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Chapter 3: Maximum Likelihood Estimation



Total variation distance (1)

Let (E, (IPg)yceo) be a statistical model associated with a sample
of i.i.d. rv. Xq,...,X,. Assume that there exists 8* € O such
that X7 ~ IPy«: 0* is the true parameter.

§tatistician's goal: given Xy,..., X, find an estimator

0 = 60(X1,...,X,) such that IP, is close to [Py for the true
parameter 0*.

This means: |IP;(A) — Py« (A)| is small for all A C E.
Definition

The total variation distance between two probability measures Py
and Py is defined by

TV(Py, Pyr) = max |Py(A) — Py (A)].



Total variation distance (2)

Assume that E is discrete (i.e., finite or countable). This includes
Bernoulli, Binomial, Poisson, ...

Therefore X has a PMF (probability mass function):
Py(X =z) = py(z) for all z € E,

po(z) >0, > py(z)=1.

zel

The total variation distance between IPy and Py is a simple
function of the PMF’s pg and py::

TV(IPy, Py ) = % Z po(z) — por () -

zel



Total variation distance (3)

Assume that E is continuous. This includes Gaussian, Exponential,

Assume that X has a density Py(X € A) = [, fo(x)dx for all
ACE.
/fe(l“)dl“ =
E

The total variation distance between [Py and Py is a simple
function of the densities fy and fy:

TV(IPy, Py) = /fe ~ fplx) do



Total variation distance (4)

Properties of Total variation:

v

TV(IPy, Py ) = TV(IPy, IPy) (symmetric)

TV(IPy,IPy) >0

If TV(IP@,IP@/) = 0 then IPy = Py (definite)

TV(IP@, IP@/) < TV(IP@, IP@N) + TV(IP@//, IP@/) (triangle
inequality)

v

v

v

These imply that the total variation is a distance between
probability distributions.



Total variation distance (5)

An estimation strategy: Build an estimator TV(IP(;,IP(;*) for all
0 € ©. Then find § that minimizes the function 6 — TV(IP@,IP@*)



Total variation distance (5)

An estimation strategy: Build an estimator TV(IP(;,IP(;*) for all
0 € ©. Then find § that minimizes the function 6 — TV(IP@,IP@*).

problem: Unclear how to build TV(IPy, IPg-)!



Kullback-Leibler (KL) divergence (1)

There are many distances between probability measures to replace
total variation. Let us choose one that is more convenient.

Definition

The Kullback-Leibler (KL) divergence between two probability
measures IPg and [Py is defined by

Z po(x)log ( ((;1;))) if E is discrete
KL(IP@, IP@/) = z€E Po
/ fo(z fo(z) >dm if E' is continuous
for(z)




Kullback-Leibler (KL) divergence (2)

Properties of KL-divergence:

» KL(IPy,Pyr) # KL(IPy/,IPy) in general

> KL(IP@,IP@/) >0

> If KL(IPp, Pg/) = O then IPy = Py (definite)

» KL(IPg,IPy) £ KL(IPg,IPpr) + KL(IPgr,IPg/) in general
Not a distance.

This is is called a divergence.

Asymmetry is the key to our ability to estimate it!



Kullback-Leibler (KL) divergence (3)

L ) = - [ (220

= IEp- [logpg* (X)] — IEg« [logpg(X)]

So the function 6 — KL(IPy«,IPy) is of the form:
“constant” — IEg~ [ log pg(X)]

Can be estimated: IEg-[h Ay — Zh (by LLN)

_— 1 &
KL(IPg-,IPg) = tant’ — — 1 X
(IPy+, Py) constan - Z: og po(



Kullback-Leibler (KL) divergence (4)

— 1 &
KL(IPy«,IPy) = “constant” — — E log pg(X;)
n
i=1

KLIP*IP —— 1
lggg (IPg-,IPy) <« lgélél nzogpe

o 237
max Zogpe

This is the maximum likelihood principle.



Interlude: maximizing/minimizing functions (1)

Note that
min —h(f) < maxh(f)
0O 0o

In this class, we focus on maximization.

Maximization of arbitrary functions can be difficult:

Example: 6 — [[1, (0 — X;)



Interlude: maximizing/minimizing functions (2)
Definition

A function twice differentiable function A : © C IR — IR is said to
be concave if its second derivative satisfies

r"(0) <0, Voeco
It is said to be strictly concave if the inequality is strict: A”(6) <0

Moreover, h is said to be (strictly) convex if —h is (strictly)
concave, i.e. h"(0) >0 (h"(0) > 0).

