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Goals  

Goals: 
▶	 To give you a solid introduction to the mathematical theory 

behind statistical methods; 

▶	 To provide theoretical guarantees for the statistical methods 
that you may use for certain applications. 

At the end of this class, you will be able to 
1.	 From a real-life situation, formulate a statistical problem in 

mathematical terms 
2.	 Select appropriate statistical methods for your problem 
3.	 Understand the implications and limitations of various  

methods  

2/43 



  
        

    

   
        
   

Instructors  

▶	 Instructor: Philippe Rigollet 
Associate Prof. of Applied Mathematics; IDSS; MIT Center 
for Statistics and Data Science. 

▶	 Teaching Assistant: Victor-Emmanuel Brunel 
Instructor in Applied Mathematics; IDSS; MIT Center for 
Statistics and Data Science. 
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Logistics  

▶ Lectures: Tuesdays & Thursdays 1:00 -2:30am
▶ Optional Recitation: TBD. 
▶ Homework: weekly. Total 11, 10 best kept (30%). 
▶ Midterm: Nov. 8, in class, 1 hours and 20 minutes (30 %). 

Closed books closed notes. Cheatsheet.
▶ Final: TBD, 2 hours (40%). Open books, open notes.
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Miscellaneous  

▶ Prerequisites: Probability (18.600 or 6.041), Calculus 2,
notions of linear algebra (matrix, vector, multiplication,
orthogonality,…)

▶ Reading: There is no required textbook
▶ Slides are posted on course website

https://ocw.mit.edu/courses/mathematics/18-650-statistics-for-applications-fall-2016/lecture-slides

▶ Videolectures: Each lecture is recorded and posted online.
Attendance is still recommended.

5/43 



Why statistics?  
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Not only in the press  

Hydrology	 Netherlands, 10th century, building dams and dykes 
Should be high enough for most floods Should not be 
too expensive (high) 

Insurance	 Given your driving record, car information, coverage. 
What is a fair premium? 

Clinical trials A drug is tested on 100 patients; 56 were cured and 
44 showed no improvement. Is the drug effective? 
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RANDOMNESS

Associated questions:
▶ Notion of average (“fair premium”, …)
▶ Quantifying chance (“most of the floods”, …)
▶ Significance, variability, …

Randomness  

What is common to all these examples?  
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Randomness  

What is common to all these examples? 

RANDOMNESS 

Associated questions: 
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Probability 
▶	 Probability studies randomness (hence the prerequisite) 
▶	 Sometimes, the physical process is completely known: dice, 

cards, roulette, fair coins, … 

Examples 

Rolling 1 die: 
▶	 Alice gets $1 if # of dots  3 
▶	 Bob gets $2 if # of dots  2 

Who do you want to be: Alice or Bob?  

Rolling 2 dice:  
▶	 Choose a number between 2 and 12 
▶ Win $100 if you chose the sum of the 2 dice 

Which number do you choose? 
Well known random process from physics: 1/6 chance of each side, 
dice are independent. We can deduce the probability of outcomes, 
and expected $ amounts. This is probability. 
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Statistics and modeling  

▶	 How about more complicated processes? Need to estimate 
parameters from data. This is statistics 

▶	 Sometimes real randomness (random student, biased coin, 
measurement error, …) 

▶	 Sometimes deterministic but too complex phenomenon: 
statistical modeling 

Complicated process “=” Simple process + random noise 
▶	 (good) Modeling consists in choosing (plausible) simple 

process and noise distribution. 
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Statistics vs. probability  

Probability	 Previous studies showed that the drug was 80% 
effective. Then we can anticipate that for a study on 
100 patients, in average 80 will be cured and at least 
65 will be cured with 99.99% chances. 

Statistics	 Observe that 78/100 patients were cured. We (will 
be able to) conclude that we are 95% confident that 
for other studies the drug will be effective on between 
69.88% and 86.11% of patients 
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18.650  

What this course is about 
▶ Understand mathematics behind statistical methods 
▶ Justify quantitive statements given modeling assumptions 
▶ Describe interesting mathematics arising in statistics 
▶ Provide a math toolbox to extend to other models. 

What this course is not about 
▶ Statistical thinking/modeling (applied stats, e.g. IDS.012) 
▶ Implementation (computational stats, e.g. IDS.012) 
▶ Laundry list of methods (boring stats, e.g. AP stats) 
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Let’s do some statistics  

15/43 



Heuristics (1)  

“A neonatal right-side preference makes a surprising  
romantic reappearance later in life.”  

