18.600: Lecture 33 Entropy

Scott Sheffield

MIT

Outline

Entropy

Noiseless coding theory

Conditional entropy

Outline

Entropy

Noiseless coding theory

Conditional entropy

► Entropy is an important notion in thermodynamics, information theory, data compression, cryptography, etc.

- ► Entropy is an important notion in thermodynamics, information theory, data compression, cryptography, etc.
- Familiar on some level to everyone who has studied chemistry or statistical physics.

- Entropy is an important notion in thermodynamics, information theory, data compression, cryptography, etc.
- Familiar on some level to everyone who has studied chemistry or statistical physics.
- Kind of means amount of randomness or disorder.

- Entropy is an important notion in thermodynamics, information theory, data compression, cryptography, etc.
- Familiar on some level to everyone who has studied chemistry or statistical physics.
- Kind of means amount of randomness or disorder.
- But can we give a mathematical definition? In particular, how do we define the entropy of a random variable?

▶ Suppose we toss a fair coin *k* times.

- ightharpoonup Suppose we toss a fair coin k times.
- ▶ Then the state space S is the set of 2^k possible heads-tails sequences.

- ightharpoonup Suppose we toss a fair coin k times.
- ▶ Then the state space S is the set of 2^k possible heads-tails sequences.
- ▶ If X is the random sequence (so X is a random variable), then for each $x \in S$ we have $P\{X = x\} = 2^{-k}$.

- Suppose we toss a fair coin k times.
- ▶ Then the state space S is the set of 2^k possible heads-tails sequences.
- ▶ If X is the random sequence (so X is a random variable), then for each $x \in S$ we have $P\{X = x\} = 2^{-k}$.
- In information theory it's quite common to use log to mean log₂ instead of log_e. We follow that convention in this lecture. In particular, this means that

$$\log P\{X=x\}=-k$$

for each $x \in S$.

- Suppose we toss a fair coin k times.
- ► Then the state space *S* is the set of 2^k possible heads-tails sequences.
- ▶ If X is the random sequence (so X is a random variable), then for each $x \in S$ we have $P\{X = x\} = 2^{-k}$.
- In information theory it's quite common to use log to mean log₂ instead of log_e. We follow that convention in this lecture. In particular, this means that

$$\log P\{X=x\}=-k$$

for each $x \in S$.

Since there are 2^k values in S, it takes k "bits" to describe an element $x \in S$.

- Suppose we toss a fair coin k times.
- ▶ Then the state space S is the set of 2^k possible heads-tails sequences.
- ▶ If X is the random sequence (so X is a random variable), then for each $x \in S$ we have $P\{X = x\} = 2^{-k}$.
- In information theory it's quite common to use log to mean log₂ instead of log_e. We follow that convention in this lecture. In particular, this means that

$$\log P\{X=x\}=-k$$

for each $x \in S$.

- ▶ Since there are 2^k values in S, it takes k "bits" to describe an element $x \in S$.
- ▶ Intuitively, could say that when we learn that X = x, we have learned $k = -\log P\{X = x\}$ "bits of information".

► Shannon: famous MIT student/faculty member, wrote *The Mathematical Theory of Communication* in 1948.

- ► Shannon: famous MIT student/faculty member, wrote *The Mathematical Theory of Communication* in 1948.
- Goal is to define a notion of how much we "expect to learn" from a random variable or "how many bits of information a random variable contains" that makes sense for general experiments (which may not have anything to do with coins).

- ► Shannon: famous MIT student/faculty member, wrote *The Mathematical Theory of Communication* in 1948.
- ► Goal is to define a notion of how much we "expect to learn" from a random variable or "how many bits of information a random variable contains" that makes sense for general experiments (which may not have anything to do with coins).
- ▶ If a random variable X takes values $x_1, x_2, ..., x_n$ with positive probabilities $p_1, p_2, ..., p_n$ then we define the **entropy** of X by

$$H(X) = \sum_{i=1}^{n} p_i(-\log p_i) = -\sum_{i=1}^{n} p_i \log p_i.$$

- ► Shannon: famous MIT student/faculty member, wrote *The Mathematical Theory of Communication* in 1948.
- ► Goal is to define a notion of how much we "expect to learn" from a random variable or "how many bits of information a random variable contains" that makes sense for general experiments (which may not have anything to do with coins).
- ▶ If a random variable X takes values $x_1, x_2, ..., x_n$ with positive probabilities $p_1, p_2, ..., p_n$ then we define the **entropy** of X by

$$H(X) = \sum_{i=1}^{n} p_i(-\log p_i) = -\sum_{i=1}^{n} p_i \log p_i.$$

▶ This can be interpreted as the expectation of $(-\log p_i)$. The value $(-\log p_i)$ is the "amount of surprise" when we see x_i .

