8. SYMPLECTIC REFLECTION ALGEBRAS

8.1. The definition of symplectic reflection algebras. Rational Cherednik algebras for
finite Coxeter groups are a special case of a wider class of algebras called symplectic reflection
algebras. To define them, let V' be a finite dimensional symplectic vector space over C with
a symplectic form w, and G be a finite group acting symplectically (linearly) on V. For
simplicity let us assume that (A?V*)¥ = Cw (i.e., V is symplectically irreducible) and that
G acts faithfully on V' (these assumptions are not important, and essentially not restrictive).

Definition 8.1. A symplectic reflection in G is an element ¢ such that the rank of the
operator 1 — g on V is 2.

If s is a symplectic reflection, then let w,(z,y) be the form w applied to the projections of
x,1y to the image of 1 — s along the kernel of 1 — s; thus wy is a skewsymmetric form of rank
2on V.

Let S C G be the set of symplectic reflections, and ¢ : § — C be a function which is
invariant under the action of G. Let t € C.

Definition 8.2. The symplectic reflection algebra H;. = H;.[G,V] is the quotient of the
algebra C|[G| x T(V') by the ideal generated by the relation

(8.1) [z, y] = tw(x,y) — 2 chws(:c,y)s.
sES

Example 8.3. Let W be a finite Coxeter group with reflection representation h. We can set
V=bdb*" wz,2)=wlyy) =0 wy,z)=(y,z), for z,2" € h* and y,y’ € h. In this case

(1) symplectic reflections are the usual reflections in W;

(2) ws(z,2) = ws(y,y') = 0, ws(y, ) = (y, s) (), ) /2.
Thus, H..[G,h @& b*] coincides with the rational Cherednik algebra H,.(G,bh) defined in
Section 3.

Example 8.4. Let T’ be a finite subgroup of SLy(C), and V' = C? be the tautological
representation, with its standard symplectic form. Then all nontrivial elements of I" are
symplectic reflections, and for any symplectic reflection s, w, = w. So the main commutation
relation of H, .[I', V] takes the form

[y, ] =t — Z 2¢,49.

g€l g#1

Example 8.5. (Wreath products) Let I' be as in the previous example, G = &,, x I'", and
V = (C?)". Then symplectic reflections are conjugates (g, 1,...,1), g € T', g # 1, and also
conmjugates of transpositions in &,, (so there is one more conjugacy class of reflections than
in the previous example).

Note also that for any V, G, Hoo|G,V] = G x SV, and H, (|G, V] = G x Weyl(V), where
Weyl(V) is the Weyl algebra of V', i.e. the quotient of the tensor algebra T (V) by the
relation zy — yr = w(z,y), x,y € V.

8.2. The PBW theorem for symplectic reflection algebras. To ensure that the sym-
plectic reflection algebras H;. have good properties, we need to prove a PBW theorem for
them, which is an analog of Proposition 3.5. This is done in the following theorem, which

also explains the special role played by symplectic reflections.
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Theorem 8.6. Let k : A2V — C[G] be a linear G-equivariant function. Define the algebra
H.. to be the quotient of the algebra C[G]x T(V') by the relation [z,y] = k(z,y), v,y € V. Put
an increasing filtration on H,, by setting deg(V') = 1, deg(G) = 0, and define § : CGx SV —
grH, to be the natural surjective homomorphism. Then & is an isomorphism if and only if k
has the form
k(z,y) = tw(z,y) — 2 Z csws(x,y)s,

seS

for some t € C and G-invariant function ¢ : S — C.

Unfortunately, for a general symplectic reflection algebra we don’t have a Dunkl operator
representation, so the proof of the more difficult “if” part of this Theorem is not as easy
as the proof of Proposition 3.5. Instead of explicit computations with Dunkl operators, it
makes use of the deformation theory of Koszul algebras, which we will now discuss.

8.3. Koszul algebras. Let R be a finite dimensional semisimple algebra (over C). Let A
be a Z,-graded algebra, such that A[0] = R, and assume that the graded components of A
are finite dimensional.

Definition 8.7. (i) The algebra A is said to be quadratic if it is generated over R by
A[l], and has defining relations in degree 2.
(ii) A is Koszul if all elements of Ext’(R, R) (where R is the augmentation module over
A) have grade degree precisely i.

