3.1. **Definition and examples.** Above we have made essential use of the commutation relations between operators $x \in \mathfrak{h}^*, g \in G$, and $D_a, a \in \mathfrak{h}$. This makes it natural to consider the algebra generated by these operators.

Definition 3.1. The rational Cherednik algebra associated to (G, \mathfrak{h}) is the algebra $H_c(G, \mathfrak{h})$ generated inside $A = \operatorname{Rees}(\mathbb{C}G \ltimes \mathcal{D}(\mathfrak{h}_{\operatorname{reg}}))$ by the elements $x \in \mathfrak{h}^*, g \in G$, and $D_a(c, \hbar), a \in \mathfrak{h}$. If $t \in \mathbb{C}$, then the algebra $H_{t,c}(G, \mathfrak{h})$ is the specialization of $H_c(G, \mathfrak{h})$ at $\hbar = t$.

Proposition 3.2. The algebra H_c is the quotient of the algebra $\mathbb{C}G \ltimes \mathbf{T}(\mathfrak{h} \oplus \mathfrak{h}^*)[\hbar]$ (where **T** denotes the tensor algebra) by the ideal generated by the relations

$$[x, x'] = 0, \ [y, y'] = 0, \ [y, x] = \hbar(y, x) - \sum_{s \in \mathcal{S}} c_s(y, \alpha_s)(x, \alpha_s^{\vee})s,$$

where $x, x' \in \mathfrak{h}^*, y, y' \in \mathfrak{h}$.

Proof. Let us denote the algebra defined in the proposition by $H'_c = H'_c(G, \mathfrak{h})$. Then according to the results of the previous sections, we have a surjective homomorphism $\phi : H'_c \to H_c$ defined by the formula $\phi(x) = x$, $\phi(g) = g$, $\phi(y) = D_y(c, \hbar)$.

Let us show that this homomorphism is injective. For this purpose assume that y_i is a basis of \mathfrak{h} , and x_i is the dual basis of \mathfrak{h}^* . Then it is clear from the relations of H'_c that H'_c is spanned over $\mathbb{C}[\hbar]$ by the elements

(3.1)
$$g\prod_{i=1}^{r} y_{i}^{m_{i}}\prod_{i=1}^{r} x_{i}^{n_{i}}$$

Thus it remains to show that the images of the elements (3.1) under the map ϕ , i.e. the elements

$$g\prod_{i=1}^{r} D_{y_i}(c,\hbar)^{m_i}\prod_{i=1}^{r} x_i^{n_i}.$$

are linearly independent. But this follows from the obvious fact that the symbols of these elements in $\mathbb{C}G \ltimes \mathbb{C}[\mathfrak{h}^* \times \mathfrak{h}_{reg}][\hbar]$ are linearly independent. The proposition is proved. \Box

Remark 3.3. 1. Similarly, one can define the universal algebra $H(G, \mathfrak{h})$, in which both \hbar and c are variables. (So this is an algebra over $\mathbb{C}[\hbar, c]$.) It has two equivalent definitions similar to the above.

2. It is more convenient to work with algebras defined by generators and relations than with subalgebras of a given algebra generated by a given set of elements. Therefore, from now on we will use the statement of Proposition 3.2 as a definition of the rational Cherednik algebra H_c . According to Proposition 3.2, this algebra comes with a natural embedding $\Theta_c: H_c \to \text{Rees}(\mathbb{C}G \ltimes \mathcal{D}(\mathfrak{h}_{\text{reg}}))$, defined by the formula $x \to x, g \to g, y \to D_y(c, \hbar)$. This embedding is called the Dunkl operator embedding.

Example 3.4. 1. Let $G = \mathbb{Z}_2$, $\mathfrak{h} = \mathbb{C}$. In this case *c* reduces to one parameter, and the algebra $H_{t,c}$ is generated by elements x, y, s with defining relations

$$s^{2} = 1, \ sx = -xs, \ sy = -ys, \ [y, x] = t - 2cs.$$

2. Let $G = \mathfrak{S}_n$, $\mathfrak{h} = \mathbb{C}^n$. In this case there is also only one complex parameter c, and the algebra $H_{t,c}$ is the quotient of $\mathfrak{S}_n \ltimes \mathbb{C}\langle x_1, \ldots, x_n, y_1, \ldots, y_n \rangle$ by the relations

$$[x_i, x_j] = [y_i, y_j] = 0, \ [y_i, x_j] = cs_{ij}, \ [y_i, x_i] = t - c\sum_{j \neq i} s_{ij}.$$

Here $\mathbb{C}\langle E \rangle$ denotes the free algebra on a set E, and s_{ij} is the transposition of i and j.

3.2. The PBW theorem for the rational Cherednik algebra. Let us put a filtration on H_c by setting deg y = 1 for $y \in \mathfrak{h}$ and deg $x = \deg g = 0$ for $x \in \mathfrak{h}^*, g \in G$. Let $\operatorname{gr}(H_c)$ denote the associated graded algebra of H_c under this filtration, and similarly for $H_{t,c}$. We have a natural surjective homomorphism

 $\xi: \mathbb{C}G \ltimes \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*][\hbar] \to \operatorname{gr}(H_c).$

For $t \in \mathbb{C}$, it specializes to surjective homomorphisms

 $\xi_t: \mathbb{C}G \ltimes \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*] \to \operatorname{gr}(H_{t,c}).$

Proposition 3.5 (The PBW theorem for rational Cherednik algebras). The maps ξ and ξ_t are isomorphisms.

Proof. The statement is equivalent to the claim that the elements (3.1) are a basis of $H_{t,c}$, which follows from the proof of Proposition 3.2.

Remark 3.6. 1. We have

$$H_{0,0} = \mathbb{C}G \ltimes \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*] \text{ and } H_{1,0} = \mathbb{C}G \ltimes \mathcal{D}(\mathfrak{h}).$$

2. For any $\lambda \in \mathbb{C}^*$, the algebra $H_{t,c}$ is naturally isomorphic to $H_{\lambda t, \lambda c}$.

3. The Dunkl operator embedding Θ_c specializes to embeddings

$$\Theta_{0,c}: H_{0,c} \hookrightarrow \mathbb{C}G \ltimes \mathbb{C}[\mathfrak{h}^* \times \mathfrak{h}_{\mathrm{reg}}],$$

given by $x \mapsto x, \, g \mapsto g, \, y \mapsto D_a^0$, and

 $\Theta_{1,c}: H_{1,c} \hookrightarrow \mathbb{C}G \ltimes \mathcal{D}(\mathfrak{h}_{\mathrm{reg}}),$

given by $x \mapsto x, g \mapsto g, y \mapsto D_a$. So $H_{0,c}$ is generated by x, g, D_a^0 , and $H_{1,c}$ is generated by x, g, D_a .

