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Chapter 5: Parametric hypothesis testing



Cherry Blossom run (1)

» The credit union Cherry Blossom Run is a 10 mile race that
takes place every year in D.C.

» In 2009 there were 14974 participants

> Average running time was 103.5 minutes.
Were runners faster in 20127

To answer this question, select n runners from the 2012 race at
random and denote by X7, ..., X,, their running time.



Cherry Blossom run (2)

We can see from past data that the running time has Gaussian
distribution.

The variance was 373.



Cherry Blossom run (3)

v

We are given i.i.d r.v Xy,..., X, and we want to know if
X7 ~ N(103.5,373)

This is a hypothesis testing problem.

There are many ways this could be false:

1. IE[X,] # 103.5
2. var[X;] # 373
3. X7 may not even be Gaussian.

v

v

» We are interested in a very specific question: is
E[X;] < 103.5?



Cherry Blossom run (4)

v

We make the following assumptions:
1. var[X;] = 373 (variance is the same between 2009 and 2012)
2. X7 is Gaussian.

» The only thing that we did not fix is IE[X;]| = p.
» Now we want to test (only): “Is u = 103.5 or is u < 103.5"7?

» By making modeling assumptions, we have reduced the
number of ways the hypothesis X7 ~ N(103.5,373) may be
rejected.

» The only way it can be rejected is if X7 ~ N (u,373) for some
w < 103.5.

» We compare an expected value to a fixed reference number
(103.5).



Cherry Blossom run (5)

Simple heuristic:
“If X, < 103.5, then p < 103.5"
This could go wrong if | randomly pick only fast runners in my
sample X1,...,X,.
Better heuristic:

“If X,, < 103.5—(something that ——0), then ;1 < 103.5"

To make this intuition more precise, we need to take the size of the
random fluctuations of X, into account!



Clinical trials (1)

» Pharmaceutical companies use hypothesis testing to test if a
new drug is efficient.

» To do so, they administer a drug to a group of patients (test
group) and a placebo to another group (control group).

» Assume that the drug is a cough syrup.

> Let pcontrol denote the expected number of expectorations per
hour after a patient has used the placebo.

> Let p14ryg denote the expected number of expectorations per
hour after a patient has used the syrup.

» We want to know if figrug < fcontrol
» We compare two expected values. No reference number.



Clinical trials (2)

> Let Xq,..., X,
POiSS(:udrug)
> Let Yi,...,Y, ... denote neoniror i.i.d r.v. with distribution

POiSS(,Ucontrol)

» We want to test if figrug < fcontrol-

drug denote ngryg i.i.d r.v. with distribution

Heuristic:

“If Xdrug < Xcontrol— (something that Erap—— 0), then
Ncontrol 00

conclude that jiqrug < feontrol



Heuristics (1)

Example 1: A coin is tossed 80 times, and Heads are obtained 54
times. Can we conclude that the coin is significantly unfair 7

> n =80, X1,...,Xn < Ber(p);
» X, =54/80 = .68
» If it was true that p = .5: By CLT+Slutsky’s theorem,
X, —.5
n——— ~ N(0,1).
v 5(1 —.5) 1
X, —.5
> Jn—————— =~ 3.22
vn B(1—.5)
» Conclusion: It seems quite reasonable to reject the

hypothesis p = .5.



Heuristics (2)

Example 2: A coin is tossed 30 times, and Heads are obtained 13
times. Can we conclude that the coin is significantly unfair 7

n=30,X1,..., X, “ Ber(p);

X, =13/30 ~ .43
If it was true that p = .5: By CLT+Slutsky's theorem,

v

v

v

X, — 5

Ve
» Our data gives \/_75 —.77
5(1 —.5)
» The number .77 is a plausible realization of a random variable
Z ~N(0,1).
» Conclusion: our data does not suggest that the coin is unfair.



Statistical formulation (1)

» Consider a sample X1,...,X,, of i.i.d. random variables and a
statistical model (E, (IPp)gco)-

» Let ©p and ©4 be disjoint subsets of ©.