Twenty questions with Harry

► Harry always thinks of one of the following animals:

X	$P\{X=x\}$	$-\log P\{X=x\}$
Dog	1/4	2
Cat	1/4	2
Cow	1/8	3
Pig	1/16	4
Squirrel	1/16	4
Mouse	1/16	4
Owl	1/16	4
Sloth	1/32	5
Hippo	1/32	5
Yak	1/32	5
Zebra	1/64	6
Rhino	1/64	6

Twenty questions with Harry

Harry always thinks of one of the following animals:

X	$P\{X=x\}$	$-\log P\{X=x\}$
Dog	1/4	2
Cat	1/4	2
Cow	1/8	3
Pig	1/16	4
Squirrel	1/16	4
Mouse	1/16	4
Owl	1/16	4
Sloth	1/32	5
Hippo	1/32	5
Yak	1/32	5
Zebra	1/64	6
Rhino	1/64	6
	'	•

► Can learn animal with H(X) questions on average.

Twenty questions with Harry

► Harry always thinks of one of the following animals:

X	$P\{X=x\}$	$-\log P\{X=x\}$
Dog	1/4	2
Cat	1/4	2
Cow	1/8	3
Pig	1/16	4
Squirrel	1/16	4
Mouse	1/16	4
Owl	1/16	4
Sloth	1/32	5
Hippo	1/32	5
Yak	1/32	5
Zebra	1/64	6
Rhino	1/64	6

- Can learn animal with H(X) questions on average.
 General: expect H(X) questions if probabilities powers of 2. Otherwise H(X) + 1 suffice. (Try rounding down to 2 powers.)

▶ Again, if a random variable X takes the values x_1, x_2, \ldots, x_n with positive probabilities p_1, p_2, \ldots, p_n then we define the **entropy** of X by

$$H(X) = \sum_{i=1}^{n} p_i(-\log p_i) = -\sum_{i=1}^{n} p_i \log p_i.$$

Again, if a random variable X takes the values x_1, x_2, \ldots, x_n with positive probabilities p_1, p_2, \ldots, p_n then we define the **entropy** of X by

$$H(X) = \sum_{i=1}^{n} p_i(-\log p_i) = -\sum_{i=1}^{n} p_i \log p_i.$$

▶ If X takes one value with probability 1, what is H(X)?

▶ Again, if a random variable X takes the values x_1, x_2, \ldots, x_n with positive probabilities p_1, p_2, \ldots, p_n then we define the **entropy** of X by

$$H(X) = \sum_{i=1}^{n} p_i(-\log p_i) = -\sum_{i=1}^{n} p_i \log p_i.$$

- ▶ If X takes one value with probability 1, what is H(X)?
- ▶ If X takes k values with equal probability, what is H(X)?

Again, if a random variable X takes the values x_1, x_2, \ldots, x_n with positive probabilities p_1, p_2, \ldots, p_n then we define the **entropy** of X by

$$H(X) = \sum_{i=1}^{n} p_i(-\log p_i) = -\sum_{i=1}^{n} p_i \log p_i.$$

- ▶ If X takes one value with probability 1, what is H(X)?
- ▶ If X takes k values with equal probability, what is H(X)?
- ▶ What is H(X) if X is a geometric random variable with parameter p = 1/2?