Remark 8.8. (1) Thus, in a quadratic algebra, A[2] = A[l] ®g A[1]/E, where E is the
subspace (R-subbimodule) of relations.
(2) It is easy to show that a Koszul algebra is quadratic, since the condition to be
quadratic is just the Koszulity condition for ¢ = 1, 2.

Now let Ay be a quadratic algebra, Ag[0] = R. Let Ey be the space of relations for Ag. Let
E C Ao[l] ®@g Ao[1][[R]] be a free (over C[[A]]) R-subbimodule which reduces to Ey modulo &
(“deformation of the relations”). Let A be the (h-adically complete) algebra generated over
RI[[h]] by A[l] = A[1][[A]] with the space of defining relations E. Thus A is a Z,-graded
algebra.

The following very important theorem is due to Beilinson, Ginzburg, and Soergel, [BGS]
(less general versions appeared earlier in the works of Drinfeld [Dr], Polishchuk-Positselski
[PP], Braverman-Gaitsgory [BGJ). We will not give its proof.

Theorem 8.9 (Koszul deformation principle). If Aq is Koszul then A is a topologically free
C[[h]] module if and only if so is A[3].

Remark. Note that A[i] for i < 3 are obviously topologically free.
We will now apply this theorem to the proof of Theorem 8.6.

8.4. Proof of Theorem 8.6. Let x : A’V — C[G] be a linear G-equivariant map. We write
K(2,Y) = 3 e Fg(T,y)g, where ky(z,y) € A*V*. To apply Theorem 8.9, let us homogenize
our algebras. Namely, let Ay = (CG x SV) ® Clu| (where u has degree 1). Also let & be a
formal parameter, and consider the deformation A = Hj,z2,. of Ag. That is, A is the quotient
of G x T(V)[u][[A]] by the relations [z,y] = hu’k(z,y). This is a deformation of the type

considered in Theorem 8.9, and it is easy to see that its flatness in A is equivalent to Theorem
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8.6. Also, the algebra Ag is Koszul, because the polynomial algebra SV is a Koszul algebra.
Thus by Theorem 8.9, it suffices to show that A is flat in degree 3.
The flatness condition in degree 3 is “the Jacobi identity”

[k(x,y), 2] + [r(y, 2), 2] + [k(z,2), ] = O,
which must be satisfied in CG x V. In components, this equation transforms into the system
of equations
tg(2,y)(2 = 29) + Kg(y, 2)(x — 29) + Ky(2,2)(y —y?) = 0
for every g € G (here 29 denotes the result of the action of g on z).

This equation, in particular, implies that if z,y, g are such that x,(x,y) # 0 then for any
z €V z— 29 is a linear combination of z — 2% and y — y9. Thus x,(z,y) is identically zero
unless the rank of (1 — g)|y is at most 2, i.e. g = 1 or g is a symplectic reflection.

If g = 1 then k,(z,y) has to be G-invariant, so it must be of the form tw(z,y), where
teC.

If g is a symplectic reflection, then r,(x,y) must be zero for any x such that x — 29 = 0.
Indeed, if for such an z there had existed y with k4(x,y) # 0 then z — 29 for any z would
be a multiple of y — 9, which is impossible since Im(1 — g)|y is 2-dimensional. This implies
that k,(z,y) = 2c,w,(z, y), and ¢, must be invariant.

Thus we have shown that if A is flat (in degree 3) then s must have the form given in
Theorem 8.6. Conversely, it is easy to see that if x does have such form, then the Jacobi
identity holds. So Theorem 8.6 is proved.

8.5. The spherical subalgebra of the symplectic reflection algebra. The properties of
symplectic reflection algebras are similar to the properties of rational Cherednik algebras we
have studied before. The main difference is that we no longer have the Dunkl representation
and localization results, so some proofs are based on different ideas and are more complicated.

The spherical subalgebra of the symplectic reflection algebra is defined in the same way
as in the Cherednik algebra case. Namely, let e = |G|~ dec g, and B, = eH, ce.

Proposition 8.10. B, . is commutative if and only if t = 0.

Proof. Let A be a Z -filtered algebra. If A is not commutative, then we can define a nonzero
Poisson bracket on grA in the following way. Let m be the minimum of deg(a) + deg(b) —
deg([a, b]) (over a,b € A such that [a,b] # 0). Then for homogeneous elements ag, by € Ay of
degrees p, q, we can define {ag, by} to be the image in Ag[p + ¢ — m] of [a,b], where a, b are
any lifts of ag, by to A. It is easy to check that {-,-} is a Poisson bracket on Ay of degree
—m.