) Hy: €0
» Consider the two hypotheses: 0 0
Hy : 0 e @1
» Hy is the null hypothesis, Hi is the alternative hypothesis.

> If we believe that the true 6 is either in ©g or in ©1, we may
want to test Hy against H;.

» We want to decide whether to reject Hy (look for evidence
against Hy in the data).



Statistical formulation (2)

» Hgy and H; do not play a symmetric role: the data is is only
used to try to disprove Hy

v

In particular lack of evidence, does not mean that Hy is true
(“innocent until proven guilty")

v

A test is a statistic ¢ € {0, 1} such that:
» If ¢» =0, Hy is not rejected,;
» If ¢p =1, Hy is rejected.

» Coin example: Hy: p=1/2vs. H;: p=1/2.

v

{‘\/_ } for some C > 0.

\/7\>C

How to choose the threshold C ?

v



Statistical formulation (3)

» Rejection region of a test 1):
Ry ={x € E" :¢(x) =1}.

» Type 1 error of a test v (rejecting Hy when it is actually
true):
Quy © — R
0 — Pg[?ﬁ = 1].
» Type 2 error of a test ¢ (not rejecting Hy although H is
actually true):

» Power of a test 1:

my = inf (1= By(0)).



Statistical formulation (4)

> A test ¥ has level « if
ay(f) <a, V8 e Oq.
> A test ¢ has asymptotic level a if

lim oy(0) <o, VO €Oy

n—oo

> In general, a test has the form
v =TT, > c},

for some statistic T, and threshold ¢ € IR.

» T, is called the test statistic. The rejection region is
Rw = {Tn > C}.



Example (1)

> Let X4,..., X, id Ber(p), for some unknown p € (0, 1).

» We want to test:
Hy:p=1/2vs. Hi: p=1/2

with asymptotic level o € (0,1).

Pn — 0.5

> Let T, = Vn ——
vn 5(1—.5)

, where p,, is the MLE.

» If Hy is true, then by CLT and Slutsky's theorem,

P[T}, > qoyo) — 0.05
n—o0

> Let o = {T}, > qa/2}-



Example (2)

Coming back to the two previous coin examples: For o = 5%,
day2 = 1.96, so:

» In Example 1, Hj is rejected at the asymptotic level 5% by
the test ¥59;;

» In Example 2, Hj is not rejected at the asymptotic level 5%
by the test 5.

Question: In Example 1, for what level a would 1, not reject H
7 And in Example 2, at which level o would v, reject Hy ?



p-value
Definition

The (asymptotic) p-value of a test v, is the smallest (asymptotic)
level av at which ¥, rejects Hy. It is random, it depends on the
sample.

Golden rule

p-value < o < Hj is rejected by 1, at the (asymptotic) level a.

The smaller the p-value, the more confidently one can reject
Hy.

» Example 1: p-value = IP[|Z] > 3.21] <« .01.
» Example 2: p-value = IP[|Z] > .77] ~ .44.


http:IP[|Z|>.77

Neyman-Pearson’s paradigm

Idea: For given hypotheses, among all tests of level /asymptotic
level «, is it possible to find one that has maximal power ?

Example: The trivial test ¢ = 0 that never rejects Hy has a
perfect level (o = 0) but poor power (7 = 0).

Neyman-Pearson’s theory provides (the most) powerful tests
with given level. In 18.650, we only study several cases.



The y? distributions
Definition
For a positive integer d, the x? (pronounced “Kai-squared”)
distribution with d degrees of freedom is the law of the random

variable Z2 + Z2 + ...+ Z2, where Zy, ..., Z4 “S N(0,1).

Examples:
> 1f Z ~ Ny(0, 1), then [|Z]|3 ~ x5

» Recall that the sample variance is given by
n

Sn:%Z(X X,) ZXZ

i=1
» Cochran’s theorem implies that for Xi,..., X, %N(M,UQ), if
Sy, is the sample variance, then

> X3 = Exp(1/2).