► Consider random variables X, Y with joint mass function $p(x_i, y_j) = P\{X = x_i, Y = y_j\}.$

- Consider random variables X, Y with joint mass function $p(x_i, y_i) = P\{X = x_i, Y = y_i\}.$
- Then we write

$$H(X,Y) = -\sum_{i} \sum_{j} p(x_i, y_j) \log p(x_i, y_i).$$

- Consider random variables X, Y with joint mass function $p(x_i, y_j) = P\{X = x_i, Y = y_j\}.$
- Then we write

$$H(X,Y) = -\sum_{i} \sum_{j} p(x_i, y_j) \log p(x_i, y_i).$$

▶ H(X, Y) is just the entropy of the pair (X, Y) (viewed as a random variable itself).

- Consider random variables X, Y with joint mass function $p(x_i, y_j) = P\{X = x_i, Y = y_j\}.$
- ▶ Then we write

$$H(X,Y) = -\sum_{i} \sum_{j} p(x_i, y_j) \log p(x_i, y_i).$$

- ▶ H(X, Y) is just the entropy of the pair (X, Y) (viewed as a random variable itself).
- Claim: if X and Y are independent, then

$$H(X,Y)=H(X)+H(Y).$$

Why is that?

Outline

Entropy

Noiseless coding theory

Conditional entropy

Outline

Entropy

Noiseless coding theory

Conditional entropy

- ▶ David Huffman (as MIT student) published in "A Method for the Construction of Minimum-Redundancy Code" in 1952.
- ▶ If X takes four values A, B, C, D we can code them by:

 $A \leftrightarrow 00$

 $B \leftrightarrow 01$

 $C \leftrightarrow 10$

 $D \leftrightarrow 11$

- David Huffman (as MIT student) published in "A Method for the Construction of Minimum-Redundancy Code" in 1952.
- If X takes four values A, B, C, D we can code them by:

$$A \leftrightarrow 00$$

$$B \leftrightarrow 01$$

$$C \leftrightarrow 10$$

$$D \leftrightarrow 11$$

Or by

$$A \leftrightarrow 0$$
 $B \leftrightarrow 10$
 $C \leftrightarrow 110$
 $D \leftrightarrow 111$

- David Huffman (as MIT student) published in "A Method for the Construction of Minimum-Redundancy Code" in 1952.
- ▶ If X takes four values A, B, C, D we can code them by:

$$A \leftrightarrow 00$$

$$B \leftrightarrow 01$$

$$C \leftrightarrow 10$$

$$D \leftrightarrow 11$$

Or by

$$A \leftrightarrow 0$$
 $B \leftrightarrow 10$
 $C \leftrightarrow 110$
 $D \leftrightarrow 111$

No sequence in code is an extension of another.

- David Huffman (as MIT student) published in "A Method for the Construction of Minimum-Redundancy Code" in 1952.
- ▶ If X takes four values A, B, C, D we can code them by:

$$A \leftrightarrow 00$$

$$B \leftrightarrow 01$$

$$C \leftrightarrow 10$$

$$D \leftrightarrow 11$$

► Or by

$$A \leftrightarrow 0$$
 $B \leftrightarrow 10$
 $C \leftrightarrow 110$
 $D \leftrightarrow 111$

- ▶ No sequence in code is an extension of another.
- What does 100111110010 spell?

- David Huffman (as MIT student) published in "A Method for the Construction of Minimum-Redundancy Code" in 1952.
- ▶ If X takes four values A, B, C, D we can code them by:

$$A \leftrightarrow 00$$
 $B \leftrightarrow 01$
 $C \leftrightarrow 10$
 $D \leftrightarrow 11$

Or by

$$A \leftrightarrow 0$$
 $B \leftrightarrow 10$
 $C \leftrightarrow 110$
 $D \leftrightarrow 111$

- ▶ No sequence in code is an extension of another.
- ▶ What does 100111110010 spell?
- A coding scheme is equivalent to a twenty questions strategy.

Twenty questions theorem

▶ **Noiseless coding theorem:** Expected number of questions you need is always at least the entropy.

- ▶ **Noiseless coding theorem:** Expected number of questions you need is always at least the entropy.
- Note: The expected number of questions is the entropy if each question divides the space of possibilities exactly in half (measured by probability).

