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Statistics for Applications

Chapter 4: The Method of Moments



Weierstrass Approximation Theorem (WAT)

Theorem
Let f be a continuous function on the interval [a,b], then, for any
€ > 0, there exists ag, aq,...,aq € IR such that

d
max !f(a:) —Zakmk| <e.
k=0

z€[a,b]

In word: “continuous functions can be arbitrarily well approximated
by polynomials”



Statistical application of the WAT (1)

> Let Xi,...,X, beani.id. sample associated with a
(identified) statistical model (E, {IPg},cq). Write 6* for the
true parameter.

» Assume that for all 8, the distribution IPy has a density fj.
> If we find 6 such that

[ @i @ = [ 1zl

for all (bounded continuous) functions h, then 6 = 6*.

> Replace expectations by averages: find estimator 6 such that

1 n
L h(x) = / W) f(x)da
i=1

for all (bounded continuous) functions h. There is an infinity
of such functions: not doable!



Statistical application of the WAT (2)
» By the WAT, it is enough to consider polynomials:

1 n d d

~ Xk = Ff(x)dz, ¥ R

- ap Xy = apx” fa(x)dx, ag,...,aq €
i=1 k=0 k=0

Still an infinity of equations!

» In turn, enough to consider
1 k k
o Xi'=  afy(x)dx, Vk=1,...,d

(only d + 1 equations)
» The quantity my(0) :=  2* fo(x)dx is the kth moment of

IPy. Can also be written as

my(0) = [ X*].



Gaussian quadrature (1)

» The Weierstrass approximation theorem has limitations:

1. works only for continuous functions (not really a problem!)
2. works only on intervals [a, D]
3. Does not tell us what d (# of moments) should be

» What if E is discrete: no PDF but PMF p(-)?

» Assume that E = {x1,x9,...,2,} is finite with  possible
values. The PMF has r — 1 parameters:

p(x1), ..., p(xr—1)

r—1
because the last one: p(z,) =1—  p(z;) is given by the
j=1
first r — 1.
» Hopefully, we do not need much more thand =7 —1
moments to recover the PMF p(-).



Gaussian quadrature (2)

» Note that for any k =1,...,7q,
T
my = E[X*] = p(z))}
j=1
and .
pz;) =1
j=1

This is a system of linear equations with unknowns

p(@1),. ... p(xr).
» We can write it in a compact form:

xp o wh ey p(x1) mi
af w3 e a p(z2) ma
r'—l r—1 ' r;l

x T A p(zr—1) My_1

1 1 - 1 p(zy) 1



Gaussian quadrature (2)

» Check if matrix is invertible: Vandermonde determinant

Ty T3 x}k
vt} x;
det [ o = I @) #£0
xq—l x;—l R 1<j<k<r
1 1 1
» So given myq,...,m,_1, there is a unique PMF that has these

moments. It is given by

1
p(x1) 2 B B my
p(z2) R SRR my
p(xr—1) $’1”*1 ngl ceeogrd Myp_1

p(zy) 1 I 1 1



Conclusion from WAT and Gaussian quadrature

» Moments contain important information to recover the PDF
or the PMF

» If we can estimate these moments accurately, we may be able
to recover the distribution

> In a parametric setting, where knowing the distribution IPy
amounts to knowing @, it is often the case that even less
moments are needed to recover #. This is on a case-by-case
basis.

» Rule of thumb if § € © ¢ IR?, we need d moments.



Method of moments (1)

Let X1,...,X,, be ani.i.d. sample associated with a statistical
model (E, (IPg)ycq). Assume that © C IRY, for some d > 1.

» Population moments: Let my(6) = [Eg[XF], 1<k <d.

- 1"
» Empirical moments: Let 1), = Xk = — Xf, 1<k<d.
n

> Let



Method of moments (2)

Assume 1) is one to one:

0 =1 (my(0),...,mg(9)).

Definition
Moments estimator of 6:
OMM — =Ly, ... 10g),

provided it exists.



Method of moments (3)

Analysis of §MM

> Let M(8) = (my(8), ..., ma(0)):
> Let M = (my,...,Mq).

> Let X(0) = Vo(X, X2,..., X% be the covariance matrix of
the random vector (X, X?2,..., X%), where X ~ IPy.

» Assume ¢! is continuously differentiable at M (6). Write
Vil M) for the d x d gradient matrix at this point.



Method of moments (4)

> LLN: HA,{Y[M is weakly/strongly consistent.
» CLT:

Vi (3 - M(6)) D N(0,2(0)  (wrt. Py).
n—oo
Hence, by the Delta method (see next slide):
Theorem

Jn (éﬂ/M . 9) DA 0,T0)  (wrt Py),

n—oo

where T(0) = [V¢ " 10 1 SO [VE 0]



Multivariate Delta method

Let (7,)n>1 sequence of random vectors in IRP (p > 1) that
satisfies

V(T - 0) =2 N (0,3),

n—oo
for some 6 € IRP and some symmetric positive semidefinite matrix

> € IRP*P,

Let g : IR? — IR* (k > 1) be continuously differentiable at 6.
Then,

D5 N(0,Vg(6)TEVg(6)),

89j

> c IRkXd.
90; 1<i<d,1<j<k

where V9(6) =



MLE vs. Moment estimator

» Comparison of the quadratic risks: In general, the MLE is
more accurate.

v

Computational issues: Sometimes, the MLE is intractable.

v

If likelihood is concave, we can use optimization algorithms
(Interior point method, gradient descent, etc.)

v

If likelihood is not concave: only heuristics. Local maxima.
(Expectation-Maximization, etc.)
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