Let us now apply this construction to the filtered algebra A = B;.. We have gr(A) =
Ao - (SV)G

Lemma 8.11. Ay has a unique, up to scaling, Poisson bracket of degree —2, and no nonzero
Poisson brackets of degrees < —2.

Proof. A Poisson bracket on (SV)% is the same thing as a Poisson bracket on the variety
V*/G. On the smooth part (V*/G)s of V*/G, it is simply a bivector field, and we can lift
it to a bivector field on the preimage V' of (V*/G)s in V*, which is the set of points in V'
with trivial stabilizers. But the codimension on V*\ V;* in V* is 2 (as V* \ V" is a union

of symplectic subspaces), so the bivector on V;* extends to a regular bivector on V*. So if
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this bivector is homogeneous, it must have degree > —2, and if it has degree —2 then it
must be with constant coefficients, so being G-invariant, it is a multiple of w. The lemma is
proved. O

Now, for each t, ¢ we have a natural Poisson bracket on Aj of degree —2, which depends
linearly on ¢, c. So by the lemma, this bracket has to be of the form f(¢, ¢)Il, where II is the
unique up to scaling Poisson bracket of degree —2, and f a homogeneous linear function.
Thus the algebra A = By, is not commutative unless f(¢,c¢) = 0. On the other hand, if
f(t,c) = 0, and B;. is not commutative, then, as we've shown, Ay has a nonzero Poisson
bracket of degree < —2. But By Lemma 8.11, there is no such brackets. So B;. must be
commutative if f(¢,c) = 0.

It remains to show that f(t, c) is in fact a nonzero multiple of ¢. First note that f(1,0) # 0,
since Bjp is definitely noncommutative. Next, let us take a point (¢,c) such that B;,. is
commutative. Look at the H; .-module H; .e, which has a commuting action of B;. from the
right. Its associated graded is SV as an (CG x SV, (SV)%)-bimodule, which implies that
the generic fiber of H, e as a B;.-module is the regular representation of G. So we have a
family of finite dimensional representations of H;. on the fibers of H, e, all realized in the
regular representation of G. Computing the trace of the main commutation relation (8.1) of
H; . in this representation, we obtain that t = 0 (since Tr (s) = 0 for any reflection s). The
proposition is proved. 0

Note that By, has no zero divisors, since its associated graded algebra (SV)¢ does not.
Thus, like in the Cherednik algebra case, we can define a Poisson variety M., the spectrum
of By, called the Calogero-Moser space of G, V. Moreover, the algebra B, := By, over CIA]
is an algebraic quantization of M..

8.6. The center of the symplectic reflection algebra H, .. Consider the bimodule H, e,
which has a left action of H;. and a right commuting action of B;.. It is obvious that
Endy, H;ce = By (with opposite product). The following theorem shows that the bimodule
H;.e has the double centralizer property (i.e., Endg, H;ce = Hie).

Note that we have a natural map & . : H;. — Endg, H; ce.

Theorem 8.12. & . is an isomorphism for any t,c.

Proof. The complete proof is given [EG]. We will give the main ideas of the proof skipping
straightforward technical details. The first step is to show that the result is true in the
graded case, (t,c) = (0,0). To do so, note the following easy lemma:

Lemma 8.13. If X is an affine complex algebraic variety with algebra of functions Ox and
G a finite group acting freely on X then the natural map £x : G x Ox — EndogOX s an
isomorphism.

Therefore, the map §yo : G x SV — Endg1)c(SV) is injective, and moreover becomes an
isomorphism after localization to the field of quotients C(V*)¥. To show it’s surjective, take
a € Endgy)c(SV). There exists a’ € G x C(V*) which maps to a. Moreover, by Lemma
8.13, a’ can have poles only at fixed points of G on V*. But these fixed points form a subset
of codimension > 2, so there can be no poles and we are done in the case (¢,¢) = (0,0).

