Statistics for Applications

Chapter 10: Generalized Linear Models (GLMs)



Linear model

A linear model assumes
YIX ~ N(u(X),0%D),

And
E(Y[X) = u(X) = X5,



Components of a linear model

The two components (that we are going to relax) are

1. Random component: the response variable Y| X is continuous
and normally distributed with mean p = pu(X) = IE(Y|X).

2. Link: between the random and covariates
X=X x ... xtHT. ,(X)=XTg.



Generalization

A generalized linear model (GLM) generalizes normal linear
regression models in the following directions.

1. Random component:
Y ~ some exponential family distribution
2. Link: between the random and covariates:
g(m(X)) =Xx"8

where g called link function and p = E(Y|X).



Example 1: Disease Occuring Rate

In the early stages of a disease epidemic, the rate at which new
cases occur can often increase exponentially through time. Hence,
if u; is the expected number of new cases on day ¢;, a model of the
form

pi = 7y exp(dt;)
seems appropriate.

» Such a model can be turned into GLM form, by using a log
link so that

log(pi) = log(y) + dt; = Bo + Bats-

» Since this is a count, the Poisson distribution (with expected
value y;) is probably a reasonable distribution to try.



Example 2: Prey Capture Rate(1)

The rate of capture of preys, y;, by a hunting animal, tends to
increase with increasing density of prey, z;, but to eventually level
off, when the predator is catching as much as it can cope with.
A suitable model for this situation might be

ax;
h+x;’

123

where « represents the maximum capture rate, and h represents
the prey density at which the capture rate is half the maximum
rate.



Example 2: Prey Capture Rate (2)

02 03 04 05 06

0.0 0.1

0.0 0.2 0.4 0.6

0.8

1.0




Example 2: Prey Capture Rate (3)

» Obviously this model is non-linear in its parameters, but, by
using a reciprocal link, the right-hand side can be made linear
in the parameters,

1 1 h1l

g(pi) = —=—+ ———%+&—
pi o am;

» The standard deviation of capture rate might be
approximately proportional to the mean rate, suggesting the
use of a Gamma distribution for the response.



Example 3: Kyphosis Data

The Kyphosis data consist of measurements on 81 children
following corrective spinal surgery. The binary response variable,
Kyphosis, indicates the presence or absence of a postoperative
deforming. The three covariates are, Age of the child in month,
Number of the vertebrae involved in the operation, and the Start
of the range of the vertebrae involved.

» The response variable is binary so there is no choice: Y |X is
Bernoulli with expected value p(X) € (0,1).
» We cannot write
pX)=X"p
because the right-hand side ranges through IR.
» We need an invertible function f such that f(XT3) € (0,1)



GLM: motivation

» clearly, normal LM is not appropriate for these examples;

» need a more general regression framework to account for
various types of response data

» Exponential family distributions

» develop methods for model fitting and inferences in this
framework

» Maximum Likelihood estimation.



Exponential Family

A family of distribution {Py : 6§ € ©}, © C IR¥ is said to be a
k-parameter exponential family on IR, if there exist real valued
functions:

> n,ne, - Nk and B 0f9:

> Ty, T, -+ [T}, and h of x € IR? such that the density
function (pmf or pdf) of Py can be written as

k

po(x) = exp[y_ 0;(6)Ti(x) — B(6)]h(x)

=1



Normal distribution example

» Consider X ~ N (u,0?), 0 = (u,0?). The density is

1 2 1
(@) = exp (La = o~ 20

202 _ﬁ o 271"

which forms a two-parameter exponential family with

_ M _ 1 _ _ .2
m = ?7 T2 = _ﬁu Tl(m) =z, TQ(‘T) =T,

'uz
B(0) = 5 + log(ov/2m), h(z) = 1.

» When o2 is known, it becomes a one-parameter exponential

family on IR:
22
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Examples of discrete distributions

The following distributions form discrete exponential families of
distributions with pmf

» Bernoulli(p): p®(1—p)'™%, z €{0,1}

x

» Poisson(A): —'e_)‘, r=0,1,....
x!



