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The Bayesian approach (1)
 

◮	 So far, we have studied the frequentist approach of statistics. 

◮	 The frequentist approach: 

◮	 Observe data 

◮	 These data were generated randomly (by Nature, by 
measurements, by designing a survey, etc...) 

◮	 We made assumptions on the generating process (e.g., i.i.d., 
Gaussian data, smooth density, linear regression function, 
etc...) 

◮	 The generating process was associated to some object of 
interest (e.g., a parameter, a density, etc...) 

◮	 This object was unknown but fixed and we wanted to find it: 
we either estimated it or tested a hypothesis about this object, 
etc... 
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The Bayesian approach (2)
 

◮	 Now, we still observe data, assumed to be randomly generated 
by some process. Under some assumptions (e.g., parametric 
distribution), this process is associated with some fixed object. 

◮	 We have a prior belief about it. 

◮	 Using the data, we want to update that belief and transform 
it into a posterior belief. 
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The Bayesian approach (3) 
Example 

◮	 Let p be the proportion of woman in the population. 

◮	 Sample n people randomly with replacement in the population 
and denote by X1, . . . ,Xn their gender (1 for woman, 0 
otherwise). 

◮	 In the frequentist approach, we estimated p (using the MLE), 
we constructed some confidence interval for p, we did 
hypothesis testing (e.g., H0 : p = .5 v.s. H1 : p  = .5). 

◮	 Before analyzing the data, we may believe that p is likely to 
be close to 1/2. 

◮	 The Bayesian approach is a tool to: 

1.	 include mathematically our prior belief in statistical procedures. 
2.	 update our prior belief using the data. 
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The Bayesian approach (4) 
Example (continued) 

◮ Our prior belief about p can be quantified: 

◮ E.g., we are 90% sure that p is between .4 and .6, 95% that it 
is between .3 and .8, etc... 

◮ Hence, we can model our prior belief using a distribution for 
p, as if p was random. 

◮ In reality, the true parameter is not random ! However, the 
Bayesian approach is a way of modeling our belief about the 
parameter by doing as if it was random. 

◮ E.g., p ∼ B(a, a) (Beta distribution) for some a > 0. 

◮ This distribution is called the prior distribution. 
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The Bayesian approach (5) 

Example (continued) 

◮	 In our statistical experiment, X1, . . . ,Xn are assumed to be 
i.i.d. Bernoulli r.v. with parameter p conditionally on p. 

◮	 After observing the available sample X1, . . . ,Xn, we can 
update our belief about p by taking its distribution 
conditionally on the data. 

◮	 The distribution of p conditionally on the data is called the 
posterior distribution. 

◮	 Here, the posterior distribution is 

n n 

B a + Xi, a + n − Xi . 
i=1 i=1 
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The Bayes rule and the posterior distribution (1)
 

◮	 Consider a probability distribution on a parameter space Θ 
with some pdf π(·): the prior distribution. 

◮	 Let X1, . . . ,Xn be a sample of n random variables. 

◮	 Denote by pn(·|θ) the joint pdf of X1, . . . ,Xn conditionally 
on θ, where θ ∼ π. 

◮	 Usually, one assumes that X1, . . . ,Xn are i.i.d. conditionally 
on θ. 

◮	 The conditional distribution of θ given X1, . . . ,Xn is called 
the posterior distribution. Denote by π(·|X1, . . . ,Xn) its pdf. 
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The Bayes rule and the posterior distribution (2)
 

◮ Bayes’ formula states that: 

π(θ|X1, . . . ,Xn) ∝ π(θ)pn(X1, . . . ,Xn|θ), ∀θ ∈ Θ. 

◮ The constant does not depend on θ: 

π(θ)pn(X1, . . . ,Xn|θ)
π(θ|X1, . . . ,Xn) = � , ∀θ ∈ Θ. 

pn(X1, . . . ,Xn|t) dπ(t)Θ 
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The Bayes rule and the posterior distribution (3)
 

In the previous example: 

◮ π(p) ∝ p a−1(1− p)a−1 , p ∈ (0, 1). 

i.i.d.
◮ Given p, X1, . . . ,Xn ∼ Ber(p), so 

Xii=1 i=1 pn(X1, . . . ,Xn|θ) = p
n 

Xi (1− p)n−
n 

. 

◮ Hence, 

n n 
a−1+ Xiπ(θ|X1, . . . ,Xn) ∝ p i=1 Xi (1− p)a−1+n−

i=1 . 