Since Dunkl operators map polynomials to polynomials, the map $\Theta_{1,c}$ defines a representation of $H_{1,c}$ on $\mathbb{C}[\mathfrak{h}]$. This representation is called the *polynomial representation* of $H_{1,c}$.

3.3. The spherical subalgebra. Let $\mathbf{e} \in \mathbb{C}G$ be the symmetrizer, $\mathbf{e} = |G|^{-1} \sum_{g \in G} g$. We have $\mathbf{e}^2 = \mathbf{e}$.

Definition 3.7. $B_c := \mathbf{e}H_c\mathbf{e}$ is called the spherical subalgebra of H_c . The spherical subalgebra of $H_{t,c}$ is $B_{t,c} := B_c/(\hbar - t) = \mathbf{e}H_{t,c}\mathbf{e}$.

Note that

 $\mathbf{e}\left(\mathbb{C}G\ltimes\mathcal{D}(\mathfrak{h}_{\mathrm{reg}})\right)\mathbf{e}=\mathcal{D}(\mathfrak{h}_{\mathrm{reg}})^G,\quad \mathbf{e}\left(\mathbb{C}G\ltimes\mathbb{C}[\mathfrak{h}_{\mathrm{reg}}\times\mathfrak{h}^*]\right)\mathbf{e}=\mathbb{C}[\mathfrak{h}_{\mathrm{reg}}\times\mathfrak{h}^*]^G.$

Therefore, the restriction gives the embeddings: $\Theta_{1,c} : B_{1,c} \hookrightarrow \mathcal{D}(\mathfrak{h}_{reg})^G$, and $\Theta_{0,c} : B_{0,c} \hookrightarrow \mathbb{C}[\mathfrak{h}^* \times \mathfrak{h}_{reg}]^G$. In particular, we have

Proposition 3.8. The spherical subalgebra $B_{0,c}$ is commutative and does not have zero divisors. Also $B_{0,c}$ is finitely generated.

Proof. The first statement is clear from the above. The second statement follows from the fact that $\operatorname{gr}(B_{0,c}) = B_{0,0} = \mathbb{C}[\mathfrak{h} \times \mathfrak{h}^*]^G$, which is finitely generated by Hilbert's theorem. \Box

Corollary 3.9. $M_c = \text{Spec}B_{0,c}$ is an irreducible affine algebraic variety.

Proof. Directly from the definition and the proposition.

We also obtain

Proposition 3.10. B_c is a flat quantization (non-commutative deformation) of $B_{0,c}$ over $\mathbb{C}[\hbar]$.

So $B_{0,c}$ carries a Poisson bracket $\{\cdot, \cdot\}$ (thus M_c is a Poisson variety), and B_c is a quantization of the Poisson bracket, i.e. if $a, b \in B_c$ and a_0, b_0 are the corresponding elements in $B_{0,c}$, then

$$[a,b]/\hbar \equiv \{a_0,b_0\} \pmod{\hbar}.$$

Definition 3.11. The Poisson variety M_c is called the Calogero-Moser space of G, \mathfrak{h} with parameter c.

3.4. The localization lemma. Let $H_{t,c}^{loc} = H_{t,c}[\delta^{-1}]$ be the localization of $H_{t,c}$ as a module over $\mathbb{C}[\mathfrak{h}]$ with respect to the discriminant δ (a polynomial vanishing to the first order on each reflection plane). Define also $B_{t,c}^{loc} = \mathbf{e} H_{t,c}^{loc} \mathbf{e}$.

Proposition 3.12. (i) For $t \neq 0$ the map $\Theta_{t,c}$ induces an isomorphism of algebras $H_{t,c}^{loc} \to \mathbb{C}G \ltimes \mathcal{D}(\mathfrak{h}_{reg})$, which restricts to an isomorphism $B_{t,c}^{loc} \to \mathcal{D}(\mathfrak{h}_{reg})^G$.

(ii) The map $\Theta_{0,c}$ induces an isomorphism of algebras $H^{\text{loc}}_{0,c} \to \mathbb{C}G \ltimes \mathbb{C}[\mathfrak{h}^* \times \mathfrak{h}_{\text{reg}}]$, which restricts to an isomorphism $B^{\text{loc}}_{0,c} \to \mathbb{C}[\mathfrak{h}^* \times \mathfrak{h}_{\text{reg}}]^G$.

Proof. This follows immediately from the fact that the Dunkl operators have poles only on the reflection hyperplanes. \Box

Since $\operatorname{gr}(B_{0,c}) = B_{0,0} = \mathbb{C}[\mathfrak{h}^* \oplus \mathfrak{h}]^G$, we get the following geometric corollary.

- **Corollary 3.13.** (i) The family of Poisson varieties M_c is a flat deformation of the Poisson variety $M_0 := (\mathfrak{h} \times \mathfrak{h}^*)/G$. In particular, M_c is smooth outside of a subset of codimension 2.
 - (ii) We have a natural map $\beta_c : M_c \to \mathfrak{h}/G$, such that $\beta_c^{-1}(\mathfrak{h}_{reg}/G)$ is isomorphic to $(\mathfrak{h}_{reg} \times \mathfrak{h}^*)/G$. The Poisson structure on M_c is obtained by extension of the symplectic Poisson structure on $(\mathfrak{h}_{reg} \times \mathfrak{h}^*)/G$.

Example 3.14. Let $W = \mathbb{Z}_2$, $\mathfrak{h} = \mathbb{C}$. Then $B_{0,c} = \langle x^2, xp, p^2 - c^2/x^2 \rangle$. Let $X := x^2, Z := xp$ and $Y := p^2 - c^2/x^2$. Then $Z^2 - XY = c^2$. So M_c is isomorphic to the quadric $Z^2 - XY = c^2$ in the 3-dimensional space and it is smooth for $c \neq 0$.