Student’s T distributions

Definition
For a positive integer d, the Student’s T distribution with d
degrees of freedom (denoted by t4) is the law of the random

Z
d,whereZwN(O,l), V~xiand Z LV (Zis

variable

independent of V).

Example:
» Cochran’s theorem implies that for X1,..., X, ZZfl./\f(u,aQ), if
Sy, is the sample variance, then

Xn_luf

V-t s,

~tp_ 1.



Wald's test (1)

» Consider an i.i.d. sample X1, ..., X,, with statistical model
(E, (IPg)geco), where © C TR? (d > 1) and let 6 € © be fixed
and given.

» Consider the following hypotheses:

> Let OMLE pe the MLE. Assume the MLE technical conditions
are satisfied.

» If Hy is true, then

Jn I(GMLEYL/2 (éfyLE —90) 9D N0,y wrt. TPy,

n—oo



Wald's test (2)

» Hence,

R T ~ A
n Qg/[LE' — 0y ](HMLE) Q%LE — 6o & X?l w.r.t. IP@O.

n—oo

Tn

» Wald's test with asymptotic level a € (0,1):
Y= ]I{Tn > Qa}a

where ¢, is the (1 — a)-quantile of x2 (see tables).

» Remark: Wald's test is also valid if H; has the form “0 > 6"
or "0 < 6y or "6 =261"..



Likelihood ratio test (1)

» Consider an i.i.d. sample X1, ..., X,, with statistical model
(E, (Pg)geco), where © C R? (d > 1).

» Suppose the null hypothesis has the form

Hy: (Oria,...,00) = (0,00,
for some fixed and given numbers «97(321, . ,HC(IO).
> Let R
0, = argmax /(,(0) (MLE)
0cO
and

0¢ = argmax £,(0) (‘“constrained MLE")
0€©g



Likelihood ratio test (2)

» Test statistic:

» Theorem
Assume Hj is true and the MLE technical conditions are satisfied.

Then,
d

n—oo

w.r.t. IPy.

T

» Likelihood ratio test with asymptotic level a € (0, 1):

¢ = ]I{Tn > Qa},

where ¢, is the (1 — «)-quantile of x3_ (see tables).



Testing implicit hypotheses (1)

Let Xi,..., X, beiid. random variables and let § € IR? be
a parameter associated with the distribution of X (e.g. a
moment, the parameter of a statistical model, etc...)

v

Let g : R — IR* be continuously differentiable (with k < d).

v

v

Consider the following hypotheses:

Ho: g(0) =
Hy: g(0)

o o

» E.g. g(0) =(01,02) (k=2), or g(0) =6, — 02 (k=1), or...



Testing implicit hypotheses (2)

» Suppose an asymptotically normal estimator 0,, is available:

Vi by —0 —Ds N0, 5(0)).

n—oo

» Delta method:

Vi g(0n) — g(0) —2s Ny (0,1(9)),

n—oo
where T'(0) = Vg(0) ' 2(0)Vg(h) € RF**.

» Assume X(0) is invertible and Vg(f) has rank k. So, I'(0) is
invertible and

VATO) 2 g(0,) — g(0) —2 NG (0, ).

n—oo



Testing implicit hypotheses (3)

» Then, by Slutsky's theorem, if I'(#) is continuous in 6,

VATl g0) — g0) —2 Ny (0,1).

n—oo

» Hence, if Hy is true, i.e., g(f) =0,

A —1/5 5 (d)
ng(0n) ' T (0n)9(0n) —— X}
n—o0
Tn
» Test with asymptotic level a:
¢ = ]I{Tn > Qa},

where g, is the (1 — a)-quantile of x2 (see tables).



The multinomial case: x?* test (1)

Let £ = {a1,...,ax} be a finite space and (IPy)pca, be the
family of all probability distributions on E:

K
PAK: p:(pl,,pK)E(O,l)KZp]:1
j=1

» For p € Ag and X ~ IPp,

IPp[X:aj]:pj, ]:1,,K



The multinomial case: x?* test (2)

i
> Let Xq,..., X, w IPp, for some unknown p € Ak, and let

p? € Ak be fixed.

