words, the expected amount of information we learn when
discovering X after having discovered Y can’t be more than
the expected amount of information we would learn when
discovering X before knowing anything about Y .

I Proof: note that E(p1, p2, . . . , pn) := −
P

pi log pi is concave.

I The vector v = {pX (x1), pX (x2), . . . , pX (xn)} is a weighted
average of vectors vj := {pX (x1|yj), pX (x2|yj), . . . , pX (xn|yj)}
as j ranges over possible values. By (vector version of)
Jensen’s inequality,
H(X ) = E(v) = E(

P
pY (yj)vj) ≥

P
pY (yj)E(vj) = HY (X ).

Properties of conditional entropy 

P 
I Definitions: HY (X ) = − i p(xi |yj ) log p(xi |yj ) and =yj P 

HY (X ) = HY (X )pY (yj ). j =yj 

I Important property two: HY (X ) ≤ H(X ) with equality if 
and only if X and Y are independent. 
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I Proof: note that E(p1, p2, . . . , pn) := −
P

pi log pi is concave.

I The vector v = {pX (x1), pX (x2), . . . , pX (xn)} is a weighted
average of vectors vj := {pX (x1|yj), pX (x2|yj), . . . , pX (xn|yj)}
as j ranges over possible values. By (vector version of)
Jensen’s inequality,
H(X ) = E(v) = E(

P
pY (yj)vj) ≥

P
pY (yj)E(vj) = HY (X ).

Properties of conditional entropy 

P 
I Definitions: HY (X ) = − i p(xi |yj ) log p(xi |yj ) and =yj P 

HY (X ) = HY (X )pY (yj ). j =yj 

I Important property two: HY (X ) ≤ H(X ) with equality if 
and only if X and Y are independent. 

I In words, the expected amount of information we learn when 
discovering X after having discovered Y can’t be more than 
the expected amount of information we would learn when 
discovering X before knowing anything about Y . 
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I The vector v = {pX (x1), pX (x2), . . . , pX (xn)} is a weighted
average of vectors vj := {pX (x1|yj), pX (x2|yj), . . . , pX (xn|yj)}
as j ranges over possible values. By (vector version of)
Jensen’s inequality,
H(X ) = E(v) = E(

P
pY (yj)vj) ≥

P
pY (yj)E(vj) = HY (X ).

Properties of conditional entropy 

P 
I Definitions: HY (X ) = − i p(xi |yj ) log p(xi |yj ) and =yj P 

HY (X ) = HY (X )pY (yj ). j =yj 

I Important property two: HY (X ) ≤ H(X ) with equality if 
and only if X and Y are independent. 

I In words, the expected amount of information we learn when 
discovering X after having discovered Y can’t be more than 
the expected amount of information we would learn when 
discovering X before knowing anything about Y . P 

I Proof: note that E(p1, p2, . . . , pn) := − pi log pi is concave. 

56



Properties of conditional entropy 

P 
I Definitions: HY =yj (X ) = − i p(xi |yj ) log p(xi |yj ) and P 

HY (X ) = HY =yj (X )pY (yj ). j 

I Important property two: HY (X ) ≤ H(X ) with equality if 
and only if X and Y are independent. 

I In words, the expected amount of information we learn when 
discovering X after having discovered Y can’t be more than 
the expected amount of information we would learn when 
discovering X before knowing anything about Y . P 

I Proof: note that E(p1, p2, . . . , pn) := − pi log pi is concave. 

I The vector v = {pX (x1), pX (x2), . . . , pX (xn)} is a weighted 
average of vectors vj := {pX (x1|yj ), pX (x2|yj ), . . . , pX (xn|yj )} 
as j ranges over possible values. By (vector version of) 
Jensen’s inequality,P P 
H(X ) = E(v) = E( pY (yj )vj ) ≥ pY (yj )E(vj ) = HY (X ). 57
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