3.5. Category \mathcal{O} for rational Cherednik algebras. From the PBW theorem, we see that $H_{1,c} = S\mathfrak{h}^* \otimes \mathbb{C}G \otimes S\mathfrak{h}$. It is similar to the structure of the universal enveloping algebra of a simple Lie algebra: $U(\mathfrak{g}) = U(\mathfrak{n}_-) \otimes U(\mathfrak{h}) \otimes U(\mathfrak{n}_+)$. Namely, the subalgebra $\mathbb{C}G$ plays the role of the Cartan subalgebra, and the subalgebras $S\mathfrak{h}^*$ and $S\mathfrak{h}$ play the role of the positive and negative nilpotent subalgebras. This similarity allows one to define and study the category \mathcal{O} analogous to the Bernstein-Gelfand-Gelfand category \mathcal{O} for simple Lie algebras.

Definition 3.15. The category $\mathcal{O}_c(G, \mathfrak{h})$ is the category of modules over $H_{1,c}(G, \mathfrak{h})$ which are finitely generated over $S\mathfrak{h}^*$ and locally finite under $S\mathfrak{h}$ (i.e., for $M \in \mathcal{O}_c(G, \mathfrak{h}), \forall v \in M$, $(S\mathfrak{h})v$ is finite dimensional).

If M is a locally finite $(S\mathfrak{h})^G$ -module, then

$$M = \bigoplus_{\lambda \in \mathfrak{h}^*/G} M_{\lambda},$$

where

$$M_{\lambda} = \{ v \in M | \forall p \in (S\mathfrak{h})^G, \exists N \, s.t. \, (p - \lambda(p))^N v = 0 \},\$$

(notice that $\mathfrak{h}^*/G = \operatorname{Specm}(S\mathfrak{h})^G$).

Proposition 3.16. M_{λ} are $H_{1,c}$ -submodules.

Proof. Note first that we have an isomorphism $\mu : H_{1,c}(G, \mathfrak{h}) \cong H_{1,c}(G, \mathfrak{h}^*)$, which is given by $x_a \mapsto y_a, y_b \mapsto -x_b, g \mapsto g$. Now let x_1, \ldots, x_r be a basis of \mathfrak{h}^* and y_1, \ldots, y_r a basis of \mathfrak{h} . Suppose $P = P(x_1, \ldots, x_r) \in (S\mathfrak{h}^*)^G$. Then we have

$$[y, P] = \frac{\partial}{\partial y} P \in S\mathfrak{h}^*, \text{ where } y \in \mathfrak{h},$$

(this follows from the fact that both sides act in the same way in the polynomial representation, which is faithful). So using the isomorphism μ , we conclude that if $Q \in (S\mathfrak{h})^G$, $Q = Q(y_1, \ldots, y_r)$, then $[x, Q] = -\partial_x Q$ for $x \in \mathfrak{h}^*$.

Now, to prove the proposition, the only thing we need to check is that M_{λ} is invariant under $x \in \mathfrak{h}^*$. For any $v \in M_{\lambda}$, we have $(Q - \lambda(Q))^N v = 0$ for some N. Then

$$(Q - \lambda(Q))^{N+1}xv = (N+1)\partial_x Q \cdot (Q - \lambda(Q))^N v = 0$$

So $xv \in M_{\lambda}$.

Corollary 3.17. We have the following decomposition:

$$\mathcal{O}_c(G,\mathfrak{h}) = \bigoplus_{\lambda \in \mathfrak{h}^*/G} \mathcal{O}_c(G,\mathfrak{h})_{\lambda},$$

where $\mathcal{O}_c(G,\mathfrak{h})_{\lambda}$ is the subcategory of modules where $(S\mathfrak{h})^G$ acts with generalized eigenvalue λ .

Proof. Directly from the definition and the proposition.

Note that $\mathcal{O}_c(G,\mathfrak{h})_{\lambda}$ is an abelian category closed under taking subquotients and extensions.

3.6. The grading element. Let

(3.2)
$$\mathbf{h} = \sum_{i} x_{i} y_{i} + \frac{1}{2} \dim \mathfrak{h} - \sum_{s \in \mathcal{S}} \frac{2c_{s}}{1 - \lambda_{s}} s.$$

Proposition 3.18. We have

$$[\mathbf{h}, x] = x, x \in \mathfrak{h}^*, \quad [\mathbf{h}, y] = -y, y \in \mathfrak{h}.$$
¹⁷

Proof. Let us prove the first relation; the second one is proved similarly. We have

$$[\mathbf{h}, x] = \sum_{i} x_{i}[y_{i}, x] - \sum_{s \in \mathcal{S}} \frac{2c_{s}}{1 - \lambda_{s}} \cdot \frac{\lambda_{s} - 1}{2} (\alpha_{s}^{\vee}, x) \alpha_{s} \cdot s$$

$$= \sum_{i} x_{i}(y_{i}, x) - \sum_{i} x_{i} \sum_{s \in \mathcal{S}} c_{s}(\alpha_{s}^{\vee}, x) (\alpha_{s}, y_{i}) s + \sum_{s \in \mathcal{S}} c_{s}(\alpha_{s}^{\vee}, x) \alpha_{s} \cdot s.$$

The last two terms cancel since $\sum_{i} x_i(\alpha_s, y_i) = \alpha_s$, so we get $\sum_{i} x_i(y_i, x) = x$.

Proposition 3.19. Let G = W be a real reflection group. Let

$$\mathbf{h} = \sum_{i} x_i y_i + \frac{1}{2} \dim \mathfrak{h} - \sum_{s \in \mathcal{S}} c_s s, \quad \mathbf{E} = -\frac{1}{2} \sum_{i} x_i^2, \quad \mathbf{F} = \frac{1}{2} \sum_{i} y_i^2$$

Then

(i)
$$\mathbf{h} = \sum_{i} (x_i y_i + y_i x_i)/2;$$

(ii) $\mathbf{h}, \mathbf{E}, \mathbf{F}$ form an \mathfrak{sl}_2 -triple

Proof. A direct calculation.