- ▶ **Noiseless coding theorem:** Expected number of questions you need is always at least the entropy.
- Note: The expected number of questions is the entropy if each question divides the space of possibilities exactly in half (measured by probability).
- ▶ In this case, let X take values $x_1, ..., x_N$ with probabilities $p(x_1), ..., p(x_N)$. Then if a valid coding of X assigns n_i bits to x_i , we have

$$\sum_{i=1}^{N} n_{i} p(x_{i}) \geq H(X) = -\sum_{i=1}^{N} p(x_{i}) \log p(x_{i}).$$

- ▶ **Noiseless coding theorem:** Expected number of questions you need is always at least the entropy.
- Note: The expected number of questions is the entropy if each question divides the space of possibilities exactly in half (measured by probability).
- ▶ In this case, let X take values $x_1, ..., x_N$ with probabilities $p(x_1), ..., p(x_N)$. Then if a valid coding of X assigns n_i bits to x_i , we have

$$\sum_{i=1}^{N} n_{i} p(x_{i}) \geq H(X) = -\sum_{i=1}^{N} p(x_{i}) \log p(x_{i}).$$

▶ Data compression: $X_1, X_2, ..., X_n$ be i.i.d. instances of X. Do there exist encoding schemes such that the expected number of bits required to encode the entire sequence is about H(X)n (assuming n is sufficiently large)?

- ▶ **Noiseless coding theorem:** Expected number of questions you need is always at least the entropy.
- Note: The expected number of questions is the entropy if each question divides the space of possibilities exactly in half (measured by probability).
- ▶ In this case, let X take values $x_1, ..., x_N$ with probabilities $p(x_1), ..., p(x_N)$. Then if a valid coding of X assigns n_i bits to x_i , we have

$$\sum_{i=1}^{N} n_{i} p(x_{i}) \geq H(X) = -\sum_{i=1}^{N} p(x_{i}) \log p(x_{i}).$$

- ▶ Data compression: $X_1, X_2, ..., X_n$ be i.i.d. instances of X. Do there exist encoding schemes such that the expected number of bits required to encode the entire sequence is about H(X)n (assuming n is sufficiently large)?
- Yes. Consider space of N^n possibilities. Use "rounding to 2 power" trick, Expect to need at most H(x)n + 1 bits.

Outline

Entropy

Noiseless coding theory

Conditional entropy

Outline

Entropy

Noiseless coding theory

Conditional entropy

Let's again consider random variables X, Y with joint mass function $p(x_i, y_j) = P\{X = x_i, Y = y_j\}$ and write

$$H(X,Y) = -\sum_{i} \sum_{j} p(x_i, y_j) \log p(x_i, y_i).$$

Let's again consider random variables X, Y with joint mass function $p(x_i, y_j) = P\{X = x_i, Y = y_j\}$ and write

$$H(X,Y) = -\sum_{i} \sum_{j} p(x_i, y_j) \log p(x_i, y_i).$$

▶ But now let's not assume they are independent.

Let's again consider random variables X, Y with joint mass function $p(x_i, y_j) = P\{X = x_i, Y = y_j\}$ and write

$$H(X,Y) = -\sum_{i} \sum_{j} p(x_i, y_j) \log p(x_i, y_i).$$

- But now let's not assume they are independent.
- ▶ We can define a **conditional entropy** of X given $Y = y_j$ by

$$H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j).$$

Let's again consider random variables X, Y with joint mass function $p(x_i, y_j) = P\{X = x_i, Y = y_j\}$ and write

$$H(X,Y) = -\sum_{i} \sum_{j} p(x_i, y_j) \log p(x_i, y_i).$$

- But now let's not assume they are independent.
- ▶ We can define a **conditional entropy** of X given $Y = y_j$ by

$$H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j).$$

▶ This is just the entropy of the conditional distribution. Recall that $p(x_i|y_j) = P\{X = x_i|Y = y_j\}$.

Let's again consider random variables X, Y with joint mass function $p(x_i, y_j) = P\{X = x_i, Y = y_j\}$ and write

$$H(X,Y) = -\sum_{i} \sum_{i} p(x_i, y_j) \log p(x_i, y_i).$$

- ▶ But now let's not assume they are independent.
- ▶ We can define a **conditional entropy** of X given $Y = y_i$ by

$$H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j).$$

- ► This is just the entropy of the conditional distribution. Recall that $p(x_i|y_i) = P\{X = x_i|Y = y_i\}$.
- ▶ We similarly define $H_Y(X) = \sum_j H_{Y=y_j}(X)p_Y(y_j)$. This is the *expected* amount of conditional entropy that there will be in Y after we have observed X.

