18.650. Statistics for Applications Fall 2016. Problem Set 7

Due Friday, Oct. 28 at 12 noon

Problem 1 QQ-plots

Recall that the Laplace distribution with parameter $\lambda > 0$ is the continuous probability measure with density $f_{\lambda}(x) = \frac{\lambda}{2}e^{-\lambda|x|}$, $x \in \mathbb{R}$ and the Cauchy distribution is the continuous probability measure with density $g(x) = \frac{1}{\pi}\frac{1}{1+x^2}$, $x \in \mathbb{R}$.

Consider five samples of i.i.d. random variables with the following distributions:

- The standard Gaussian distribution;
- The uniform distribution on $[-\sqrt{3}, \sqrt{3}];$
- The Cauchy distribution;
- The exponential distribution with parameter 1;
- The Laplace distribution with parameter $\sqrt{2}$.

For each of these samples, we have drawn the normal QQ-plots below. Identify which plot corresponds to which sample.

QQ-Plot 1

QQ-Plot 3

QQ-Plot 5

Problem 2 Kolomogorov-Smirnov test for two samples

Consider two independent samples X_1, \ldots, X_n and Y_1, \ldots, Y_m of independent real valued continuous random variables, and assume that the X_i 's are iid with some cdf Fand that the Y_i 's are iid with some cdf G. Note that the two samples may have different sizes (if $n \neq m$). We want to test whether F = G. We consider the following hypotheses:

$$H_0: "F = G"$$
 and $H_1: "F \neq G"$.

For simplicity, we will assume that in addition to be continuous, F and G are increasing.

- 1. Propose an example of experiment in which testing whether two samples are generated by the same distribution would be of interest.
- 2. For i = 1, ..., n, denote by $U_i = F(X_i)$ and for j = 1, ..., m, let $V_j = G(Y_j)$. What are the distributions of the U_i 's and the V_j 's ?
- 3. Let F_n be the empirical cdf of the sample $\{X_1, \ldots, X_n\}$ and G_m be the empirical cdf of $\{Y_1, \ldots, Y_m\}$.
 - a) Let $T_{n,m} = \sup_{t \in \mathbb{R}} |F_n(t) G_m(t)|$. Prove that $T_{n,m}$ can be written as the maximum value of a finite collection of numbers.
 - b) If H_0 is true, show that

$$T_{n,m} = \sup_{0 \le x \le 1} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{U_i \le x} - \frac{1}{m} \sum_{j=1}^{m} \mathbb{1}_{V_j \le x} \right|.$$

- c) If H_0 is true, what is the joint distribution of the n + m random variables $U_1, \ldots, U_n, V_1, \ldots, V_m$?
- d) Conclude that the test statistic $T_{n,m}$ is pivotal, i.e., if H_0 is true, the distribution of $T_{n,m}$ does not depend on the unknown distribution of the samples.
- e) Let $\alpha \in (0,1)$ and let q_{α} be the (1α) -quantile of the distribution of $T_{n,m}$ under H_0 . In practice, even if this quantile may be available on tables for some values of n and m, you may not be able to find it online for your values of n and m. Describe an algorithm that you could run on a software (e.g., R) in order to get an approximate value of q_{α} , for a given α .
- f) Define a test with non asymptotic level α for the hypotheses H_0 v.s. H_1 .

Problem 3 Test of independence for samples with continuous cdf

Consider *n* i.i.d. pairs of real random variables $(X_1, Y_1), \ldots, (X_n, Y_n)$ with some continuous distribution. We would like to test whether X_1 and Y_1 are independent. Define the following hypotheses:

$$H_0: "X_1 \perp \!\!\!\perp Y_1"$$
 and $H_1: "X_1$ and Y_1 are not independent"

For i = 1, ..., n, define R_i as the rank of X_i in the sample $X_1, ..., X_n$: E.g., if X_i is the smallest number of this sample, then $R_i = 1$; If X_i is the largest, then $R_i = n$. In a similar fashion, define Q_i as the rank of Y_i in the sample Y_1, \ldots, Y_n .

- 1. Propose an example of experiment in which testing independence of two samples would be of interest.
- 2. Without a rigorous proof, explain why R_1, \ldots, R_n are not independent random variables.
- 3. Prove that the distribution of (R_1, \ldots, R_n) does not depend on the (unknown) distribution of the X_i 's. Similarly, the distribution of (Q_1, \ldots, Q_n) does not depend on that of the Y_i 's.
- 4. Prove that if H_0 is true, then the two vectors of ranks (R_1, \ldots, R_n) and (Q_1, \ldots, Q_n) are independent.
- 5. Conclude that if H_0 is true, then the joint distribution of the 2n random variables $R_1, \ldots, R_n, Q_1, \ldots, Q_n$ is known and does not depend on the distribution of the original sample.
- 6. Consider the following test statistic:

$$T_n = \frac{\sum_{i=1}^n (R_i - \bar{R}_n)(Q_i - \bar{Q}_n)}{\sqrt{\sum_{i=1}^n (R_i - \bar{R}_n)^2 \sum_{i=1}^n (Q_i - \bar{Q}_n)^2}}.$$

 T_n is the empirical correlation between the R_i 's and the Q_i 's. If H_0 is true, then T_n should be very close to zero. We are first going to show that T_n has a very simpler expression.

a) Prove that

$$\bar{R}_n = \bar{Q}_n = \frac{n+1}{2},$$

$$\sum_{i=1}^n (R_i - \bar{R}_n)^2 = \sum_{i=1}^n (Q_i - \bar{Q}_n)^2 = \frac{n(n^2 - 1)}{12}.$$
Hint: Recall that $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ and $\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}.$
Conclude that

b) (

$$T_n = \frac{12}{n(n^2 - 1)} \sum_{i=1}^n R_i Q_i - \frac{3(n+1)}{n-1}$$

7. Using all the previous questions, prove that if H_0 is true, then T_n has the same distribution as

$$S_n = \frac{12}{n(n^2 - 1)} \sum_{i=1}^n R'_i Q'_i - \frac{3(n+1)}{n-1}$$

where (R'_1, \ldots, R'_n) and (Q'_1, \ldots, Q'_n) are the respective rank vectors of two independent samples of i.i.d. uniform random variables in [0, 1].

- 8. Let $\alpha \in (0,1)$. Denote by q_{α} the (1α) -quantile of S_n . Describe an algorithm that you could run on the software R in order to get an approximate value of q_{α} , for a given value of n.
- 9. Define a test for H_0 v.s. H_1 that has non asymptotic level α .

18.650 / 18.6501 Statistics for Applications Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.