Theorem 3.20. Let M be a module over $H_{1,c}(G, \mathfrak{h})$.

- (i) If h acts locally nilpotently on M, then h acts locally finitely on M.
- (ii) If M is finitely generated over $S\mathfrak{h}^*$, then $M \in \mathcal{O}_c(G,\mathfrak{h})_0$ if and only if **h** acts locally finitely on M.

Proof. (i) Assume that $S\mathfrak{h}$ acts locally nilpotently on M. Let $v \in M$. Then $S\mathfrak{h} \cdot v$ is a finite dimensional vector space and let $d = \dim S\mathfrak{h} \cdot v$. We prove that v is **h**-finite by induction in dimension d. We can use d = 0 as base, so only need to do the induction step. The space $S\mathfrak{h} \cdot v$ must contain a nonzero vector u such that $y \cdot u = 0$, $\forall y \in \mathfrak{h}$. Let $U \subset M$ be the subspace of vectors with this property. **h** acts on U by an element of $\mathbb{C}G$, hence locally finitely. So it is sufficient to show that the image of v in $M/\langle U \rangle$ is **h**-finite (where $\langle U \rangle$ is the submodule generated by U). But this is true by the induction assumption, as u = 0 in $M/\langle U \rangle$.

(ii) We need to show that if **h** acts locally finitely on M, then \mathfrak{h} acts locally nilpotently on M. Assume **h** acts locally finitely on M. Then $M = \bigoplus_{\beta \in B} M[\beta]$, where $B \subset \mathbb{C}$. Since Mis finitely generated over $S\mathfrak{h}^*$, B is a finite union of sets of the form $z + \mathbb{Z}_{\geq 0}$, $z \in \mathbb{C}$. So $S\mathfrak{h}$ must act locally nilpotently on M.

We can obtain the following corollary easily.

Corollary 3.21. Any finite dimensional $H_{1,c}(G,\mathfrak{h})$ -module is in $\mathcal{O}_c(G,\mathfrak{h})_0$.

We see that any module $M \in \mathcal{O}_c(G, \mathfrak{h})_0$ has a grading by generalized eigenvalues of \mathbf{h} : $M = \bigoplus_{\beta} M[\beta].$

3.7. Standard modules. Let τ be a finite dimensional representation of G. The standard module over $H_{1,c}(G, \mathfrak{h})$ corresponding to τ (also called the Verma module) is

$$M_c(G,\mathfrak{h},\tau) = M_c(\tau) = H_{1,c}(G,\mathfrak{h}) \otimes_{\mathbb{C}G \ltimes S\mathfrak{h}} \tau \in \mathcal{O}_c(G,\mathfrak{h})_0,$$

where $S\mathfrak{h}$ acts on τ by zero.

So from the PBW theorem, we have that as vector spaces, $M_c(\tau) \cong \tau \otimes S\mathfrak{h}^*$.

Remark 3.22. More generally, $\forall \lambda \in \mathfrak{h}^*$, let $G_{\lambda} = \operatorname{Stab}(\lambda)$, and τ be a finite dimensional representation of G_{λ} . Then we can define $M_{c,\lambda}(G,\mathfrak{h},\tau) = H_{1,c}(G,\mathfrak{h}) \otimes_{\mathbb{C}G_{\lambda} \ltimes S\mathfrak{h}} \tau$, where $S\mathfrak{h}$ acts on τ by λ . These modules are called *the Whittaker modules*.

Let τ be irreducible, and let $h_c(\tau)$ be the number given by the formula

$$h_c(\tau) = \frac{\dim \mathfrak{h}}{2} - \sum_{s \in \mathcal{S}} \frac{2c_s}{1 - \lambda_s} s|_{\tau}.$$

Then we see that **h** acts on $\tau \otimes S^m \mathfrak{h}^*$ by the scalar $h_c(\tau) + m$.

Definition 3.23. A vector v in an $H_{1,c}$ -module M is singular if $y_i v = 0$ for all i.

Proposition 3.24. Let U be an $H_{1,c}(G, \mathfrak{h})$ -module. Let $\tau \subset U$ be a G-submodule consisting of singular vectors. Then there is a unique homomorphism $\phi : M_c(\tau) \to U$ of $\mathbb{C}[\mathfrak{h}]$ -modules such that $\phi|_{\tau}$ is the identity, and it is an $H_{1,c}$ -homomorphism.

Proof. The first statement follows from the fact that $M_c(\tau)$ is a free module over $\mathbb{C}[\mathfrak{h}]$ generated by τ . Also, it follows from the Frobenius reciprocity that there must exist a map ϕ which is an $H_{1,c}$ -homomorphism. This implies the proposition.

3.8. Finite length.

Proposition 3.25. $\exists K \in \mathbb{R}$ such that for any $M \subset N$ in $\mathcal{O}_c(G, \mathfrak{h})_0$, if $M[\beta] = N[\beta]$ for $\operatorname{Re}(\beta) \leq K$, then M = N.

Proof. Let $K = \max_{\tau} \operatorname{Re} h_c(\tau)$. Then if $M \neq N$, M/N begins in degree β_0 with $\operatorname{Re} \beta_0 > K$, which is impossible since by Proposition 3.24, β_0 must equal $h_c(\tau)$ for some τ .

Corollary 3.26. Any $M \in \mathcal{O}_c(G, \mathfrak{h})_0$ has finite length.

Proof. Directly from the proposition.

3.9. Characters. For $M \in \mathcal{O}_c(G, \mathfrak{h})_0$, define the character of M as the following formal series in t:

$$\operatorname{ch}_{M}(g,t) = \sum_{\beta} t^{\beta} \operatorname{Tr}_{M[\beta]}(g) = \operatorname{Tr}_{M}(gt^{\mathbf{h}}), \quad g \in G.$$

Proposition 3.27. We have

$$\operatorname{ch}_{M_c(\tau)}(g,t) = \frac{\chi_\tau(g)t^{h_c(\tau)}}{\operatorname{det}_{\mathfrak{h}^*}(1-tg)}$$

Proof. We begin with the following lemma.