◮ The posterior distribution is 

n n 

B a + Xi, a + n − Xi . 
i=1 i=1 
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Non informative priors (1)
 

◮	 Idea: In case of ignorance, or of lack of prior information, one 
may want to use a prior that is as little informative as 
possible. 

◮	 Good candidate: π(θ) ∝ 1, i.e., constant pdf on Θ. 

◮	 If Θ is bounded, this is the uniform prior on Θ. 

◮	 If Θ is unbounded, this does not define a proper pdf on Θ ! 

◮	 An improper prior on Θ is a measurable, nonnegative function 
π(·) defined on Θ that is not integrable. 

◮	 In general, one can still define a posterior distribution using an 
improper prior, using Bayes’ formula. 
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Non informative priors (2) 

Examples: 

i.i.d.
◮ If p ∼ U(0, 1) and given p, X1, . . . ,Xn ∼ Ber(p) : 

Xii=1 i=1 π(p|X1, . . . ,Xn) ∝ p n 
Xi (1− p)n−

n 
, 

i.e., the posterior distribution is 

n n 

B 1 + Xi, 1 + n − Xi . 
i=1 i=1 

i.i.d.
◮ If π(θ) = 1,∀θ ∈ IR and given θ, X1, . . . ,Xn ∼ N (θ, 1): 

n
1 

π(θ|X1, . . . ,Xn) ∝ exp − (Xi − θ)2 ,
2 

i=1 

i.e., the posterior distribution is 
  

1¯N Xn, . 
n
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Non informative priors (3)
 

◮ Jeffreys prior: 
J

πJ(θ) ∝ det I(θ), 

where I(θ) is the Fisher information matrix of the statistical 
model associated with X1, . . . ,Xn in the frequentist approach 
(provided it exists). 

◮ In the previous examples: 

◮ Ex. 1: πJ (p) ∝ √ 1 , p ∈ (0, 1): the prior is B(1/2, 1/2). 
p(1−p) 

◮ Ex. 2: πJ (θ) ∝ 1, θ ∈ IR is an improper prior. 
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Non informative priors (4)
 

◮	 Jeffreys prior satisfies a reparametrization invariance principle: 
If η is a reparametrization of θ (i.e., η = φ(θ) for some 
one-to-one map φ), then the pdf π̃(·) of η satisfies: 

J

π̃(η) ∝ det Ĩ(η), 

where Ĩ(η) is the Fisher information of the statistical model 
parametrized by η instead of θ. 
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Bayesian confidence regions
 

◮	 For α ∈ (0, 1), a Bayesian confidence region with level α is a 
random subset R of the parameter space Θ, which depends 
on the sample X1, . . . ,Xn, such that: 

IP[θ ∈ R|X1, . . . ,Xn] = 1− α. 

◮	 Note that R depends on the prior π(·). 

◮	 ”Bayesian confidence region” and ”confidence interval” are 
two distinct notions. 

14/17 



Bayesian estimation (1)
 

◮	 The Bayesian framework can also be used to estimate the true 
underlying parameter (hence, in a frequentist approach). 

◮	 In this case, the prior distribution does not reflect a prior 
belief: It is just an artificial tool used in order to define a new 
class of estimators. 

◮	 Back to the frequentist approach: The sample 
X1, . . . ,Xn is associated with a statistical model 
(E, (IPθ)θ∈Θ). 

◮	 Define a distribution (that can be improper) with pdf π on 
the parameter space Θ. 

◮	 Compute the posterior pdf π(·|X1, . . . ,Xn) associated with π, 
seen as a prior distribution. 
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Bayesian estimation (2)
 

◮	 Bayes estimator: 

θ̂(π) = θ dπ(θ|X1, . . . ,Xn) : 
Θ 

This is the posterior mean. 

◮	 The Bayesian estimator depends on the choice of the prior 
distribution π (hence the superscript π). 
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Bayesian estimation (3) 

◮ In the previous examples: 

◮ Ex. 1 with prior B(a, a) (a > 0): 

n 

(π) a + i=1 Xi a/n + X̄n 
p̂ = = . 

2a + n 2a/n + 1 

In particular, for a = 1/2 (Jeffreys prior), 

¯1/(2n) + Xn(πJ )p̂ = . 
1/n+ 1 

◮ Ex. 2: θ̂(πJ ) = X̄n. 

◮ In each of these examples, the Bayes estimator is consistent 
and asymptotically normal. 

◮ In general, the asymptotic properties of the Bayes estimator 
do not depend on the choice of the prior. 
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