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I Experiment is performed, but I don’t know outcome. For
some F ⊂ S , I ask, “Was the outcome in F?” and receive
answer yes.

I I think of F as a “new sample space” with all elements
equally likely.

I Definition: P(E |F ) = P(EF )/P(F ).

I Call P(E |F ) the “conditional probability of E given F” or
“probability of E conditioned on F”.

I Definition makes sense even without “equally likely”
assumption.

Conditional probability 

I Suppose I have a sample space S with n equally likely 
elements, representing possible outcomes of an experiment. 

4



I I think of F as a “new sample space” with all elements
equally likely.

I Definition: P(E |F ) = P(EF )/P(F ).

I Call P(E |F ) the “conditional probability of E given F” or
“probability of E conditioned on F”.

I Definition makes sense even without “equally likely”
assumption.

Conditional probability 

I Suppose I have a sample space S with n equally likely 
elements, representing possible outcomes of an experiment. 

I Experiment is performed, but I don’t know outcome. For 
some F ⊂ S , I ask, “Was the outcome in F ?” and receive 
answer yes. 

5



I Definition: P(E |F ) = P(EF )/P(F ).

I Call P(E |F ) the “conditional probability of E given F” or
“probability of E conditioned on F”.

I Definition makes sense even without “equally likely”
assumption.

Conditional probability 

I Suppose I have a sample space S with n equally likely 
elements, representing possible outcomes of an experiment. 

I Experiment is performed, but I don’t know outcome. For 
some F ⊂ S , I ask, “Was the outcome in F ?” and receive 
answer yes. 

I I think of F as a “new sample space” with all elements 
equally likely. 

6



I Call P(E |F ) the “conditional probability of E given F” or
“probability of E conditioned on F”.

I Definition makes sense even without “equally likely”
assumption.

Conditional probability 

I Suppose I have a sample space S with n equally likely 
elements, representing possible outcomes of an experiment. 

I Experiment is performed, but I don’t know outcome. For 
some F ⊂ S , I ask, “Was the outcome in F ?” and receive 
answer yes. 

I I think of F as a “new sample space” with all elements 
equally likely. 

I Definition: P(E |F ) = P(EF )/P(F ). 

7



I Definition makes sense even without “equally likely”
assumption.

Conditional probability 

I Suppose I have a sample space S with n equally likely 
elements, representing possible outcomes of an experiment. 

I Experiment is performed, but I don’t know outcome. For 
some F ⊂ S , I ask, “Was the outcome in F ?” and receive 
answer yes. 

I I think of F as a “new sample space” with all elements 
equally likely. 

I Definition: P(E |F ) = P(EF )/P(F ). 

I Call P(E |F ) the “conditional probability of E given F ” or 
“probability of E conditioned on F ”. 

8



Conditional probability 

I Suppose I have a sample space S with n equally likely 
elements, representing possible outcomes of an experiment. 

I Experiment is performed, but I don’t know outcome. For 
some F ⊂ S , I ask, “Was the outcome in F ?” and receive 
answer yes. 

I I think of F as a “new sample space” with all elements 
equally likely. 

I Definition: P(E |F ) = P(EF )/P(F ). 

I Call P(E |F ) the “conditional probability of E given F ” or 
“probability of E conditioned on F ”. 

I Definition makes sense even without “equally likely” 
assumption. 

9



Outline 

Definition: probability of A given B 

Examples 

Multiplication rule 

10



Outline 

Definition: probability of A given B 

Examples 

Multiplication rule 

11



I Say probability to have disease is p.

I S = {disease, no disease} × {positive, negative}.
I P(positive) = .9p + .1(1− p) and P(disease, positive) = .9p.

I P(disease|positive) = .9p
.9p+.1(1−p) . If p is tiny, this is about 9p.

I Probability suspect guilty of murder given a particular
suspicious behavior.

I Probability plane will come eventually, given plane not here
yet.

More examples 

I Probability have rare disease given positive result to test with 
90 percent accuracy. 
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I There are only two taxi companies in town, ”Blue Cabs” and
”Green Cabs.” On the night in question, 85 percent of all taxis
on the road were green and 15 percent were blue.

I The witness has undergone an extensive vision test under
conditions similar to those on the night in question, and has
demonstrated that he can successfully distinguish a blue taxi
from a green taxi 80 percent of the time.

I Study participants believe blue taxi at fault, say witness
correct with 80 percent probability.

Another famous Tversky/Kahneman study (Wikipedia) 

I Imagine you are a member of a jury judging a hit-and-run 
driving case. A taxi hit a pedestrian one night and fled the 
scene. The entire case against the taxi company rests on the 
evidence of one witness, an elderly man who saw the accident 
from his window some distance away. He says that he saw the 
pedestrian struck by a blue taxi. In trying to establish her 
case, the lawyer for the injured pedestrian establishes the 
following facts: 
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I Useful when we think about multi-step experiments.

I For example, let Ei be event ith person gets own hat in the
n-hat shuffle problem.

I Another example: roll die and let Ei be event that the roll
does not lie in {1, 2, . . . , i}. Then P(Ei ) = (6− i)/6 for
i ∈ {1, 2, . . . , 6}.

I What is P(E4|E1E2E3) in this case?

Multiplication rule 

I P(E1E2E3 . . . En) = 
P(E1)P(E2|E1)P(E3|E1E2) . . . P(En|E1 . . . En−1) 
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I You point to door one. Host opens either door two or three
and shows you that it doesn’t have a prize. (If neither door
two nor door three has a prize, host tosses coin to decide
which to open.)

I You then get to open a door and claim what’s behind it.
Should you stick with door one or choose other door?

I Sample space is {1, 2, 3} × {2, 3} (door containing prize, door
host points to).

I We have P
�
(1, 2)

�
= P

�
(1, 3)

�
= 1/6 and

P
�
(2, 3)

�
= P

�
(3, 2)

�
= 1/3. Given host points to door 2,

probability prize behind 3 is 2/3.

Monty Hall problem 

I Prize behind one of three doors, all equally likely. 
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I Make the obvious (though not quite correct) assumptions.
Every child is either boy or girl, and equally likely to be either
one, and all days of week for birth equally likely, etc.

I Make state space matrix of 196 = 14 × 14 elements

I Easy to see answer is 13/27.

Another popular puzzle (see Tanya Khovanova’s blog) 

I Given that your friend has exactly two children, one of whom 
is a son born on a Tuesday, what is the probability the second 
child is a son. 
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