Lemma 3.28 (MacMahon's Master theorem). Let V be a finite dimensional space, $A: V \rightarrow V$ a linear operator. Then

$$\sum_{n\geq 0} t^n \operatorname{Tr} \left(S^n A \right) = \frac{1}{\det(1-tA)}.$$

Proof of the lemma. If A is diagonalizable, this is obvious. The general statement follows by continuity. \Box

The lemma implies that $\operatorname{Tr}_{S\mathfrak{h}^*}(gt^D) = \frac{1}{\det(1-gt)}$ where D is the degree operator. This implies the required statement.

3.10. Irreducible modules. Let τ be an irreducible representation of G.

Proposition 3.29. $M_c(\tau)$ has a maximal proper submodule $J_c(\tau)$.

Proof. The proof is standard. $J_c(\tau)$ is the sum of all proper submodules of $M_c(\tau)$, and it is not equal to $M_c(\tau)$ because any proper submodule has a grading by generalized eigenspaces of **h**, with eigenvalues β such that $\beta - h_c(\tau) > 0$.

We define $L_c(\tau) = M_c(\tau)/J_c(\tau)$, which is an irreducible module.

Proposition 3.30. Any irreducible object of $\mathcal{O}_c(G,\mathfrak{h})_0$ has the form $L_c(\tau)$ for an unique τ .

Proof. Let $L \in \mathcal{O}_c(G, \mathfrak{h})_0$ be irreducible, with lowest eigenspace of \mathbf{h} containing an irreducible G-module τ . Then by Proposition 3.24, we have a nonzero homomorphism $M_c(\tau) \to L$, which is surjective, since L is irreducible. Then we must have $L = L_c(\tau)$.

Remark 3.31. Let χ be a character of G. Then we have an isomorphism $H_{1,c}(G, \mathfrak{h}) \to H_{1,c\chi}(G, \mathfrak{h})$, mapping $g \in G$ to $\chi^{-1}(g)g$. This automorphism maps $L_c(\tau)$ to $L_{c\chi}(\chi^{-1} \otimes \tau)$ isomorphically.

3.11. The contragredient module. Set $\bar{c}(s) = c(s^{-1})$. We have a natural isomorphism $\gamma: H_{1,\bar{c}}(G,\mathfrak{h}^*)^{\mathrm{op}} \to H_{1,c}(G,\mathfrak{h})$, acting trivially on \mathfrak{h} and \mathfrak{h}^* , and sending $g \in G$ to g^{-1} .

Thus if M is an $H_{1,c}(G, \mathfrak{h})$ -module, then the full dual space M^* is an $H_{1,\overline{c}}(M, \mathfrak{h}^*)$ -module. If $M \in \mathcal{O}_c(G, \mathfrak{h})_0$, then we can define M^{\dagger} , which is the **h**-finite part of M^* .

Proposition 3.32. M^{\dagger} belongs to $\mathcal{O}_{\bar{c}}(G, \mathfrak{h}^*)_0$.

Proof. Clearly, if L is irreducible, then so is L^{\dagger} . Then L^{\dagger} is generated by its lowest **h**eigenspace over $H_{1,\bar{c}}(G,\mathfrak{h}^*)$, hence over $S\mathfrak{h}^*$. Thus, $L^{\dagger} \in \mathcal{O}_{\bar{c}}(G,\mathfrak{h}^*)_0$. Now, let $M \in \mathcal{O}_c(G,\mathfrak{h})_0$ be any object. Since M has finite length, so does M^{\dagger} . Moreover, M^{\dagger} has a finite filtration with successive quotients of the form L^{\dagger} , where $L \in \mathcal{O}_c(G,\mathfrak{h})_0$ is irreducible. This implies the required statement, since $\mathcal{O}_c(G,\mathfrak{h})_0$ is closed under taking extensions.

Clearly, $M^{\dagger\dagger} = M$. Thus, $M \mapsto M^{\dagger}$ is an equivalence of categories $\mathcal{O}_c(G, \mathfrak{h}) \to \mathcal{O}_{\bar{c}}(G, \mathfrak{h}^*)^{\mathrm{op}}$.

3.12. The contravariant form. Let τ be an irreducible representation of G. By Proposition 3.24, we have a unique homomorphism $\phi : M_c(G, \mathfrak{h}, \tau) \to M_{\bar{c}}(G, \mathfrak{h}^*, \tau^*)^{\dagger}$ which is the identity in the lowest **h**-eigenspace. Thus, we have a pairing

$$\beta_c: M_c(G, \mathfrak{h}, \tau) \times M_{\overline{c}}(G, \mathfrak{h}^*, \tau^*) \to \mathbb{C},$$

which is called the contravariant form.

Remark 3.33. If G = W is a real reflection group, then $\mathfrak{h} \cong \mathfrak{h}^*$, $c = \overline{c}$, and $\tau \cong \tau^*$ via a symmetric form. So for real reflection groups, β_c is a symmetric form on $M_c(\tau)$.

Proposition 3.34. The maximal proper submodule $J_c(\tau)$ is the kernel of ϕ (or, equivalently, of the contravariant form β_c).

Proof. Let K be the kernel of the contravariant form. It suffices to show that $M_c(\tau)/K$ is irreducible. We have a diagram:

Indeed, a nonzero map ξ exists by Proposition 3.24, and it factors through $L_c(G, \mathfrak{h}, \tau)$, with η being an isomorphism, since $L_c(G, \mathfrak{h}^*, \tau^*)^{\dagger}$ is irreducible. Now, by Proposition 3.24 (uniqueness of ϕ), the diagram must commute up to scaling, which implies the statement. \Box

Proposition 3.35. Assume that $h_c(\tau) - h_c(\tau')$ never equals a positive integer for any $\tau, \tau' \in$ Irrep*G*. Then $\mathcal{O}_c(G, \mathfrak{h})_0$ is semisimple, with simple objects $M_c(\tau)$.

Proof. It is clear that in this situation, all $M_c(\tau)$ are simple. Also consider $\operatorname{Ext}^1(M_c(\tau), M_c(\tau'))$. If $h_c(\tau) - h_c(\tau') \notin \mathbb{Z}$, it is clearly 0. Otherwise, $h_c(\tau) = h_c(\tau')$, and again $\operatorname{Ext}^1(M_c(\tau), M_c(\tau')) = 0$, since for any extension

$$0 \to M_c(\tau') \to N \to M_c(\tau) \to 0$$

by Proposition 3.24 we have a splitting $M_c(\tau) \to N$.