» We want to test:

Hy:p=p°vs. H: p=p°

with asymptotic level « € (0,1).

» Example: If p° = (1/K,1/K,...,1/K), we are testing
whether 1P, is the uniform distribution on F.



The multinomial case: x? test (3)

» Likelihood of the model:

Ln(X17~~~7me) :pi\[lpé\b-”p%Ku
where N; =#{i=1,...,n: X; = q;}.

» Let p be the MLE:

/\ D maximizes log L, (X1, .., X,,p) under the constraint

K



The multinomial case: x?* test (4)

» If Hy is true, then /n(p — p°) is asymptotically normal, and
the following holds.

Theorem

Tn

» x? test with asymptotic level a: Yo = T > qat,
where ¢, is the (1 — a)-quantile of x%_;.

» Asymptotic p-value of this test: p — value =1P [Z > T,,|T,,],
where Z ~ X%{—l and Z 11 T,,.



The Gaussian case: Student's test (1)

> Let Xq,..., X, Z‘ri\lj/\/(u,UQ), for some unknown

p€IR,0% >0 and let ug € IR be fixed, given.

» We want to test:

Ho: p=povs. Hi: p=po

with asymptotic level a € (0, 1).

X, —
> If 02 is known: Let T), = vii == "% Then, T, ~ (0, 1)
g
and
VYo = {|Th| > qa2}

is a test with (non asymptotic) level a.



The Gaussian case: Student's test (2)
If o2 is unknown:

e Xn — Mo . .
> Let T,, = vn —1 ————, where S, is the sample variance.

» Cochran's theorem:

> XnJ-I—Sny

nS,, 9
> o2 ~ Xn-1-

» Hence, IA}: ~ tp_1: Student’s distribution with n — 1 degrees
of freedom.



The Gaussian case: Student's test (3)
» Student's test with (non asymptotic) level a € (0,1):
wa = ]I{‘Tn‘ > QQ/Q}a

where ¢, /5 is the (1 — a/2)-quantile of ¢, ;.

» If Hy is pu > o, Student’s test with level « € (0,1) is:

Vo = T, > o},

where ¢, is the (1 — a)-quantile of ¢,_;.

» Advantage of Student’s test:

» Non asymptotic
» Can be run on small samples

» Drawback of Student’s test: It relies on the assumption that
the sample is Gaussian.



Two-sample test: large sample case (1)

» Consider two samples: X1,...,X,, and Y7,...,Y,,, of
independent random variables such that

E[X1] = - = B[X,] = x
, and
EY)] = = E[Y;n] = py
» Assume that the variances of are known so assume (without
loss of generality) that
var(Xy) = -+ =var(X,) =var(Y1) =--- =var(¥,,) =1

» We want to test:

Ho: px = py vs. Hy: px = py

with asymptotic level a € (0, 1).



Two-sample test: large sample case (2)
From CLT:

V(X — px) =2 N(0,1)

and

Vin(V—py) =25 N(0,1) = VAV pry) = N(0,1)
5

Moreover, the two samples are independent so

Vi( Xy = Yi) +vnl(ux — py) —>n(j)oo N(0,1+7)
m—r 00
il

Under Hy : pux = py:

Xn - Ym (d)
Vi A 1o VO

WT}L—)OO
w7
X, -Y,
Test: Yoy = 11{ Jnonim }

>
V1+m/n a2



Two-sample T-test

» If the variances are unknown but we know that
Xi ~ N(px,0%), Yi~ Ny, 0%).

» Then
c ok | o%
Xn_YmNN(NX_,Ud@?"’_E)
» Under Hy:

Xn_?m

\/ 0% /n+ o /m

» For unknown variance:

~ N(0,1)

X, -Y.,
\/S%/n+ S%/m
where )
(Sk/n+ 5% /m)
N=-g 53
X Y

n2(n—1) + m2(m—1)
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