Now note that the algebra Endg, H;.e has an increasing integer filtration (bounded be-

low) induced by the filtration on H; .. This is due to the fact that H, e is a finitely generated
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eH; .e-module (since it is true in the associated graded situation, by Hilbert’s theorem about
invariants). Also, the natural map grkndg, Hi.e — Endgs, grH; e is clearly injective.
Therefore, our result in the case (¢,¢) = (0,0) implies that this map is actually an iso-
morphism (as so is its composition with the associated graded of & ). Identifying the two
algebras by this isomorphism, we find that gr(&..) = & 0. Since & is an isomorphism, &; .
is an isomorphism for all ¢, ¢, as desired. 2 [l

Denote by Z, . the center of the symplectic reflection algebra H;.. We have the following
theorem.

Theorem 8.14. If t # 0, the center of H,. is trivial. Ift = 0, we have grZy. = Zoo. In
particular, Hy . is finitely generated over its center.

Proof. The t # 0 case was proved by Brown and Gordon [BGo] as follows. If ¢ # 0, we have
grZ;. C Zoo = (SV)%. Also, we have a map

Tie ' Lie — Bie =eHice, 21— ze =eze.

The map 7. is injective since gr(m ) is injective. In particular, the image of gr(7.) is
contained in Z(By.), the center of B;.. Thus it is enough to show that Z(B,) is trivial. To
show this, note that grZ(B;.) is contained in the Poisson center of By which is trivial. So
Z(By,) is trivial.

Now suppose t = 0. We need to show that gr(m.) : gr(Zo.) — Zoo is an isomorphism It
suffices to show that 7y, is an isomorphism. To show this, we construct 7'0 < i Boe— 2o, as
follows.

For any b € By, since By, is commutative, we have an element be Endg, .(Ho. ce) which

is defined as the right multiplication by b. From Theorem 8.12, be Ho,.. Moreover, beZ, c
since it commutes with Hy . as a linear operator on the faithful Hy .-module Hy ce. So be Zye.

It is easy to see that be = b. So we can set b = 7o, 1 (b) which defines the inverse map to

TO,C |:|

8.7. A review of deformation theory. Now we would like to explain that symplectic
reflection algebras are the most general deformations of algebras of the from G x Weyl (V).
Before we do so, we give a brief review of classical deformation theory of associative algebras.

8.7.1. Formal deformations of associative algebras. Let Ag be an associative algebra with
unit over C. Denote by py the multiplication in A.

Definition 8.15. A (flat) formal n-parameter deformation of Ay is an algebra A over
C[[h]] = C[[A1,...,h,]] which is topologically free as a C[[A]]-module, together with an
algebra isomorphism 7 : A/mA — Ay where m = (hy, ..., h,) is the maximal ideal in C[[A]].

When no confusion is possible, we will call A a deformation of Ay (omitting “formal”).
Let us restrict ourselves to one-parameter deformations with parameter h. Let us choose
an identification n : A — Ao[[A]] as C[[h]]-modules, such that 7 = 1y modulo A. Then the

2Here we use the fact that the filtration is bounded from below. In the case of an unbounded filtration,

it is possible for a map not to be an isomorphism if its associated graded is an isomorphism. An example of

this is the operator of multiplication by 1 + ¢! in the space of Laurent polynomials in ¢, filtered by degree.
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product in A is completely determined by the product of elements of Ay, which has the form
of a “star-product”

a,0) = axb= po(a,b) + by (a,b) + K*pa(a,0) +-- -,
where ;1 Ag ® Ag — Ap are linear maps, and po(a,b) = ab.
8.7.2. Hochschild cohomology. The main tool in deformation theory of associative algebras
is Hochschild cohomology. Let us recall its definition.
Let A be an associative algebra. Let M be a bimodule over A. A Hochschild n-cochain of

A with coefficients in M is a linear map A®™ — M. The space of such cochains is denoted
by C"(A, M). The differential d : C"(A, M) — C""1(A, M) is defined by the formula

df(ay,...,ane1) = flar, ... an)an41 — flar, ..., anan1) + flar, ..., an_10y, Gpi1)
— - (D) farag, - anga) + (1) ar f(ag, . ang).
It is easy to show that d? = 0.

Definition 8.16. The Hochschild cohomology HH®*(A, M) is defined to be the cohomology
of the complex (C*(A, M), d).

Proposition 8.17. One has a natural isomorphism
HHi(Av M) - Ethﬁlfbimod<A7 M)?
where A—bimod denotes the category of A-bimodules.

