
18.650. Statistics for Applications 
Fall 2016. Problem Set 8 

Due Friday, Nov. 4 at 12 noon 

Problem 1 Heteroscedastic regression 

Let the characteristics (Xi, yi) of n individuals (i = 1, . . . , n) be observed, where yi ∈ IR 
is the dependent variable and Xi ∈ IRp is the vector of deterministic explanatory variables. 
Our goal is to estimate the coefficients of β = (β1, . . . , βp)

′ in the linear regression: 

= X ′ β i = 1, . . . , n. yi i + εi, 

We assume that the model is heteroscedastic, i.e., the error terms εi are not i.i.d.. In 
this exercise, we are interested in the case where the vector ε = (ε1, . . . , εn)

′ is Gaussian, 
centered, with known covariance matrix Σ and we assume that Σ is invertible. We denote 
by X the matrix in IRn×p whose rows are X

1

′ , . . . , X n 
′ and by Y the vector with coordinates 

y1, . . . , yn. 
Consider the estimator β̂ that minimises 

(Y − Xβ) ′ Σ−1(Y − Xβ), 

over β ∈ IRp. 

1. Show that in the homoscedastic case, i.e., when Σ = σ2In for some σ2 > 0, β̂
reduces the least square error estimator. 

2. Prove that β̂ is equal to the maximum likelihood estimator. 

3. Propose a sufficient condition on the matrix X for β̂ to be uniquely defined. 

4. From now on, we assume that the previous condition is satisfied. Compute β̂. 
What is the distribution of β̂ ? 

5. Compute the bias and the quadratic risk of β̂. 

Problem 2 Linear regression with random design 

Consider n i.i.d. pairs of random variables (Xi, Yi), i = 1, . . . , n, where Xi ∈ IRp (p ≥ 1) 
and Yi ∈ IR. For each i, write 

X ′ Yi = iβ + εi, 

where E[εi] = 0, cov(Xi, εi) = 0 and β ∈ IRp is an unknown vector, that we want to 
estimate. In Questions 1,2 and 3, we assume that for all x ∈ IRp, ε1 has a conditional 
density given X1 = x, denoted by fx and that X1 has a density, which we denote by g. 
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1. Write the likelihood in terms of the unknown parameter β, fx and g. 

2. Show that the maximum likelihood estimator of β does not depend on g, which 
may be unknown. 

3. Assume that ε1 is independent of X1 and that ε1 ∼ N (0, σ2). 
a) Compute fx, for x ∈ IRp. 
b) Since the Xi’s are independent continuous random vectors of size p, it is pos­

sible to prove that the rank of the family {X1, . . . , Xn} is equal to p almost
 
surely. Here, we use this result without proving it.
 
Show that the maximum likelihood estimator of β is equal to the least square
 
error estimator and compute it.
 

c) Conditionally on the Xi’s, what is the distribution of the MLE ?
 
d) Is the MLE biased ?
 

Hint: First compute its expectation conditionally on the Xi’s. 
e) What is the maximum likelihood estimator of σ2 ? 
f) Propose an unbiased estimator σ̂2 of σ2 . What is the conditional distribution 

(n − p)σ̂2 
of given the Xi’s ? 

σ2 

4. Assume that p = 2 and Xi = (1, Xi), i = 1, . . . , n, where Xi is a random variable 
with finite, non zero variance. Of course, we no longer assume that X1 has a 
density. Denote β = (a, b), so: 

Yi = a + bXi + εi, i = 1, . . . , n. 

ˆa) Recall the least square estimator (â, b) of (a, b).
 
b) Prove that it is consistent.
 
c) Assume that X1 and ε are independent, and denote by σ

2 the variance of
 
ˆε1. Show that (â, b) is asymptotically normal, and compute its asymptotic 

covariance matrix in terms of σ2 and the moments of X1. 
d) Propose a test with asymptotic level at most α ∈ (0, 1) for the null hypothesis 

H0 : ”b > 0” (the moments of X1 and σ
2 are not known). 

Problem 3 Logistic regression 

Consider independent random pairs (X1, Y1), . . . , (Xn, Yn), such that: 

• Yi ∈ {0, 1} is a binary variable, 

• Xi ∈ IRp, 
  

P[Yi = 1|Xi] 
X ′ • ln = β, for some β ∈ IRp. 

P[Yi = 0|Xi]
i
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For the sake of simplicity, we assume that X1 has a density, that is unknown. We denote 
it by f . 

1. Compute P[Yi = 1|Xi] (for i = 1, . . . , n). 

2. Write the likelihood of the model in terms of β and f . 

3. Show that the maximum likelihood estimator of β does not depend on the unknown 
density f . 
Remark: In practice, there is no closed form for the maximum likelihood estima­

tor, but there are some algorithms that allow to approach it. 
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