Examples:

» O =T, h(h) = —62,

> ©=(0.x), h(0) = V8,
» O =(0,00), h(f) =log¥,
> © = [0,7], h(8) = sin(6)
» O=1R, h(h) =20 -3



Interlude: maximizing/minimizing functions (3)
More generally for a multivariate function: h: © C R¢ - 1R,

d > 2, define the
oh
59 (0)
» gradient vector: Vh(f) = : € R¢
S-(0)
» Hessian matrix:82 I
h h
001001 (0) e 001004 (9)
V2h(0) = € IRdxd
82 82
89d<‘;19d (9) e 80(1(;10(1 (0)

z'V2h(0)r <0 VzeRY §co.

h is concave &
r'V2h(0)r <0 VzecRY §cO.

h is strictly concave <&
Examples:
» © =IR?, h(f) = —0? — 203 or h(0) = — (61 — 02)?

» O =(0,00), h(f) =log(61 + 62),



Interlude: maximizing/minimizing functions (4)

Strictly concave functions are easy to maximize: if they have a
maximum, then it is unique. It is the unique solution to

or, in the multivariate case
Vh(#) =0 € R?.
There are may algorithms to find it numerically: this is the theory

of “convex optimization”. In this class, often a closed form
formula for the maximum.



Likelihood, Discrete case (1)

Let (E, (IPg)yee) be a statistical model associated with a sample
of ii.d. rv. Xy,..., X,,. Assume that E is discrete (i.e., finite or
countable).

Definition

The likelihood of the model is the map L,, (or just L) defined as:

L, : E"x 0 — R
(X1, oy, 0) = Po[Xy =m1,..., X, = zp).



Likelihood, Discrete case (2)

Example 1 (Bernoulli trials): If X,..., X, (S Ber(p) for some

p e (0,1):

» £ ={0,1};
» ©=(0,1);
> Y(x1,...,z,) € {0,1}", Vpe (0,1),

n
L(ajlv s ,xn,p) = H]Pp[XZ = 337,]
=1

n
— prl(l _p)l—:ci
i=1

— pli=1 Ti(] — p)PT L= T



Likelihood, Discrete case (3)

Example 2 (Poisson model):
If Xq,...,X, b Poiss(\) for some A > 0:

» F=1IN;
> @:(0,00),

> V(z1,...,2,) € N", VA >0,

L(a:l, e ,xn,p) = HIP)\[XZ = {L’Z]
=1

n T
SiGe
;!
i=1 v
—nA )‘Z?:l i
e —_—



Likelihood, Continuous case (1)

Let (E, (IPg)yce) be a statistical model associated with a sample
of i.i.d. rv. Xq,...,X,,. Assume that all the IPy have density fj.

Definition
The likelihood of the model is the map L defined as:

L : E"x 0O - R
(i’l,---,wn,e) = ?:]_fe(xi)'



Likelihood, Continuous case (2)

Example 1 (Gaussian model): If X1,..., X, " N'(u,0?), for

some i € R, 0% > 0:

» ©=1R x (0,00)
> Y(21,...,2,) € R?, V(u,0%) € R x (0,00),

1 1 <
L(wl,---,xna/ﬁ,02) = meXP (‘ﬁ Z(% - N)2> .
i=1



Maximum likelihood estimator (1)

Let X1,...,X,, be ani.i.d. sample associated with a statistical
model (E, (IPg)ycq) and let L be the corresponding likelihood.

Definition

The likelihood estimator of 6 is defined as:

HA%LE = argmax L(Xi,...,X,,0),
0O

provided it exists.

Remark (log-likelihood estimator): In practice, we use the fact
that

OMLE — argmax log L(X1,..., Xy, 0).
o€



Maximum likelihood estimator (2)

Examples

~MLE _
n =X

» Bernoulli trials: n-

» Poisson model: \MLE = X, .

I
~—
§><:|
§Q>
~—

» Gaussian model: (ﬂn,&i)



Maximum likelihood estimator (3)

Definition: Fisher information

Define the log-likelihood for one observation as:
0(0) =log L1(X,0), HeO©CR?

Assume that £ is a.s. twice differentiable. Under some regularity
conditions, the Fisher information of the statistical model is
defined as:

1(0) = E[VLO)VE0)T] —E[VLO)]E[VLB)] | = —IE [V2(0)] .

If © C IR, we get:

1(0) =var[l'(0)] = —IE[¢"(0)]



Maximum likelihood estimator (4)

Theorem

Let 0* € © (the true parameter). Assume the following:
1. The model is identified.
For all 8 € ©, the support of IPy does not depend on 6;
f* is not on the boundary of ©;
I(0) is invertible in a neighborhood of #*;

AN

A few more technical conditions.

Then, 0MLE satisfies:

P
— 0 w.r.t. Pys:

NMLE
> On n—00

> v/ (6MEF —¢) DN (0,160 wert. P

n—oo
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