▶	 Let p denote the proportion of couples that turn their head to 
the right when kissing. 

▶	 Let us design a statistical experiment and analyze its outcome. 
▶	 Observe n kissing couples times and collect the value of each 

outcome (say 1 for RIGHT and 0 for LEFT); 
▶	 Estimate p with the proportion p̂ of RIGHT. 
▶	 Study: “Human behaviour: Adult persistence of head-turning 

asymmetry” (Nature, 2003): n = 124, 80 to the right so 

p̂ = 
80 

= 64.5% 
124 
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Heuristics (2)  

Back to the data: 
▶	 64.5% is much larger than 50% so there seems to be a  

preference for turning right.  
▶	 What if our data was RIGHT, RIGHT, LEFT (n = 3). That’s 

66.7% to the right. Even better? 
▶	 Intuitively, we need a large enough sample size n to make a 

call. How large? 

We need mathematical modeling to understand 
the accuracy of this procedure? 
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Heuristics (3)  

Formally, this procedure consists of doing the following: 
▶	 For i = 1, . . . , n, define Ri = 1 if the ith couple turns to the 

right RIGHT, Ri = 0 otherwise. 
▶	 The estimator of p is the sample average 

n∑1¯p̂ = Rn = Ri. 
n 

i=1 

What is the accuracy of this estimator ? 

In order to answer this question, we propose a statistical model 
that describes/approximates well the experiment. 
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Heuristics (4)  

Coming up with a model consists of making assumptions on the 
observations Ri, i = 1, . . . , n in order to draw statistical 
conclusions. Here are the assumptions we make: 

1. Each Ri is a random variable. 

2. Each of the r.v. Ri is Bernoulli with parameter p. 

3. R1, . . . , Rn are mutually independent. 
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Heuristics (5) 
Let us discuss these assumptions. 

1.	 Randomness is a way of modeling lack of information; with 
perfect information about the conditions of kissing (including 
what goes in the kissers’ mind), physics or sociology would 
allow us to predict the outcome. 

2.	 Hence, the Ri’s are necessarily Bernoulli r.v. since 
Ri → {0, 1}. They could still have a different parameter 
Ri " Ber(pi) for each couple but we don’t have enough 
information with the data estimate the pi’s accurately. So we 
simply assume that our observations come from the same 
process: pi = p for all i 

3.	 Independence is reasonable (people were observed at different 
locations and different times). 
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Two important tools: LLN & CLT  

Let X, X1, X2, . . . , Xn be i.i.d. r.v., µ = IE[X] and α2 = V[X]. 

▶ Laws of large numbers (weak and strong): 
n∑1 IP, a.s.

X̄n := Xi −−−−≥ µ. 
n n-≥ 

i=1 

▶ Central limit theorem: 

∈ X̄n − µ (d)
n −−−≥ N (0, 1). 

α n-≥ 

∈ 
n ( ¯

(d)(Equivalently, Xn − µ) −−−≥ N (0, α2).) 
n-≥ 
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Consequences (1)  

▶	 The LLN’s tell us that 
IP, a.s.

R̄n −−−−≥ p. 
n-≥ 

¯▶	 Hence, when the size n of the experiment becomes large, Rn 
is a good (say ”consistent”) estimator of p. 

▶	 The CLT refines this by quantifying how good this estimate is. 
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Consequences (2) 

<(x): cdf of N (0, 1);  

∈ R̄n − p 
<n(x): cdf of n √ . 

p(1 − p) 

CLT: <n(x) ≤ <(x) when n becomes large. Hence, for all x > 0, ( ( ))∈ 
IP 
[
|R̄n − p| 2 x

] 
≤ 2 1 − < √ x n 

. 
p(1 − p)
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Consequences (3) 

Consequences: 

¯▶	 Approximation on how Rn concentrates around p; 

▶	 For a fixed o → (0, 1), if qa/2 is the (1 − o/2)-quantile of 
N (0, 1), then with probability ≤ 1 − o (if n is large enough !), [ √	 √ ]

qa/2 p(1 − p) qa/2 p(1 − p)
R̄n → p − ∈ , p + ∈ . 

n	 n 
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Consequences (4)  
▶ Note that no matter the (unknown) value of p, 

p(1 − p) 1/4. 