Examples of Continuous distributions

The following distributions form continuous exponential families of
distributions with pdf:

1
I'(a)b®
» above: a: shape parameter, b: scale parameter
» reparametrize: p = ab: mean parameter

e e
I'(a) \p '

Ba —a—1_—p/x
P(a)fl' e .

o2  —o*(@—w?
e 2;1,233

a—1_—%

» Gamma(a, b): x4 e e,

> Inverse Gamma(a, 3):

» Inverse Gaussian(u, 0?): 5
2rx

Others: Chi-square, Beta, Binomial, Negative binomial
distributions.



Components of GLM

1. Random component:
Y ~ some exponential family distribution
2. Link: between the random and covariates:
g uX) =X"8

where g called link function and u(X) = IE(Y|X).



One-parameter canonical exponential family

v

Canonical exponential family for k=1, y € R

yo — b(0)
¢

for some known functions b(-) and c(-,-) .

foly) = exp +ely,9))

v

If ¢ is known, this is a one-parameter exponential family with
0 being the canonical parameter .

v

If ¢ is unknown, this may/may not be a two-parameter
exponential family. ¢ is called dispersion parameter.

v

In this class, we always assume that ¢ is known.



Normal distribution example

» Consider the following Normal density function with known

variance o2,

1 (y—m)?
= e 202
Joly) oV 2w

1,2
V!
= exp{%—g(y + log(270? ))}

» Therefore 0 = 1, ¢ = 02, ,b(0) = %7 and

1y2
S(=

c(y,9) = -2

+ log(27¢)).



Other distributions

Table 1: Exponential Family

Normal Poisson  Bernoulli
Notation | N (u,0?) P(p) B(p)
Range of y | (—o0,00) [0,—00) {0,1}
& o? 1 1
b(0) % e? log(1 + €?)
c(y,8) | —5(% +log(219)) —logy! 1




Likelihood

Let £(0) = log fg(Y') denote the log-likelihood function.
The mean IE(Y') and the variance var(Y') can be derived from the
following identities

» First identity

» Second identity

0*( ol

E(55)

Obtained from /fg(y)dy =1.



Expected value

Note that

Therefore

It yields

which leads to




Variance

On the other hand we have we have

920 ol 5 _b”(e) N (Y — b/(e))g

%TH%)_ ) P

and from the previous result,

Y -¥(0) Y -TE(Y)
o ¢

Together, with the second identity, this yields

_ b)) | var(Y)
0= e

which leads to
var(Y) = V(Y) =1V"(0)9.



Example: Poisson distribution

Example: Consider a Poisson likelihood,

fy) = “_ye—u — eYlogp—p—log(y!)

!
Thus,
0 =logp, b()=up, cly,¢)=—log(y),
¢=1,
p=-e
b(0) = €7,



Link function

» [ is the parameter of interest, and needs to appear somehow
in the likelihood function to use maximum likelihood.

» A link function ¢ relates the linear predictor X ' to the mean

parameter ,
X8 =g(n.

> g is required to be monotone increasing and differentiable

=g "X"B).



Examples of link functions

» For LM, g(-) = identity.
» Poisson data. Suppose Y|X ~ Poisson(u(X)).

> p(X) > 0;

> log(u(X)) = XT5;

» In general, a link function for the count data should map
(0,+00) to IR.

» The log link is a natural one.

» Bernoulli/Binomial data.

» 0< <,

» ¢ should map (0,1) to R:

> 3 choices:

- )\ _ vTa

1. logit: log (lfu(X)) =X'5
2. probit: ®7*(u(X)) = X 8 where ®(-) is the normal cdf;
3. complementary log-log: log(—log(1 — u(X))) = X'

» The logit link is the natural choice.



Examples of link functions for Bernoulli response (1)

x

> in blue: fi(z) = 1iew

» inred: fo(x) = ®(x) (Gaussian CDF)




Examples of link functions for Bernoulli response (2)

5

> in blue:

(@) = fi' () =

log 1= (logit link)
> in red:

92(x) = f5 !(z) = 27 (x)
(probit link)
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Canonical Link

» The function g that links the mean u to the canonical
parameter 6 is called Canonical Link:

g(p) =0
» Since u = V/(0), the canonical link is given by
g(m) = (V)" (w).

> If ¢ > 0, the canonical link function is strictly increasing.
Why?



Example: the Bernoulli distribution

» We can check that
b(0) = log(1 + €%)

» Hence we solve

gy _exp0) _ p
b(e)_TXp(@_'u & 9—log<ﬂ)

» The canonical link for the Bernoulli distribution is the logit
link.