Remark 3.36. In fact, our argument shows that if $\text{Ext}^1(M_c(\tau), M_c(\tau')) \neq 0$, then $h_c(\tau) - h_c(\tau') \in \mathbb{N}$.

3.13. The matrix of multiplicities. For $\tau, \sigma \in IrrepG$, write $\tau < \sigma$ if

$$\operatorname{Re} h_c(\sigma) - \operatorname{Re} h_c(\tau) \in \mathbb{N}.$$

Proposition 3.37. There exists a matrix of integers $N = (n_{\sigma,\tau})$, with $n_{\sigma,\tau} \ge 0$, such that $n_{\tau,\tau} = 1$, $n_{\sigma,\tau} = 0$ unless $\sigma < \tau$, and

$$M_c(\sigma) = \sum n_{\sigma,\tau} L_c(\tau) \in \mathcal{K}_0(\mathcal{O}_c(G,\mathfrak{h})_0).$$

Proof. This follows from the Jordan-Hölder theorem and the fact that objects in $\mathcal{O}_c(G, \mathfrak{h})_0$ have finite length.

Corollary 3.38. Let $N^{-1} = (\bar{n}_{\tau,\sigma})$. Then

$$L_c(\tau) = \sum \bar{n}_{\tau,\sigma} M_c(\sigma).$$

Corollary 3.39. We have

$$\operatorname{ch}_{L_c(\tau)}(g,t) = \frac{\sum \bar{n}_{\tau,\sigma} \chi_{\sigma}(g) t^{h_c(\tau)}}{\operatorname{det}_{\mathfrak{h}^*}(1-tg)}$$

Both of the corollaries can be obtained from the above proposition easily.

One of the main problems in the representation theory of rational Cherednik algebras is the following problem.

Problem: Compute the multiplicities $n_{\sigma,\tau}$ or, equivalently, ch_{$L_c(\tau)$} for all τ . In general, this problem is open.

3.14. Example: the rank 1 case. Let $G = \mathbb{Z}/m\mathbb{Z}$ and λ be an *m*-th primitive root of 1. Then the algebra $H_{1,c}(G, \mathfrak{h})$ is generated by x, y, s with relations

$$[y, x] = 1 - 2\sum_{j=1}^{m-1} c_j s^j, \quad sxs^{-1} = \lambda x, \quad sys^{-1} = \lambda^{-1}y.$$

Consider the one-dimensional space \mathbb{C} and let y act by 0 and $g \in G$ act by 1. We have $M_c(\mathbb{C}) = \mathbb{C}[x]$. The contravariant form $\beta_{c,\mathbb{C}}$ on $M_c(\mathbb{C})$ is defined by

$$\beta_{c,\mathbb{C}}(x^n, x^n) = a_n; \quad \beta_{c,\mathbb{C}}(x^n, x^{n'}) = 0, n \neq n'.$$

Recall that $\beta_{c,\mathbb{C}}$ satisfies $\beta_{c,\mathbb{C}}(x^n, x^n) = \beta_{c,\mathbb{C}}(x^{n-1}, yx^n)$, which gives

$$a_n = a_{n-1}(n - b_n),$$

where b_n are new parameters:

$$b_n := 2 \sum_{j=1}^{m-1} \frac{1 - \lambda^{jn}}{1 - \lambda^j} c_j \quad (b_0 = 0, b_{n+m} = b_n).$$

Thus we obtain the following proposition.

Proposition 3.40. (i) $M_c(\mathbb{C})$ is irreducible if only if $n - b_n \neq 0$ for any $n \geq 1$.

(ii) Assume that r is the smallest positive integer such that $r = b_r$. Then $L_c(\mathbb{C})$ has dimension r (which can be any number not divisible by m) with basis $1, x, \ldots, x^{r-1}$.

Remark 3.41. According to Remark 3.31, this proposition in fact describes all the irreducible lowest weight modules.

Example 3.42. Consider the case m = 2. The $M_c(\mathbb{C})$ is irreducible unless $c \in 1/2 + \mathbb{Z}_{\geq 0}$. If $c = (2n+1)/2 \in 1/2 + \mathbb{Z}$, $n \geq 0$, then $L_c(\mathbb{C})$ has dimension 2n + 1. A similar answer is obtained for lowest weight \mathbb{C}_- , replacing c by -c.

3.15. The Frobenius property. Let A be a \mathbb{Z}_+ -graded commutative algebra. The algebra A is called Frobenius if the top degree A[d] of A is 1-dimensional, and the multiplication map $A[m] \times A[d-m] \to A[d]$ is a nondegenerate pairing for any $0 \le m \le d$. In particular, the Hilbert polynomial of a Frobenius algebra A is palindromic.

Now, let us go back to considering modules over the rational Cherednik algebra $H_{1,c}$. Any submodule J of the polynomial representation $M_c(\mathbb{C}) = M_c = \mathbb{C}[\mathfrak{h}]$ is an ideal in $\mathbb{C}[\mathfrak{h}]$, so the quotient $A = M_c/J$ is a \mathbb{Z}_+ -graded commutative algebra.

Now suppose that G preserves an inner product in \mathfrak{h} , i.e., $G \subseteq O(\mathfrak{h})$.

Theorem 3.43. If $A = M_c(\mathbb{C})/J$ is finite dimensional, then A is irreducible $(A = L_c(\mathbb{C}))$ $\iff A$ is a Frobenius algebra.

Proof. 1) Suppose A is an irreducible $H_{1,c}$ -module, i.e., $A = L_c(\mathbb{C})$. By Proposition 3.19, A is naturally a finite dimensional \mathfrak{sl}_2 -module (in particular, it integrates to the group $\mathrm{SL}_2(\mathbb{C})$). Hence, by the representation theory of \mathfrak{sl}_2 , the top degree of A is 1-dimensional. Let $\phi \in A^*$ denote a nonzero linear function on the top component. Let β_c be the contravariant form on $M_c(\mathbb{C})$. Consider the form

$$(v_1, v_2) \mapsto E(v_1, v_2) := \beta_c(v_1, gv_2), \text{ where } g = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \mathrm{SL}_2(\mathbb{C}).$$

Then $E(xv_1, v_2) = E(v_1, xv_2)$. So for any $p, q \in M_c(\mathbb{C}) = \mathbb{C}[\mathfrak{h}], E(p,q) = \phi(p(x)q(x))$ (for a suitable normalization of ϕ).

