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Heuristics of the linear regression (1) 

Consider a cloud of i.i.d. random points (X
i

, Y
i

), i  = 1, . . . , n  : 
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Heuristics of the linear regression (2) 

I Idea: Fit the best line fitting the data.
 

I Approximation: Y
i ⇡ a+ bX

i

, i = 1  , . . . , n, for some
 
(unknown) a, b 2 IR .
 

ˆ
I Find ˆ .a, b that approach a and b


I More generally: Y
i 2 IR , X

i 2 IR d ,
 

Y
i ⇡ a+ X>b, a 2 IR , b 2 IR d .


i 

I Goal: Write a rigorous model and estimate a and b. 
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Heuristics of the linear regression (3) 

Examples:
 

Economics: Demand and price,
 

D
i ⇡ a + bp

i

, i  = 1, . . . , n. 

Ideal gas law: PV  = nRT , 

log P
i ⇡ a + b log V

i + c log T
i

, i  = 1, . . . , n. 
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Linear regression of a r.v. Y on a r.v. X (1) 

Let X and Y be two real r.v. (non necessarily independent) 
with two moments and such that V ar( X) 6= 0  . 

The theoretical linear regression of Y on X is the best 
approximation in quadratic means of Y by a linear function of 
X, i.e. the r.v. a + bX, where a and b are the two real h i
numbers minimizing IE ( Y − a − bX) 2 . 

By some simple algebra: 
cov( X, Y )

I b = ,
V ar( X) 

cov( X, Y )
I a = IE[ Y ] − bIE[ X] = IE[ Y ] − IE[ X] . 

V ar( X) 
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Linear regression of a r.v. Y on a r.v. X (2) 

If " = Y − (a + bX), then 

Y = a + bX + ", 

with IE["] = 0 and cov(X, ") = 0. 

Conversely: Assume that Y = a + bX + " for some a, b 2 IR 
and some centered r.v. " that satisfies cov(X, ") = 0. 

E.g., if X ?? " or if IE["|X] = 0, then cov(X, ") = 0. 

Then, a + bX is the theoretical linear regression of Y on X. 
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Linear regression of a r.v. Y on a r.v. X (3) 
A sample of n i.i.d. random pairs (X1, . . . , Xn

) with same 
distribution as (X,Y ) is available. 

We want to estimate a and b. 
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Linear regression of a r.v. Y on a r.v. X (3) 
A sample of n i.i.d. random pairs (X1, Y1), . . . , (Xn

, Y
n

) with 
same distribution as (X,Y ) is available. 

We want to estimate a and b. 
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Linear regression of a r.v. Y on a r.v. X (4) 

Definition 
The least squared error (LSE) estimator of (a, b) is the minimizer 
of the sum of squared errors: 

nX
(Y

i − a − bX
i

)

2 . 
i=1 

(â, bˆ) is given by 
XY  −X¯ ¯  Y

ˆb = ,
¯

2X2 −X

¯ b ¯ â =  Y − ˆX.  
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            Linear regression of a r.v. Y on a r.v. X (5)
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Multivariate case (1) 

Y
i = X

i β + " 
i

, i = 1, . . . , n. 

Vector of explanatory variables or covariates: X
i 2 IRp (wlog,
 

assume its first coordinate is 1).
 

Dependent variable: Y
i

.
 

β = (a, b ) ; β1(= a) is called the intercept.
 

{" 
i

}
i=1,...,n: noise terms satisfying cov(X

i

, " 
i

) =  0.
 

Definition 
The least squared error (LSE) estimator of β is the minimizer of 
the sum of square errors: 

n

βˆ 
= argmin 

X
(Y

i −X
i t)

2 

t2IRp 
i=1 
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Multivariate case (2)  

LSE in matrix form 

Let Y = (Y1, . . . , Yn) 2 IRn .  

Let X be the n ⇥ p matrix whose rows are X1 , . . . , X (X is 
n 

called the design).  

Let " = ("1, . . . , "n) 2 IRn (unobserved noise)  

Y = Xβ + ".  

The LSE βˆ satisfies:  

βˆ = argmin kY − Xtk22. 
t2IRp 
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Multivariate case (3)  

Assume that rank(X) = p. 

Analytic computation of the LSE: 

βˆ = (X X)

−1X Y. 

Geometric interpretation of the LSE 

Xβˆ is the orthogonal projection of Y onto the subspace 
spanned by the columns of X: 

Xβˆ = P Y, 

where P = X(X X)

−1X . 
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Linear regression with deterministic design and Gaussian 
noise (1) 

Assumptions: 

The design matrix X is deterministic and rank(X) = p.  

The model is homoscedastic : "1, . . . , "n are i.i.d.  