▶ Hence, roughly with probability at least 1 − o, [ ]
q qa/2 a/2

R̄n → p − ∈ , p + ∈ . 
2 n 2 n

▶ In other words, when n becomes large, the interval [ ]
qa/2 qa/2

R̄n − ∈ , R̄n + ∈ contains p with probability 2 1 − o. 
2 n 2 n

▶ This interval is called an asymptotic confidence interval for p. 
▶ In the kiss example, we get [ ]1.96 

0.645 ± ∈ = [0.56, 0.73]
2 124

If the extreme (n = 3 case) we would have [0.10, 1.23] but  
CLT is not valid! Actually we can make exact computations!  
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Another useful tool: Hoeffding’s inequality 

What if n is not so large ? 

Hoeffding’s inequality (i.i.d. case) 
Let n be a positive integer and X, X1, . . . , Xn be i.i.d. r.v. such 
that X → [a, b] a.s. (a < b are given numbers). Let µ = IE[X]. 
Then, for all λ > 0, 

2n�2 
− 

(b−a)2IP[|X̄n − µ| 2 λ] 2e . 

Consequence: 
▶ For o → (0, 1), with probability 2 1 − o, √ √ 

log(2/o) log(2/o)¯R̄n − p Rn + . 
2n 2n 

▶ This holds even for small sample sizes n. 
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Review of different types of convergence (1)  

Let (Tn)n?1 a sequence of r.v. and T a r.v. (T may be 
deterministic). 

▶ Almost surely (a.s.) convergence: [{ }]a.s.
Tn −−−≥ T iff IP θ : Tn(θ) −−−≥ T (θ) = 1. 

n-≥ n-≥ 

▶ Convergence in probability: 

IP
Tn −−−≥ T iff IP [|Tn − T | 2 λ] −−−≥ 0, ⇒λ > 0. 

n-≥ n-≥ 
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Review of different types of convergence (2)  

▶ Convergence in Lp (p 2 1): 

Lp 
Tn −−−≥ T iff IE [|Tn − T |p] −−−≥ 0. 

n-≥ n-≥ 

▶ Convergence in distribution: 

(d)
Tn −−−≥ T iff IP[Tn x] −−−≥ IP[T x], 

n-≥ n-≥ 

for all x → IR at which the cdf of T is continuous. 

Remark 
These definitions extend to random vectors (i.e., random variables 
in IRd for some d 2 2). 
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Review of different types of convergence (3)  

Important characterizations of convergence in distribution 

The following propositions are equivalent: 

(d)(i) Tn −−−≥ T ; 
n-≥ 

(ii) IE[f(Tn)] −−−≥ IE[f(T )], for all continuous and 
n-≥ 

bounded function f ; 

[ ] [ ]
ixTn ixT(iii) IE e −−−≥ IE e , for all x → IR. 

n-≥ 
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Review of different types of convergence (4) 

Important properties 
▶	 If (Tn)n?1 converges a.s., then it also converges in probability, 

and the two limits are equal a.s. 

▶	 If (Tn)n?1 converges in Lp, then it also converges in Lq for all 
q p and in probability, and the limits are equal a.s. 

▶	 If (Tn)n?1 converges in probability, then it also converges in 
distribution 

▶	 If f is a continuous function:  

a.s./IP/(d) a.s./IP/(d) 
Tn −−−−−−−≥ T ≈ f(Tn) −−−−−−−≥ f(T ). 

n-≥	 n-≥ 
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Review of different types of convergence (6) 

Limits and operations 

One can add, multiply, ... limits almost surely and in probability. If 
a.s./IP a.s./IP 

Un −−−−≥ U and Vn −−−−≥ V , then: 
n-≥ n-≥ 

a.s./IP 
▶ Un + Vn −−−−≥ U + V , 

n-≥ 
a.s./IP 

▶ UnVn −−−−≥ UV , 
n-≥ 

a.s./IP U
▶ If in addition, V ̸= 0 a.s., then 

Un −−−−≥ . 
Vn n-≥ V 

� In general, these rules do not apply to convergence in 
distribution unless the pair (Un, Vn) converges in distribution to 
(U, V ). 
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Another example (1)  

▶	 You observe the times between arrivals of the T at Kendall: 
T1, . . . , Tn. 

▶	 You assume that these times are: 
▶	 Mutually independent 
▶	 Exponential random variables with common parameter , > 0. 

▶	 You want to estimate the value of ,, based on the observed 
arrival times. 
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Another example (2) 

Discussion of the assumptions: 

▶	 Mutual independence of T1, . . . , Tn: plausible but not 
completely justified (often the case with independence). 

▶	 T1, . . . , Tn are exponential r.v.: lack of memory of the 
exponential distribution: 

IP[T1 > t + s|T1 > t] = IP[T1 > s], ⇒s, t 2 0. 

