Statistics for Applications

Chapter 7: Regression



Heuristics of the linear regression (1)

Consider a cloud of i.i.d. random points (X;,Y;),i=1,...,n :
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Heuristics of the linear regression (2)

» ldea: Fit the best line fitting the data.

» Approximation: Y; ~a+ b0X;,i=1,...,n, for some
(unknown) a,b € IR.

» Find &,13 that approach a and b.

» More generally: V; € R, X; € RY,
Vi~a+X,'b, acR,beRY

» Goal: Write a rigorous model and estimate a and b.



Heuristics of the linear regression (3)

Examples:

Economics: Demand and price,
Di~a+bp;, 1=1,...,n.

Ideal gas law: PV = nRT,

log P, ~a+blogV;+clogT;, 1=1,...



Linear regression of ar.v. Y onar.v. X (1)

Let X and Y be two real r.v. (non necessarily independent)
with two moments and such that Var(X) # 0.

The theoretical linear regression of Y on X is the best
approximation in quadratic means of Y by a linear function of
X, i.e. ther.v. a+ bX, where a and b are the two real

numbers minimizing IE [(Y —a—bX)?|.

By some simple algebra:
_cov(X,Y)
- Var(X) '

> a=E[Y] - bE[X] = E[Y] -



Linear regression of ar.v. Y onar.v. X (2)

If e =Y — (a + bX), then
Y =a+bX +¢,

with [E[¢] = 0 and cov(X,e) = 0.

Conversely: Assume that Y = a + bX + ¢ for some a,b € IR
and some centered r.v. ¢ that satisfies cov(X,e) = 0.

E.g., if X Il € orif IE[e|X] =0, then cov(X,e) = 0.

Then, a + bX is the theoretical linear regression of Y on X.



Linear regression of ar.v. Y onarv. X (3)

A sample of n i.i.d. random pairs (X1,..., X,) with same
distribution as (X, Y") is available.

We want to estimate a and b.
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A sample of n i.i.d. random pairs (X1,..., X,) with same
distribution as (X, Y") is available.
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Linear regression of ar.v. Y onarv. X (3)

A sample of n i.i.d. random pairs (X1,Y1),..., (Xn,Yy,) with
same distribution as (X,Y) is available.

We want to estimate a and b.
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Linear regression of ar.v. Y onarv. X (4)

Definition
The least squared error (LSE) estimator of (a,b) is the minimizer

of the sum of squared errors:

Z(Yi —a —bX;)?
1=1
(a,b) is given by
- XY - XY
X2 - X2’



Linear regression of ar.v. Y onarv. X (5)
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Multivariate case (1)
YV, =X, B+e, i=1,...,n

Vector of explanatory variables or covariates: X; € IR? (wlog,
assume its first coordinate is 1).

Dependent variable: Y;.
B = (a,b ) ; B1(= a) is called the intercept.

{€i}i=1,...n: noise terms satisfying cov(X;, ;) = 0.
Definition
The least squared error (LSE) estimator of 3 is the minimizer of
the sum of square errors:

A

n
B = argmin Y; — X, t)?
20X



Multivariate case (2)

LSE in matrix form

Let Y = (Y3,...,Y,) €R™

Let X be the n X p matrix whose rows are X;,..., X, (Xis
called the design).

Let € = (¢1,...,en) € IR™ (unobserved noise)
Y =X3+e.

The LSE B satisfies:

B = argmin ||Y — Xt]|2.
tcRP



Multivariate case (3)

Assume that rank(X) = p.

Analytic computation of the LSE:
B=(X X)X Y.
Geometric interpretation of the LSE

X,B is the orthogonal projection of Y onto the subspace
spanned by the columns of X:

X3 = PY,

where P = X(X X)X .



Linear regression with deterministic design and Gaussian
noise (1)

Assumptions:

The design matrix X is deterministic and rank(X) = p.
The model is homoscedastic: e1,...,&, are i.i.d.

The noise vector € is Gaussian:
2
e ~ N,(0,0°I},),

for some known or unknown o2 > 0.



