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Weierstrass Approximation Theorem (WAT)
 

Theorem 
Let f be a continuous function on the interval [a, b], then, for any 
ε > 0, there exists a0, a1, . . . , ad ∈ IR such that 

d 

kmax �f (x)− akx < ε . 
x∈[a,b] 

k=0 

In word: “continuous functions can be arbitrarily well approximated 
by polynomials” 
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Statistical application of the WAT (1)
 

◮ Let X1, . . . ,Xn be an i.i.d. sample associated with a 
( )

(identified) statistical model E, {IPθ} . Write θ∗ for the θ∈Θ

true parameter. 

◮ Assume that for all θ, the distribution IPθ has a density fθ. 

◮ If we find θ such that
  

h(x)fθ∗ (x)dx = h(x)fθ(x)dx 

for all (bounded continuous) functions h, then θ = θ∗ . 

◮ Replace expectations by averages: find estimator θ̂ such that 

n  

1 
h(Xi) = h(x)fˆ(x)dx 

θn 
i=1 

for all (bounded continuous) functions h. There is an infinity 
of such functions: not doable! 
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Statistical application of the WAT (2) 

◮	 By the WAT, it is enough to consider polynomials: 

n d d 
1 

akX
k k
i	 = akx f

θ̂
(x)dx , ∀a0, . . . , ad ∈ IR 

n 
i=1 k=0 k=0 

Still an infinity of equations! 

◮ In turn, enough to consider 

n
1 kXk = x fˆ(x)dx , ∀k = 1, . . . , d i θn 

i=1 

(only d + 1 equations) 

k
◮	 The quantity mk(θ) := x fθ(x)dx is the kth moment of 

IPθ. Can also be written as 

mk(θ) = IEθ[X
k] . 
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Gaussian quadrature (1)
 

◮	 The Weierstrass approximation theorem has limitations: 

1.	 works only for continuous functions (not really a problem!) 
2.	 works only on intervals [a, b] 
3. Does not tell us what d (# of moments) should be 

◮ What if E is discrete: no PDF but PMF p(·)? 
◮ Assume that E = {x1, x2, . . . , xr} is finite with r possible 

values. The PMF has r − 1 parameters: 

p(x1), . . . , p(xr−1) 

r−1 

because the last one: p(xr) = 1− p(xj) is given by the 
j=1 

first r − 1. 

◮	 Hopefully, we do not need much more than d = r − 1 
moments to recover the PMF p(·). 
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Gaussian quadrature (2) 

◮ Note that for any k = 1, . . . , r1, 

r 

k mk = IE[Xk] = p(xj)xj 
j=1 

and 
r 

p(xj) = 1 
j=1 

This is a system of linear equations with unknowns 
p(x1), . . . , p(xr). 

◮ We can write it in a compact form: 
 

x1 1 x1 2 · · · x1 r 
  

p(x1) 
  

m1 

 

 x2 1 x2 2 · · · x2 r 
  p(x2)   m2 

 

      

 

 

. . . 
. . . 

. . . 
 

 
·  

 

. . . 
 

 
= 
 

 

. . . 
 

 

 

 x r−1 
1 x r−1 

2 · · · xr−1 
r 

 

 

 

 p(xr−1) 
 

 

 

 mr−1 

 

 

1 1 · · · 1 p(xr) 1 
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Gaussian quadrature (2)
 

◮ Check if matrix is invertible: Vandermonde determinant 

	 

1 1 1x x · · · x1 2 r 
 

2 2 2 
x x · · · x

 
1 2 r 

 

 

 .	 .. 

det 
 

. . . 
 

= (xj − xk)  0.	 = .	 . 
	  

r−1 r−1 r−1 1<j<k<r 
 x x · · · x  

1 2 r 

1 1 · · · 1 

◮	 So given m1, . . . ,mr−1, there is a unique PMF that has these 
moments. It is given by 

 

p(x1) 
  

x1 1 x1 2 · · · x1 r 
−1  

m1 

 

 p(x2)   x2 1 x2 2 · · · x2 r 
  m2 

 

      

 

 

. . . 
 