Since E is a nondegenerate form, A is a Frobenius algebra.

2) Suppose A is Frobenius. Then the highest component is 1-dimensional, and $E: A \otimes A \to \mathbb{C}, E(a,b) = \phi(ab)$ is nondegenerate. We have E(xa,b) = E(a,xb). So set $\beta(a,b) = E(a,g^{-1}b)$. Then β satisfies $\beta(a,x_ib) = \beta(y_ia,b)$. Thus, for all $p,q \in \mathbb{C}[\mathfrak{h}], \beta(p(x),q(x)) = \beta(q(y)p(x),1)$. So $\beta = \beta_c$ up to scaling. Thus, β_c is nondegenerate and A is irreducible.

Remark 3.44. If $G \nsubseteq O(\mathfrak{h})$, this theorem is false, in general.

Now consider the Frobenius property of $L_c(\mathbb{C})$ for any $G \subset GL(\mathfrak{h})$.

Theorem 3.45. Let $U \subset M_c(\mathbb{C}) = \mathbb{C}[\mathfrak{h}]$ be a *G*-subrepresentation of dimension $l = \dim \mathfrak{h}$, sitting in degree r, which consists of singular vectors. Let $J = \langle U \rangle$. Assume that $A = M_c/J$ is finite dimensional. Then

- (i) A is Frobenius.
- (ii) A admits a BGG type resolution:

$$A \leftarrow M_c(\mathbb{C}) \leftarrow M_c(U) \leftarrow M_c(\wedge^2 U) \leftarrow \cdots \leftarrow M_c(\wedge^l U) \leftarrow 0.$$

(iii) The character of A is given by the formula

$$\chi_A(g,t) = t^{\frac{l}{2} - \sum_{s \in \mathcal{S}} \frac{2c_s}{1 - \lambda_s}} \frac{\det_U(1 - gt^r)}{\det_{\mathfrak{h}^*}(1 - gt)}.$$

In particular, dim $A = r^l$.

(iv) If G preserves an inner product, then A is irreducible.

Proof. (i) Since Spec A is a complete intersection, A is Frobenius.

(ii) We will use the following theorem:

Theorem 3.46 (Serre). Let $f_1, \ldots, f_n \in \mathbb{C}[t_1, \ldots, t_n]$ be homogeneous polynomials, and assume that $\mathbb{C}[t_1, \ldots, t_n]$ is a finitely generated module over $\mathbb{C}[f_1, \ldots, f_n]$. Then this is a free module.

Consider $SU \subset S\mathfrak{h}^*$. Then $S\mathfrak{h}^*$ is a finitely generated SU-module (as $S\mathfrak{h}^*/\langle U \rangle$ is finite dimensional). By Serre's theorem, we know that $S\mathfrak{h}^*$ is a free SU-module. The rank of this module is r^l . Consider the Koszul complex attached to this module. Since the module is free, the Koszul complex is exact (i.e., it is a resolution of the zero fiber). At the level of SU-modules, it looks exactly like we want in (3.45).

So we only need to show that the maps of the resolution are morphisms over $H_{1,c}$. This is shown by induction. Namely, let $\delta_j : M_c(\wedge^j U) \to M_c(\wedge^{j-1}U)$ be the corresponding differentials (so that $\delta_0 : M_c(\mathbb{C}) \to A$ is the projection). Then δ_0 is an $H_{1,c}$ -morphism, which is the base of induction. If δ_j is an $H_{1,c}$ -morphism, then the kernel of δ_j is a submodule $K_j \subset M_c(\wedge^j U)$. Its lowest degree part is $\wedge^{j+1}U$ sitting in degree (j+1)r and consisting of singular vectors. Now, δ_{j+1} is a morphism over $S\mathfrak{h}^*$ which maps $\wedge^{j+1}U$ identically to itself. By Proposition 3.24, there is only one such morphism, and it must be an $H_{1,c}$ -morphism. This completes the induction step.

(iii) follows from (ii) by the Euler-Poincaré formula.

(iv) follows from Theorem 3.43.

3.16. Representations of $H_{1,c}$ of type A. Let us now apply the above results to the case of type A. We will follow the paper [CE].

Let $G = \mathfrak{S}_n$, and \mathfrak{h} be its reflection representation. In this case the function c reduces to one number. We will denote the rational Cherednik algebra $H_{1,c}(\mathfrak{S}_n)$ by $H_c(n)$. It is generated by $x_1, \ldots, x_n, y_1, \ldots, y_n$ and $\mathbb{C}\mathfrak{S}_n$ with the following relations:

$$\sum y_i = 0, \quad \sum x_i = 0, \quad [y_i, x_j] = -\frac{1}{n} + cs_{ij}, i \neq j,$$

$$[y_i, x_i] = \frac{n-1}{n} - c \sum_{j \neq i} s_{ij}$$

The polynomial representation $M_c(\mathbb{C})$ of this algebra is the space of $\mathbb{C}[x_1, \ldots, x_n]^T$ of polynomials of x_1, \ldots, x_n , which are invariant under simultaneous translation $T : x_i \mapsto x_i + a$. In other words, it is the space of regular functions on $\mathfrak{h} = \mathbb{C}^n / \Delta$, where Δ is the diagonal.

Proposition 3.47 (C. Dunkl). Let r be a positive integer not divisible by n, and c = r/n. Then $M_c(\mathbb{C})$ contains a copy of the reflection representation \mathfrak{h} of \mathfrak{S}_n , which consists of singular vectors (i.e. those killed by $y \in \mathfrak{h}$). This copy sits in degree r and is spanned by the functions

$$f_i(x_1,\ldots,x_n) = \operatorname{Res}_{\infty}[(z-x_1)\cdots(z-x_n)]^{\frac{r}{n}}\frac{\mathrm{d}z}{z-x_i}$$

(the symbol $\operatorname{Res}_{\infty}$ denotes the residue at infinity).

Remark 3.48. The space spanned by f_i is (n-1)-dimensional, since $\sum_i f_i = 0$ (this sum is the residue of an exact differential).