Other examples

b(9) 9(1)
Normal 62/2 i
Poisson exp(6) log i
Bernoulli | log(1 + ¢%) log Se
Gamma | —log(—0) —%




Model and notation

v

Let (X;,Y;) € RP xR, i =1,...,n be independent random
pairs such that the conditional distribution of Y; given
X,; = x; has density in the canonical exponential family:

— b(:)

i0;
fo,(yi) = exp {yT

Y=(Y,...,.Y,) X=(X/,..., XD

+C(yia¢)}'

v

» Here the mean p; is related to the canonical parameter 6; via
i = b'(6;)
» and u; depends linearly on the covariates through a link
function g¢:

9(u) = X' B.



Back to 3

» Given a link function g, note the following relationship
between 3 and 0:

0; = ()" (i)
= ()N (X B) = X B),

where h is defined as
h=@®)"og ' =(got) "

» Remark: if g is the canonical link function, h is identity.



Log-likelihood

» The log-likelihood is given by
Y;0; — b(6;
LEY.X) = Y %

Yih(X; B) — b(h(X]
_ 3o Y ﬂ>¢<< 8)

i
up to a constant term.

» Note that when we use the canonical link function, we obtain
the simpler expression

YiX[ 8- b(X] )

(B, 6, Y,X) =) 5

%




Strict concavity

» The log-likelihood £(6) is strictly concave using the canonical
function when ¢ > 0. Why?

> As a consequence the maximum likelihood estimator is unique.

» On the other hand, if another parameterization is used, the
likelihood function may not be strictly concave leading to
several local maxima.



Optimization Methods

Given a function f(z) defined on X C IR™, find z* such that
fl@*) > f(x) for all z € X.

We will describe the following three methods,
» Newton-Raphson Method
» Fisher-scoring Method

> lteratively Re-weighted Least Squares.



Gradient and Hessian

» Suppose f : IR™ — IR has two continuous derivatives.

» Define the Gradient of f at point zg, V; = V¢(z0), as

(Vy) = (0f |0x1,...,0f |0xy) .

» Define the Hessian (matrix) of f at point xg, Hy = Hy(xo),
as

_

N 8.931833] '

» For smooth functions, the Hessian is symmetric. If f is strictly
concave, then Hy(x) is negative definite.

(Hy)ij

» The continuous function:
x— Hy(x)

is called Hessian map.



Quadratic approximation

» Suppose f has a continuous Hessian map at xg. Then we can
approximate f quadratically in a neighborhood of x( using

F(@) ~ (o) + V] (o)l — 20) + 3 (& — o) Hy(awo)(z o).
» This leads to the following approximation to the gradient:
V() = Vi(xo) + Hf(xo)(x — w0).
» If 2* is maximum, we have
Vi(z*)=0
» We can solve for it by plugging in x*, which gives us

.Z‘* =Ty — Hf(l‘o)_lvjf(l‘o).



Newton-Raphson method

» The Newton-Raphson method for multidimensional
optimization uses such approximations sequentially

» We can define a sequence of iterations starting at an arbitrary
value xg, and update using the rule,

» The Newton-Raphson algorithm is globally convergent at
quadratic rate whenever f is concave and has two continuous
derivatives.



Fisher-scoring method (1)

» Newton-Raphson works for a deterministic case, which does
not have to involve random data.

» Sometimes, calculation of the Hessian matrix is quite
complicated (we will see an example)

» Goal: use directly the fact that we are minimizing the KL
divergence
KL =" — ]E[Iog—likelihood]

> Idea: replace the Hessian with its expected value. Recall that
g (H, (0)) = —1(0)

is the Fisher Information



Fisher-scoring method (2)

» The Fisher Information matrix is positive definite, and can
serve as a stand-in for the Hessian in the Newton-Raphson
algorithm, giving the update:

o+ = %) 4 19" ~1y, (9R).

This is the Fisher-scoring algorithm.

> It has essentially the same convergence properties as
Newton-Raphson, but it is often easier to compute I than
H,

e



Example: Logistic Regression (1)

» Suppose Y; ~ Bernoulli(p;), i = 1,...,n, are independent
0/1 indicator responses, and X; is a p x 1 vector of predictors
for individual 4.

