18.650. Statistics for Applications Fall 2016. Problem Set 10

Due Friday, Dec. 2 at 12 noon

Problem 1 Bayesian Estimation

Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \theta)$, for some unknown positive number θ .

- 1. Compute the maximum likelihood estimator of θ .
- 2. Prove that the MLE is asymptotically normal and find its asymptotic variance.
- 3. In a Bayesian approach:
 - a) Compute Jeffreys prior ? Is it proper ?
 - b) Use Bayes' formula in order to compute the posterior distribution. Is it well defined ?
 - c) Compute the Bayesian estimator of θ associated with Jeffreys prior. Recall that the inverse Gamma distribution with parameters $\alpha > 1, \beta > 0$ has density

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{e^{-\beta/x}}{x^{\alpha+1}}, x > 0.$$

Its expectation is given by
$$\frac{\beta}{\alpha - 1}$$

Problem 2 Bayesian Estimation and Linear Regression

Let X_1, \ldots, X_n be *n* deterministic vectors in \mathbb{R}^p and let X be the $n \times p$ matrix whose rows are X'_1, \ldots, X'_n . Consider a sample Y_1, \ldots, Y_n , such that conditionally on some *p* dimensional random vector $\boldsymbol{\beta}, Y_1, \ldots, Y_n$ are independent and for each $i = 1, \ldots, n$,

$$Y_i - X_i' \boldsymbol{\beta} \sim \mathcal{N}(0, \sigma^2),$$

where σ^2 is a given positive number. Denote by $\mathbf{Y} = (Y_1, \ldots, Y_n)'$.

- 1. Conditionally on β , what is the distribution of Y?
- 2. Assume that the prior distribution on $\boldsymbol{\beta}$ is $\mathcal{N}_p(0, \tau^2 I_p)$, where τ^2 is a fixed positive number.
 - a) Prove that the posterior distribution of $\boldsymbol{\beta}$ (i.e., the distribution of $\boldsymbol{\beta}$ conditional

on \boldsymbol{Y}) has a density proportional to $\exp\left(-\frac{1}{2\sigma^2}\left(\|\boldsymbol{Y}-\boldsymbol{X}\boldsymbol{\beta}\|^2+\lambda\|\boldsymbol{\beta}\|^2\right)\right)$, for some λ to be determined.

b) Conclude that the posterior distribution of β is Gaussian and determine the corresponding parameters.

Hint: The density of the Gaussian distribution with mean vector $\boldsymbol{\mu}$ *and covariance matrix* $\boldsymbol{\Sigma}$ *is given by*

$$g(\boldsymbol{\beta}) = \frac{1}{(2\pi)^{p/2} \sqrt{\det \Sigma}} \exp\left(-\frac{1}{2}(\boldsymbol{\beta} - \boldsymbol{\mu})' \Sigma^{-1}(\boldsymbol{\beta} - \boldsymbol{\mu})\right)$$

c) What is the posterior mean of β ?

3. Consider a frequentist approach: Assume that the linear regression of Y_i on X_i is $Y_i = X'_i \beta + \varepsilon_i$, for some unknown vector $\beta \in \mathbb{R}^p$, where $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. $\mathcal{N}(0, \sigma^2)$, for some $\sigma^2 > 0$. The *Ridge* estimator of β is defined as:

$$\hat{\boldsymbol{eta}}^{(R)} \in \operatorname*{argmin}_{\boldsymbol{t} \in \mathbb{R}^S} \| \boldsymbol{Y} - \boldsymbol{X} \boldsymbol{t} \|^2 + \lambda \| \boldsymbol{t} \|^2,$$

where λ is a *tuning parameter*, i.e., a given number chosen by the statistician. Note that similarly to the BIC or the Lasso estimators, the Ridge estimator minimizes a penalized version of the sum of squared errors.

- a) Compute the Ridge estimator.
- b) Using the previous questions, prove that there exists a value of τ^2 such that $\hat{\boldsymbol{\beta}}^{(R)}$ is equal to the Bayesian estimator with prior distribution $\mathcal{N}_p(0, \tau^2 I_p)$.
- c) What is the distribution of $\hat{\boldsymbol{\beta}}^{(R)}$?
- d) Compute the quadratic risk of $\hat{\boldsymbol{\beta}}^{(R)}$ in terms of the matrix \boldsymbol{X} , λ and $\boldsymbol{\beta}$.

Problem 3 Covariance Matrices

- 1. Recall the definition of the covariance matrix of a *p*-dimensional random vector $\mathbf{X} = (X_1, \ldots, X_p)'$. What are its dimensions ?
- 2. Given a sample of *n* random vectors X_1, \ldots, X_n of size *p*, recall the definition of the sample covariance matrix.
- 3. Prove that the covariance matrix of a random vector is positive semi-definite.
- 4. Prove that the sample covariance matrix of a sample of random vectors is positive semi-definite.
- 5. Let X be a p-dimensional random vector and let Σ be its covariance matrix. Let A be a $q \times p$ matrix.
 - a) What is the covariance matrix of the random vector AX? Prove your answer.
 - b) If q > p, can the covariance matrix of AX be invertible? Why?
 - c) If $\boldsymbol{u} \in \mathbb{R}^p$, what is the variance of $\boldsymbol{u}'\boldsymbol{X}$?

- 6. Let X_1, \ldots, X_n be *p*-dimensional random vectors and let $\hat{\Sigma}$ be the corresponding sample covariance matrix.
 - a) Let B be a $q \times p$ matrix. What is the sample covariance matrix of BX_1, \ldots, BX_n ? Prove your answer.
 - b) If $\boldsymbol{u} \in \mathbb{R}^p$, what is the sample covariance of $\boldsymbol{u}'\boldsymbol{X}_1, \ldots, \boldsymbol{u}'\boldsymbol{X}_n$?
- 7. Let X be a *d*-dimensional random vector with mean μ and covariance matrix Σ . Let $A \in \mathbb{R}^{k \times d}$. Prove that

 $\mathbb{E}\left[\boldsymbol{X}'A'A\boldsymbol{X}\right] = \|A\boldsymbol{\mu}\|_{2}^{2} + Tr(A\Sigma A').$

18.650 / 18.6501 Statistics for Applications Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.