 
= 
 

 

. . . 
. . . 

. . . 
 

 

 

 

. . . 
 

 

 

 p(xr−1) 
 

 

 

 x r−1 
1 x r−1 

2 · · · xr−1 
r 

 

 

 

 mr−1 

 

 

p(xr) 1 1 · · · 1 1 
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Conclusion from WAT and Gaussian quadrature
 

◮	 Moments contain important information to recover the PDF 
or the PMF 

◮	 If we can estimate these moments accurately, we may be able 
to recover the distribution 

◮	 In a parametric setting, where knowing the distribution IPθ 

amounts to knowing θ, it is often the case that even less 
moments are needed to recover θ. This is on a case-by-case 
basis. 

◮	 Rule of thumb if θ ∈ Θ ⊂ IRd, we need d moments. 
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Method of moments (1)
 

Let X1, . . . ,Xn be an i.i.d. sample associated with a statistical 
( )

model E, (IPθ) . Assume that Θ ⊆ IRd, for some d ≥ 1.θ∈Θ

◮ Population moments: Let mk(θ) = IEθ[X1
k], 1 ≤ k ≤ d. 

n 

◮ Empirical moments: Let m̂k = Xk =
1 

Xi
k , 1 ≤ k ≤ d.n n 

i=1 

◮ Let 
ψ : Θ ⊂ IRd → IRd 

θ  → (m1(θ), . . . ,md(θ)) . 
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Method of moments (2)
 

Assume ψ is one to one: 

θ = ψ−1(m1(θ), . . . ,md(θ)). 

Definition 

Moments estimator of θ: 

θMM ˆ = ψ−1(m̂1, . . . , m̂d),n 

provided it exists. 
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Method of moments (3)
 

θMM Analysis of ˆn 

◮ Let M(θ) = (m1(θ), . . . ,md(θ));
 

◮ Let M̂ = (m̂1, . . . , m̂d).
 

◮ Let Σ(θ) = Vθ(X, X2, . . . ,Xd) be the covariance matrix of
 
the random vector (X, X2, . . . ,Xd), where X ∼ IPθ. 

◮ Assume ψ−1 is continuously differentiable at M(θ). Write 
∇ψ−1 

M(θ) 
for the d × d gradient matrix at this point. 
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Method of moments (4)
 

θMM 
◮ LLN: ˆ is weakly/strongly consistent. n 

◮ CLT: 

( )√ (d)ˆn M −M(θ) −−−→ N (0, Σ(θ)) (w.r.t. IPθ). 
n→∞ 

Hence, by the Delta method (see next slide): 

Theorem 

( )√ (d)
θ̂MM n − θ −−−→ N (0, Γ(θ)) (w.r.t. IPθ),n 

n→∞ 

� �⊤ � � 

where Γ(θ) = ∇ψ−1 Σ(θ) ∇ψ−1 . 
M(θ) M(θ) 
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Multivariate Delta method
 

Let (Tn)n≥1 sequence of random vectors in IRp (p ≥ 1) that 
satisfies 

√ (d)
n(Tn − θ) −−−→ N (0, Σ), 

n→∞ 

for some θ ∈ IRp and some symmetric positive semidefinite matrix 
Σ ∈ IRp×p. 

Let g : IRp → IRk (k ≥ 1) be continuously differentiable at θ. 
Then, 

√ (d)
n (g(Tn)− g(θ)) −−−→ N (0, ∇g(θ)⊤Σ∇g(θ)), 

n→∞ 

  

∂gj
where ∇g(θ) = ∈ IRk×d . 

∂θi 1≤i≤d,1≤j≤k 
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MLE vs. Moment estimator
 

◮	 Comparison of the quadratic risks: In general, the MLE is 
more accurate. 

◮	 Computational issues: Sometimes, the MLE is intractable. 

◮	 If likelihood is concave, we can use optimization algorithms 
(Interior point method, gradient descent, etc.) 

◮	 If likelihood is not concave: only heuristics. Local maxima. 
(Expectation-Maximization, etc.) 
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