» The log-likelihood is as follows:

0a(0Y, X) = zn: (Ye ~log (1 + e‘%)) .

i=1

» Under the canonical link,




Example: Logistic Regression (2)

» Thus, we have

n

0o (BY,X) = Z( YiX 5 - 10g(1+eXiT5)).

=1

» The gradient is

» The Hessian is

> As a result, the updating rule is

B = gk — f, (BM) 1w, (B0).



Example: Logistic Regression (3)

» The score function is a linear combination of the X, and the
Hessian or Information matrix is a linear combination of
XZ-XiT. This is typical in exponential family regression models
(i.e. GLM).

» The Hessian is negative definite, so there is a unique local
maximizer, which is also the global maximizer.

» Finally, note that that the Y; does not appear in Hy (),
which yields

Hy,(8) = E[H,, (B)] = —1(B)



Iteratively Re-weighted Least Squares

» IRLS is an algorithm for fitting GLM obtained by
Newton-Raphson /Fisher-scoring.

» Suppose Y;|X; has a distribution from an exponential family
with the following log-likelihood function,

0= > T v o),

=1

» Observe that



Chain rule

» According to the chain rule, we have

= (Y- i) Wix? (Wz‘ (%T)g)»

%

» Where Y = (¢ (@)Y, ... g (un)Yn)" and
fo=(g'(u1)p1, - g (tn)pn) ¥



Gradient

» Define
W = diag{Wh1,...,W,},

> Then, the gradient is

Ve, (8) =XTW(Y - i)



Hessian

» For the Hessian, we have

0%/ Y — "eyvT |y J
h (X X7 X7
95,08 Z PXX
1 3#z’) 1y T j
! (X, B)X?
o zl: (8/8k X 5)
» Note that
ou;  OV(6;) O (h(X,B)) " 1T k
Pk OBk 0Bk Gk (X3 6)
It yields

IE Hgn :__Zbl/ hl XT,B] XZXZT



Fisher information
» Note that g=!(-) = &' o h(-) yields

1
¥V oh() - W()= ———
0)-h0) g og ()
Recall that ; = h(X,;"8) and p; = g71 (X, ), we obtain
b (0N (X, B) = —— L
g'(ni)

» As a result

rx T
B(He, () = - 3 T xx]

» Therefore,

1(8) = —E(H, (8) = XWX where W = diag(

WX/ B)

g (ki)

)



Fisher-scoring updates

» According to Fisher-scoring, we can update an initial estimate
B*) to BETD ysing

B = 80+ 1(5®) 71wy, (51)
» which is equivalent to

5(k+1) _ /B(k) + (XTWX)—leW(Y N /1)
XTWX)TXTW(Y — i+ X8%)



Weighted least squares (1)

Let us open a parenthesis to talk about Weighted Least Squares.

» Assume the linear model Y = Xj + ¢, where
g ~ N, (0,WW=1), where W1 is a n x n diagonal matrix.
When variances are different, the regression is said to be
heteroskedastic.

» The maximum likelihood estimator is given by the solution to
min(Y —X5) W(Y - X6)
This is a Weighted Least Squares problem
» The solution is given by
XWX TIXTW(XTWX)Y

» Routinely implemented in statistical software.



Weighted least squares (2)

Back to our problem.
Recall that

,B(k+l) — (Xwa)—lX—rw(Y o /1 +X5(k’))

» This reminds us of Weighted Least Squares with
1. W =W(B®) being the weight matrix,
2. Y — ji + XB®) being the response.
So we can obtain 3%**1 using any system for WLS.



IRLS procedure (1)

Iteratively Reweighed Least Squares is an iterative procedure to
compute the MLE in GLMs using weighted least squares.
We show how to go from ) to glk+1)

1. Fix ® and pi? = g=1(X,T g));

7

2. Calculate the adjusted dependent responses
7 = X[ 5% 4 o (W) (vi - plM);
3. Compute the weights TW*) = 17 (3(%))
(X B")
g (o

4. Regress Z(*¥) on the design matrix X with weight W %) to
derive a new estimate S*+1):

W) = diag

We can repeat this procedure until convergence.



IRLS procedure (2)

» For this procedure, we only need to know X, Y, the link
function g(-) and the variance function V(1) = b (6).

» A possible starting value is to let p(© =Y.

» If the canonical link is used, then Fisher scoring is the same as

Newton-Raphson.
IE(Hy,) = Hy,,.

There is no random component (Y) in the Hessian matrix.
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