Linear regression with deterministic design and Gaussian
noise (2)
LSE = MLE: 3~ A, (,3,02(X X)—1>.

Quadratic risk of 3:  IE [HB ~ 5“3} — o2tr ((X X)—l).

Prediction error:  IE [||Y _ XBHg} — o2(n —p).

1 ,
Unbiased estimator of ¢2: 6% = 1Y — X33.
n—p

Theorem

~2
g 2
(n - p); ~ Xn—p'

B 1 62



Significance tests (1)
Test whether the j-th explanatory variable is significant in the
linear regression (1 < j < p).

HQZBjZOV.S. leﬁj:().

If v; is the j-th diagonal coefficient of (X X)~! (v; > 0):

B; — B

N

A

Let T) — 0

Test with non asymptotic level a € (0, 1):

5&7‘) = ]l{\quLj)| > 4y (tn—p)},

where gg (tn—p) is the (1 — «/2)-quantile of ¢, .



Significance tests (2)

Test whether a group of explanatory variables is significant in
the linear regression.

Hy:B8;,=0,VjeSvs. Hy:dj€S,8; =0, where
SC{l,...,p}.

Bonferroni’s test: 62 = max 5(‘%, where k = |S].
jes @

do has non asymptotic level at most «.



More tests (1)

Let G be a k x p matrix with rank(G) =k (k < p) and X € RF.

Consider the hypotheses:
Hy:GB=AXvs. H :GB=A.
The setup of the previous slide is a particular case.
If Hy is true, then:
GB—A~N; 0,02G(X X)7'G¢ |,
and

~ —1
o 3(GB - GX X)''a (GB =) ~ 3.



More tests (2)

1 (GB-X) (GX X)7'6¢ )7 (GB-N)
o2 k '

Let S, =

If Hy is true, then Sy, ~ Fj p—p.
Test with non asymptotic level o € (0, 1):

504 — ]I{Sn > QQ(Fk,n—p)}a

where qo(Fkn—p) is the (1 — a)-quantile of Fy, ,,_,,.

Definition

The Fisher distribution with p and q degrees of freedom, denoted

U
by F} 4. is the distribution of ﬁ where:

V/q
U ~ X%, V ~ x?],

Ul V.



Concluding remarks

Linear regression exhibits correlations, NOT causality

Normality of the noise: One can use goodness of fit tests to
test whether the residuals £; = Y; — X, B are Gaussian.

Deterministic design: If X is not deterministic, all the above
can be understood conditionally on X, if the noise is assumed
to be Gaussian, conditionally on X.



Linear regression and lack of identifiability (1)

Consider the following model:
Y = X3+ ¢,

with:
1. Y € IR" (dependent variables), X € IR™"*P (deterministic
design) ;
2. B3 € IR?, unknown;
3. € ~ Nu(0,0%1,).

Previously, we assumed that X had rank p, so we could invert
X X.

What if X isnotofrankp? Eg.,ifp>n?

B would no longer be identified: estimation of 3 is vain
(unless we add more structure).



Linear regression and lack of identifiability (2)

What about prediction 7 X3 is still identified.

Y: orthogonal projection of Y onto the linear span of the
columns of X.

Y = X8 =X(X X)'XY, where Af stands for the
(Moore-Penrose) pseudo inverse of a matrix A.

Similarly as before, if k& = rank(X):

Y Y3
2 NX’I2"L—IC’

o

Y —Y|2 LY.



Linear regression and lack of identifiability (3)

In particular:

E[[Y - Y| = (n— k)

Unbiased estimator of the variance:

1 N
~2 2
= Y -Y|5.
52 = — |V ~ Y|




Linear regression in high dimension (1)
Consider again the following model:

Y = X3+ ¢,

with:
1. Y € R" (dependent variables), X € IR"*P (deterministic
design) ;
2. B € IRP, unknown: to be estimated;
3. € ~ Nu(0,0%1,).

For each 7, X; € IRP is the vector of covariates of the i-th
individual.