Also, Ti > 0 almost surely! 
▶	 The exponential distributions of T1, . . . , Tn have the same 

parameter: in average all the same inter-arrival time. True 
only for limited period (rush hour ̸ 11pm).= 
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Another example (3)  

▶ Density of T1: 
f(t) = ,e − t , ⇒t 2 0. 

▶ IE[T1] = 
1 . 
, 

▶ Hence, a natural estimate of 1 is 
, 

n∑1
T̄n := Ti. 

n 
i=1 

▶ A natural estimator of , is 

1ˆ , := .
T̄n 
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Another example (4)  

▶	 By the LLN’s, 
a.s./IP 1

T̄n −−−−≥ 
n-≥ , 

▶	 Hence, 
a.s./IP ˆ , −−−−≥ ,. 
n-≥ 

▶	 By the CLT, ( )∈ 1 (d)
n T̄n − −−−≥ N (0, , −2). 

, n-≥ 

▶	 How does the CLT transfer to , ˆ ? How to find an asymptotic 
confidence interval for , ? 
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The Delta method 

Let (Zn)n?1 sequence of r.v. that satisfies  

∈ (d) 
n(Zn − e) −−−≥ N (0, α2), 

n-≥ 

for some e → IR and α2 > 0 (the sequence (Zn)n?1 is said to be 
asymptotically normal around e). 

Let g : IR ≥ IR be continuously differentiable at the point e. 
Then, 

▶ (g(Zn)) is also asymptotically normal; n?1 
▶ More precisely, 

∈ (d) ′ (e)2α2).n (g(Zn) − g(e)) −−−≥ N (0, g 
n-≥ 

38/43 



 

Consequence of the Delta method (1)  

( ) 
(d)

▶ 
∈ 
n , ˆ − , −−−≥ N (0, , 2). 

n-≥ 

▶ Hence, for o → (0, 1) and when n is large enough, 

qa/2, 
|, ˆ − ,| ∈ . 

n [ ]
a/2, a/2,ˆ ˆ▶ Can , − 
q
∈ , , + 

q
∈ be used as an asymptotic 

n n  
confidence interval for , ?  

▶ No ! It depends on ,... 
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Consequence of the Delta method (2) 

Two ways to overcome this issue: 
▶ In this case, we can solve for ,: ( ) ( )

q q qa/2, a/2 a/2ˆ|, ˆ − ,| ∈ ∼≈ , 1 − ∈ , , 1 + ∈ 
n n n ( )−1 ( )−1q qa/2 a/2ˆ ˆ∼≈ , 1 + ∈ , , 1 − ∈ . 

n n [ ( )−1 ( )−1
]

a/2 a/2ˆ ˆHence, , 1 + 
q
∈ , , 1 − 

q
∈ is an asymptotic 

n n  
confidence interval for ,.  

▶ A systematic way: Slutsky’s theorem. 
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Slutsky’s theorem 

Slutsky’s theorem 
Let (Xn), (Yn) be two sequences of r.v., such that: 

(d)(i) Xn −−−≥ X; 
n-≥ 

IP(ii) Yn −−−≥ c, 
n-≥ 

where X is a r.v. and c is a given real number. Then, 

(d)
(Xn, Yn) −−−≥ (X, c). 

n-≥ 

In particular, 
(d)

Xn + Yn −−−≥ X + c, 
n-≥ 

(d)
XnYn −−−≥ cX, 

n-≥ 

. . . 
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Consequence of Slutsky’s theorem (1) 
▶ Thanks to the Delta method, we know that 

∈ , ˆ − , (d)
n −−−≥ N (0, 1). 

, n-≥ 

▶ By the weak LLN, 
IPˆ , −−−≥ ,. 

n-≥ 

▶ Hence, by Slutsky’s theorem, 

ˆ∈ , − , (d)
n −−−≥ N (0, 1). 

ˆ n-≥, 

▶ Another asymptotic confidence interval for , is [ ]
ˆ ˆ , ,qa/2 qa/2ˆ ˆ , − ∈ , , + ∈ . 

n n 
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Consequence of Slutsky’s theorem (2)  

Remark: 

▶	 In the first example (kisses), we used a problem dependent 
trick: “p(1 − p) 1/4”. 

▶	 We could have used Slutsky’s theorem and get the asymptotic 
confidence interval [ √	 √ ]

¯ ¯	 ¯ ¯qa/2 Rn(1 − Rn) qa/2 Rn(1 − Rn)¯	 ¯Rn − ∈ , Rn + ∈ . 
n	 n 
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