▶ Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.

- ▶ Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- ▶ Important property one: $H(X, Y) = H(Y) + H_Y(X)$.

- ▶ Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- ▶ Important property one: $H(X, Y) = H(Y) + H_Y(X)$.
- ▶ In words, the expected amount of information we learn when discovering (X, Y) is equal to expected amount we learn when discovering Y plus expected amount when we subsequently discover X (given our knowledge of Y).

- ▶ Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- ▶ Important property one: $H(X, Y) = H(Y) + H_Y(X)$.
- ▶ In words, the expected amount of information we learn when discovering (X, Y) is equal to expected amount we learn when discovering Y plus expected amount when we subsequently discover X (given our knowledge of Y).
- ▶ To prove this property, recall that $p(x_i, y_j) = p_Y(y_j)p(x_i|y_j)$.

- ▶ Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- ▶ Important property one: $H(X, Y) = H(Y) + H_Y(X)$.
- ▶ In words, the expected amount of information we learn when discovering (X, Y) is equal to expected amount we learn when discovering Y plus expected amount when we subsequently discover X (given our knowledge of Y).
- ▶ To prove this property, recall that $p(x_i, y_j) = p_Y(y_j)p(x_i|y_j)$.
- ► Thus, $H(X, Y) = -\sum_{i} \sum_{j} p(x_{i}, y_{j}) \log p(x_{i}, y_{j}) =$ $-\sum_{i} \sum_{j} p_{Y}(y_{j}) p(x_{i}|y_{j}) [\log p_{Y}(y_{j}) + \log p(x_{i}|y_{j})] =$ $-\sum_{j} p_{Y}(y_{j}) \log p_{Y}(y_{j}) \sum_{i} p(x_{i}|y_{j}) \sum_{j} p_{Y}(y_{j}) \sum_{i} p(x_{i}|y_{j}) \log p(x_{i}|y_{j}) = H(Y) + H_{Y}(X).$

▶ Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.

- ▶ Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_i H_{Y=y_i}(X) p_Y(y_j)$.
- ▶ Important property two: $H_Y(X) \le H(X)$ with equality if and only if X and Y are independent.

- ▶ Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- ▶ Important property two: $H_Y(X) \le H(X)$ with equality if and only if X and Y are independent.
- ▶ In words, the expected amount of information we learn when discovering *X* after having discovered *Y* can't be more than the expected amount of information we would learn when discovering *X* before knowing anything about *Y*.

- ▶ Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- ▶ Important property two: $H_Y(X) \le H(X)$ with equality if and only if X and Y are independent.
- ▶ In words, the expected amount of information we learn when discovering *X* after having discovered *Y* can't be more than the expected amount of information we would learn when discovering *X* before knowing anything about *Y*.
- ▶ Proof: note that $\mathcal{E}(p_1, p_2, ..., p_n) := -\sum p_i \log p_i$ is concave.

- ▶ Definitions: $H_{Y=y_j}(X) = -\sum_i p(x_i|y_j) \log p(x_i|y_j)$ and $H_Y(X) = \sum_j H_{Y=y_j}(X) p_Y(y_j)$.
- ▶ Important property two: $H_Y(X) \le H(X)$ with equality if and only if X and Y are independent.
- ▶ In words, the expected amount of information we learn when discovering *X* after having discovered *Y* can't be more than the expected amount of information we would learn when discovering *X* before knowing anything about *Y*.
- ▶ Proof: note that $\mathcal{E}(p_1, p_2, ..., p_n) := -\sum p_i \log p_i$ is concave.
- ► The vector $v = \{p_X(x_1), p_X(x_2), \dots, p_X(x_n)\}$ is a weighted average of vectors $v_j := \{p_X(x_1|y_j), p_X(x_2|y_j), \dots, p_X(x_n|y_j)\}$ as j ranges over possible values. By (vector version of) Jensen's inequality,

$$H(X) = \mathcal{E}(v) = \mathcal{E}(\sum p_Y(y_j) \overline{V}_j) \ge \sum p_Y(y_j) \mathcal{E}(v_j) = H_Y(X).$$

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.