If p is too large (p > n), there are too many parameters to be
estimated (overfitting model), although some covariates may
be irrelevant.

Solution: Reduction of the dimension.



Linear regression in high dimension (2)

Idea: Assume that only a few coordinates of 3 are nonzero
(but we do not know which ones).

Based on the sample, select a subset of covariates and
estimate the corresponding coordinates of (3.

For S C{1,...,p}, let

Bg € argmin ||Y — Xgt|?,
tcRS

where Xg is the submatrix of X obtained by keeping only the
covariates indexed in S.



Linear regression in high dimension (3)

Select a subset S that minimizes the prediction error
penalized by the complexity (or size) of the model:

1Y — XsB8s)1* + AlS|,
where A > 0 is a tuning parameter.

If \ = 262, this is the Mallow’s Cp or AlIC criterion.

If A =62 log n, this is the BIC criterion.



Linear regression in high dimension (4)

Each of these criteria is equivalent to finding 3 € IR? that
minimizes:
1Y — Xbl[5 + Allbllo,

where ||bl|g is the number of nonzero coefficients of b.

This is a computationally hard problem: nonconvex and
requires to compute 2™ estimators (all the 3¢, for

SC{L,....p})
[ asso estimator:
P b
replace||bl|p = Z 1{b; = 0} with Ibll1 = Z 121
j=1 J=1

and the problem becomes convex.

~ L
B € argmin ||Y — XbH2 + A||b||1,
belRp

where A > 0 is a tuning parameter.



Linear regression in high dimension (5)

How to choose )\ 7

This is a difficult question (see grad course 18.657:
" High-dimensional statistics” in Spring 2017).

A good choice of \ with lead to an estimator B that is very
close to 3 and will allow to recover the subset S* of all
j €{1,...,p} for which 3, = 0, with high probability.



Linear

regression in high dimension (6)
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Nonparametric regression (1)

In the linear setup, we assumed that Y; = X, 3 + ¢;, where
X, are deterministic.

This has to be understood as working conditionally on the
design.

This is to assume that IE[Y;|X;] is a linear function of X,
which is not true in general.

Let f(z) = E]Y;|X; = z], = € IRP: How to estimate the
function f 7



Nonparametric regression (2)

Let p = 1 in the sequel.

One can make a parametric assumption on f.
Eg., f(x) =a+bx, f(x)=a+bxr+cz? f(x)=e 0" .

The problem reduces to the estimation of a finite number of
parameters.

LSE, MLE, all the previous theory for the linear case could be
adapted.

What if we do not make any such parametric assumption on f
?



Nonparametric regression (3)

Assume f is smooth enough: f can be well approximated by a
piecewise constant function.

|dea: Local averages.

For x € R: f(t) = f(x) for t close to x.

For all 7 such that X; is close enough to z,
Y; = f(ZC) + &;.

Estimate f(x) by the average of all Y;'s for which X is close
enough to .



Nonparametric regression (4)

Let A > 0: the window's size (or bandwidth).
let I, ={i=1,...,n:|X; —z| < h},

Let fnh(x) be the average of {Y; :i € I, }.

1
- § sz if Ia: —
1] - | 0
1€l

fn,h(«r) = <

\0 otherwise.



Nonparametric regression (5)
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Nonparametric regression (6)
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Nonparametric regression (7)

How to choose h ?

If h — 0: overfitting the data;

If h — oco: underfitting, fnh(ﬂv) =Y,.



Nonparametric regression (8)

Example:
n =100, f(z) = 2(1 — x),
h = .005.
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Nonparametric regression (9)

Example:
n =100, f(x) = x(1 — x),
h=1.
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Nonparametric regression (10)

Example:
n =100, f(z) = 2(1 — ),
h = .2.
S b
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Nonparametric regression (11)

Choice of h ?

If the smoothness of f is known (i.e., quality of local
approximation of f by piecewise constant functions): There is
a good choice of h depending on that smoothness

If the smoothness of f is unknown: Other techniques, e.g.
cross validation.
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