The noise vector " is Gaussian:  

" ⇠ N
n

(0,σ2I
n

),  

for some known or unknown σ2 > 0.  
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Linear regression with deterministic design and Gaussian 
noise (2) 

⇣ ⌘
ˆLSE = MLE: β ⇠ N

p

β,σ2
(X X)

−1 . 

h i ⇣ ⌘
Quadratic risk of βˆ : IE kβˆ − βk2 

= σ2tr (X X)

−1 .2 

h i 
Prediction error: IE kY − Xβˆk2 

= σ2
(n − p).2 

Unbiased estimator of σ2: σ̂2 
=

1 kY − Xβˆk22 . 
n − p 

Theorem 

(n − p)
σ

σ̂
2

2 
⇠ χ2 .

n−p

ˆβ ?? σ̂2 . 
18/43 



Significance tests (1) 
Test whether the j-th explanatory variable is significant in the 
linear regression (1  j  p). 

H0 : βj = 0 v.s. H1 : βj = 0. 

If γ
j is the j-th diagonal coecient of (X X)

−1 (γ
j > 0): 

βˆ
j − β

jp  ⇠ t
n−p

. 
σ̂2γ

j 

βˆ
j 

Let T (j) = p . 
n 

σ̂2γ
j 

Test with non asymptotic level ↵ 2 (0, 1):  

δ(j)  = 1{|T (j)| > q↵ 
(t

n−p

)},
↵ n 2 

where q↵ 
(t

n−p

) is the (1 − ↵/2)-quantile of t
n−p

. 
2 
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Significance tests (2)  

Test whether a group of explanatory variables is significant in 
the linear regression. 

H0 : βj = 0, 8j 2 S v.s. H1 : 9j 2 S, β
j = 0, where 

S ✓ {1, . . . , p}. 

(j)
Bonferroni’s test: δB 

= max δ , where k = |S|.
↵ 

↵/k

j2S 

δ
↵ has non asymptotic level at most ↵. 
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More tests (1)  

Let G be a k ⇥ p matrix with rank(G) = k (k  p) and λ 2 IRk . 

Consider the hypotheses: 

H0 : Gβ = λ v.s. H1 : Gβ = λ. 

The setup of the previous slide is a particular case. 

If H0 is true, then: 

Gβˆ − λ ⇠ N
k 0,σ2G(X X)

−1G , 

and 
−1 

σ−2
(Gβˆ − λ) G(X X)

−1G (Gβ − λ) ⇠ χ2 
k

. 
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More tests (2) 

Let S
n = 

1 
σ̂2 

(Gˆβ − λ)
�
G(X X)

−1G

k 

�−1 
(Gβ − λ) 

. 

If H0 is true, then S
n ⇠ F

k,n−p

. 
Test with non asymptotic level ↵ 2 (0, 1): 

δ
↵ = 1{S

n > q
↵

(F
k,n−p

)}, 

where q
↵

(F
k,n−p

) is the (1 − ↵)-quantile of F
k,n−p

. 

Definition 
The Fisher distribution with p and q degrees of freedom, denoted 

U/p
by F

p,q

, is the distribution of , where: 
V/q  

U ⇠ χ2 , V ⇠ χ2 , 
p q 

U ?? V . 
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Concluding remarks  

Linear regression exhibits correlations, NOT causality 

Normality of the noise: One can use goodness of fit tests to 
test whether the residuals "̂

i = Y
i − X

i β
ˆ are Gaussian. 

Deterministic design: If X is not deterministic, all the above 
can be understood conditionally on X, if the noise is assumed 
to be Gaussian, conditionally on X. 
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Linear regression and lack of identifiability (1) 
Consider the following model: 

Y = Xβ + ", 

with: 
1.  Y 2 IRn (dependent variables), X 2 IRn⇥p (deterministic 

design) ; 
2.  β 2 IRp, unknown; 
3.  " ⇠ N

n

(0,σ2I
n

). 

Previously, we assumed that X had rank p, so we could invert 
X X. 

What if X is not of rank p ? E.g., if p > n ? 

β would no longer be identified: estimation of β is vain 
(unless we add more structure). 
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Linear regression and lack of identifiability (2)  

What about prediction ? Xβ is still identified. 

ˆY: orthogonal projection of Y onto the linear span of the 
columns of X. 

Yˆ = Xβˆ = X(X X)

†XY, where A† stands for the 
(Moore-Penrose) pseudo inverse of a matrix A. 

Similarly as before, if k = rank(X): 

kYˆ − Yk22 ⇠ χ2 
nk,σ2 

kYˆ − Yk22 ?? Yˆ . 
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Linear regression and lack of identifiability (3)  

In particular: 

IE[kYˆ − Yk22] = (n − k)σ2 . 

Unbiased estimator of the variance: 

1 
σ̂2 

= kYˆ − Yk22 . 
n − k 
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Linear regression in high dimension (1) 
Consider again the following model: 

Y = Xβ + ", 

with: 
1.  Y 2 IRn (dependent variables), X 2 IRn⇥p (deterministic 

design) ; 
2.  β 2 IRp, unknown: to be estimated; 
3.  " ⇠ N

n

(0,σ2I
n

). 