Proof. This proposition can be proved by a straightforward computation. The functions f_i are a special case of Jack polynomials.

Let I_c be the submodule of $M_c(\mathbb{C})$ generated by f_i . Consider the $H_c(n)$ -module $V_c = M_c(\mathbb{C})/I_c$, and regard it as a $\mathbb{C}[\mathfrak{h}]$ -module. We have the following results.

Theorem 3.49. Let d = (r, n) denote the greatest common divisor of r and n. Then the (set-theoretical) support of V_c is the union of \mathfrak{S}_n -translates of the subspaces of \mathbb{C}^n/Δ , defined by the equations

 $x_1 = x_2 = \dots = x_{\frac{n}{d}}; \quad x_{\frac{n}{d}+1} = \dots = x_{2\frac{n}{d}}; \quad \dots \quad x_{(d-1)\frac{n}{d}+1} = \dots = x_n.$

In particular, the Gelfand-Kirillov dimension of V_c is d-1.

Corollary 3.50 ([BEG]). If d = 1 then the module V_c is finite dimensional, irreducible, admits a BGG type resolution, and its character is

$$\chi_{V_c}(g,t) = t^{(1-r)(n-1)/2} \frac{\det|_{\mathfrak{h}}(1-gt^r)}{\det|_{\mathfrak{h}}(1-gt)}.$$

Proof. For d = 1 Theorem 3.49 says that the support of $M_c(\mathbb{C})/I_c$ is $\{0\}$. This implies that $M_c(\mathbb{C})/I_c$ is finite dimensional. The rest follows from Theorem 3.45.

Proof of Theorem 3.49. The support of V_c is the zero set of I_c , i.e. the common zero set of

$$f_i$$
. Fix $x_1, \dots, x_n \in \mathbb{C}$. Then $f_i(x_1, \dots, x_n) = 0$ for all i iff $\sum_{i=1} \lambda_i f_i = 0$ for all λ_i , i.e.
 $\operatorname{Res}_{\infty} \left(\prod_{j=1}^n (z - x_j)^{\frac{r}{n}} \sum_{i=1}^n \frac{\lambda_i}{z - x_i} \right) \mathrm{d}z = 0.$

Assume that x_1, \ldots, x_n take distinct values y_1, \ldots, y_p with positive multiplicities m_1, \ldots, m_p . The previous equation implies that the point (x_1, \ldots, x_n) is in the zero set iff

$$\operatorname{Res}_{\infty} \prod_{j=1}^{p} (z-y_j)^{m_j \frac{r}{n}-1} \left(\sum_{i=1}^{p} \nu_i (z-y_1) \cdots (\widehat{z-y_i}) \cdots (z-y_p) \right) \mathrm{d}z = 0 \quad \forall \nu_i.$$

Since ν_i are arbitrary, this is equivalent to the condition

$$\operatorname{Res}_{\infty} \prod_{j=1}^{p} (z - y_j)^{m_j \frac{r}{n} - 1} z^i \mathrm{d}z = 0, \quad i = 0, \dots, p - 1.$$

We will now need the following lemma.

Lemma 3.51. Let
$$a(z) = \prod_{j=1}^{p} (z-y_j)^{\mu_j}$$
, where $\mu_j \in \mathbb{C}$, $\sum_j \mu_j \in \mathbb{Z}$ and $\sum_j \mu_j > -p$. Suppose
 $\operatorname{Res}_{\infty} a(z) z^i \mathrm{d} z = 0$, $i = 0, 1, \dots, p-2$.

Then a(z) is a polynomial.

Proof. Let g(z) be a polynomial. Then

$$0 = \operatorname{Res}_{\infty} d(g(z) \cdot a(z)) = \operatorname{Res}_{\infty}(g'(z)a(z) + a'(z)g(z))dz,$$

and hence

$$\operatorname{Res}_{\infty}\left(g'(z) + \sum_{i} \frac{\mu_{j}}{z - y_{j}}g(z)\right)a(z)\mathrm{d}z = 0.$$

Let $g(z) = z^l \prod_j (z - y_j)$. Then $g'(z) + \sum_j \frac{\mu_j}{z - y_j} g(z)$ is a polynomial of degree l + p - 1with highest coefficient $l + p + \sum_j \mu_j \neq 0$ (as $\sum_j \mu_j > -p$). This means that for every $l \ge 0$,

with highest coefficient $l + p + \sum \mu_j \neq 0$ (as $\sum \mu_j > -p$). This means that for every $l \geq 0$, $\operatorname{Res}_{\infty} z^{l+p-1} a(z) dz$ is a linear combination of residues of $z^q a(z) dz$ with q < l + p - 1. By the assumption of the lemma, this implies by induction in l that all such residues are 0 and hence a is a polynomial.

In our case $\sum (m_j r/n - 1) = r - p$ (since $\sum m_j = n$) and the conditions of the lemma are satisfied. Hence (x_1, \ldots, x_n) is in the zero set of I_c iff $\prod_{j=1}^p (z - y_j)^{m_j \frac{r}{n} - 1}$ is a polynomial. This

is equivalent to saying that all m_j are divisible by n/d.

We have proved that (x_1, \ldots, x_n) is in the zero set of I_c if and only if $(z - x_1) \cdots (z - x_n)$ is the (n/d)-th power of a polynomial of degree d. This implies the theorem.

Remark 3.52. For c > 0, the above representations are the only irreducible finite dimensional representations of $H_{1,c}(\mathfrak{S}_n)$. Namely, it is proved in [BEG] that the only finite dimensional representations of $H_{1,c}(\mathfrak{S}_n)$ are multiples of $L_c(\mathbb{C})$ for c = r/n, and of $L_c(\mathbb{C}_-)$ (where \mathbb{C}_- is the sign representation) for c = -r/n, where r is a positive integer relatively prime to n.

3.17. Notes. The discussion of the definition of rational Cherednik algebras and their basic properties follows Section 7 of [E4]. The discussion of the category \mathcal{O} for rational Cherednik algebras follows Section 11 of [E4]. The material in Sections 3.14-3.16 is borrowed from [CE].

18.735 Double Affine Hecke Algebras in Representation Theory, Combinatorics, Geometry, and Mathematical Physics Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.