For each i, X
i 2 IRp is the vector of covariates of the i-th 

individual. 

If p is too large (p > n), there are too many parameters to be 
estimated (overfitting model), although some covariates may 
be irrelevant. 

Solution: Reduction of the dimension. 
27/43 



Linear regression in high dimension (2)  

Idea: Assume that only a few coordinates of β are nonzero 
(but we do not know which ones). 

Based on the sample, select a subset of covariates and 
estimate the corresponding coordinates of β. 

For S ✓ {1, . . . , p}, let 

βˆ
S 2 argmin kY − X

S

tk2 , 
t2IRS 

where X
S is the submatrix of X obtained by keeping only the 

covariates indexed in S. 
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Linear regression in high dimension (3)  

Select a subset S that minimizes the prediction error 
penalized by the complexity (or size) of the model: 

ˆkY − X
S β

S k2 
+ λ|S|, 

where λ > 0 is a tuning parameter. 

If λ = 2σ̂2, this is the Mallow’s C
p or AIC criterion. 

If λ = σ̂2 
log n, this is the BIC criterion. 
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Linear regression in high dimension (4) 
Each of these criteria is equivalent to finding β 2 IRp that 
minimizes: 

kY − Xbk22 + λkbk0, 

X 

where kbk0 is the number of nonzero coecients of b. 

This is a computationally hard problem: nonconvex and 
requires to compute 2n estimators (all the βˆ

S

, for 
S ✓ {1, . . . , p}). 

Lasso estimator: 
pp

replacekbk0 = 1I{b
j = 0} with kbk1 

X 
=  b

j

j=1j=1 

and the problem becomes convex. 
L 

βˆ 2 argmin kY − Xbk2 
+ λkbk1, 

b2IRp 

where λ > 0 is a tuning parameter. 

�� �� 

30/43 



Linear regression in high dimension (5)  

How to choose λ ? 

This is a dicult question (see grad course 18.657: 
”High-dimensional statistics” in Spring 2017). 

A good choice of λ with lead to an estimator βˆ that is very 
close to β and will allow to recover the subset S⇤ of all 
j 2 {1, . . . , p} for which β

j = 0, with high probability. 
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Linear regression in high dimension (6)  
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Nonparametric regression (1)  

In the linear setup, we assumed that Y
i = X

i β + "
i

, where 
X

i are deterministic. 

This has to be understood as working conditionally on the 
design. 

This is to assume that IE[Y
i

|X
i

] is a linear function of X
i

, 
which is not true in general. 

Let f(x) = IE[Y
i

|X
i = x], x 2 IRp: How to estimate the 

function f ? 
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Nonparametric regression (2)  

Let p = 1 in the sequel. 

One can make a parametric assumption on f . 

2 a+bxE.g., f(x) = a + bx, f(x) = a + bx + cx , f(x) = e , ... 

The problem reduces to the estimation of a finite number of 
parameters. 

LSE, MLE, all the previous theory for the linear case could be 
adapted. 

What if we do not make any such parametric assumption on f 
? 
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Nonparametric regression (3)  

Assume f is smooth enough: f can be well approximated by a  
piecewise constant function.  

Idea: Local averages.  

For x 2 IR: f(t) ⇡ f(x) for t close to x.  

For all i such that X
i is close enough to x,  

Y
i ⇡ f(x) + "

i

. 

Estimate f(x) by the average of all Y
i

’s for which X
i is close 

enough to x. 
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Nonparametric regression (4)  

Let h > 0: the window’s size (or bandwidth).  

Let I
x = {i = 1, . . . , n : |X

i − x| < h}.  

Let fˆ 
n,h

(x) be the average of {Y
i : i 2 I

x

}.  

8 
>><  

1 X  
Y
i if I

x = ; |I
x

| 
i2I

xfˆ
n,h

(x) = >>: 
0 otherwise.  
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Nonparametric regression (5)  
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Nonparametric regression (6)  
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Nonparametric regression (7)  

How to choose h ? 

If h ! 0: overfitting the data; 

¯If h ! 1: underfitting, fˆ 
n,h

(x) = Y
n

. 
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Nonparametric regression (8)  

Example: 
n = 100, f(x) = x(1 − x),  
h = .005. 
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Nonparametric regression (9)  

Example: 
n = 100, f(x) = x(1 − x),  
h = 1. 
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Nonparametric regression (10)  

Example: 
n = 100, f(x) = x(1 − x),  
h = .2. 
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Nonparametric regression (11)  

Choice of h ? 

If the smoothness of f is known (i.e., quality of local 
approximation of f by piecewise constant functions): There is 
a good choice of h depending on that smoothness 

If the smoothness of f is unknown: Other techniques, e.g. 
cross validation. 
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