Proof. The proof is obtained immediately by considering the bar resolution of the bimodule

A:
o ARARA - ARA— A,

where the bimodule structure on A®™ is given by
blar ®ax @ -+ ®ap)c =ba; ® a @ - -+ @ anc,
and the map 0, : A®" — A®"~1 is given by the formula

Op(a1 ®ag® ... Qa,) =a100Q - Qa, — -+ (—1)"a; @ - @ ap_10a,.

Note that we have the associative Yoneda product
HH'(A, M) @ HH? (A, N) — HH" (A, M ®4 N),

induced by tensoring of cochains.

If M = A, the algebra itself, then we will denote HH*(A, M) by HH®*(A). For example,
HH(A) is the center of A, and HH'(A) is the quotient of the Lie algebra of derivations of A
by inner derivations. The Yoneda product induces a graded algebra structure on HH®(A); it

can be shown that this algebra is supercommutative.
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8.7.3. Hochschild cohomology and deformations. Let Ay be an algebra, and let us look for
1-parameter deformations A = Ap[[h]] of Ag. Thus, we look for such series p which satisfy
the associativity equation, modulo the automorphisms of the C[[h]]-module Ag[[A]] which are
the identity modulo A. 3

The associativity equation g o (u ® Id) = po (Id ® ) reduces to a hierarchy of linear
equations:

Z#S(H’N—S(a” b)’ C) = Z :uS(a’ :uN—S(b7 C))

(These equations are linear in py if p;, i < N, are known).
To study these equations, one can use Hochschild cohomology. Namely, we have the
following standard facts (due to Gerstenhaber, [Gel), which can be checked directly.

(1) The linear equation for p; says that p; is a Hochschild 2-cocycle. Thus algebra struc-
tures on Ag[h]/h? deforming sy are parametrized by the space Z%(Ay) of Hochschild
2-cocycles of Ay with values in M = Aj.

(2) If py, py are two 2-cocycles such that pq — 1} is a coboundary, then the algebra struc-
tures on Ag[h]/h? corresponding to p; and p) are equivalent by a transformation of
Ao[h]/H? that equals the identity modulo ki, and vice versa. Thus equivalence classes
of multiplications on Ag[h]/h? deforming po are parametrized by the cohomology
HH?(Ay).

(3) The linear equation for uy says that duy is a certain quadratic expression by in
[, .-, y—1. This expression is always a Hochschild 3-cocycle, and the equation is
solvable if and only if it is a coboundary. Thus the cohomology class of by in HH?(4,)
is the only obstruction to solving this equation.

8.7.4. Universal deformation. In particular, if HH?(Ag) = 0 then the equation for s, can be
solved for all n, and for each n the freedom in choosing the solution, modulo equivalences,
is the space H = HH?(Ap). Thus there exists an algebra structure over C[[H]] on the space
A, = Ag[[H]] of formal functions from H to Ag, a,b+— p,(a,b) € Ag[[H]], (a,b € Ap), such
that p,(a,b)(0) = ab € Ay, and every l-parameter flat formal deformation A of Aq is given
by the formula p(a,b)(h) = p.(a,b)(y(h)) for a unique formal series v € hH[[h]], with the
property that +/(0) is the cohomology class of the cocycle ;.

Such an algebra A, is called a universal deformation of Ay. It is unique up to an isomor-
phism (which may involve an automorphism of C[[H]]). *

Thus in the case HH?*(Ay) = 0, deformation theory allows us to completely classify 1-
parameter flat formal deformations of Ay. In particular, we see that the “moduli space”
parametrizing formal deformations of A is a smooth space — it is the formal neighborhood
of zero in H.

If HH?(Ap) is nonzero then in general the universal deformation parametrized by H does
not exist, as there are obstructions to deformations. In this case, the moduli space of

3Note that we don’t have to worry about the existence of a unit in A since a formal deformation of an
algebra with unit always has a unit.

In spite of the universal property of A, it may happen that there is an isomorphism between the algebras
A' and A? corresponding to different paths v; (h),y2(h) (of course, reducing to a nontrivial automorphism of
Ay modulo #). For this reason, sometimes A, is called a semiuniversal, rather than universal, deformation
of Ao.
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deformations will be a closed subscheme of the formal neighborhood of zero in H, which
is often singular. On the other hand, even when HH?(A4,) # 0, the universal deformation
parametrized by (the formal neighborhood of zero in) H may exist (although its existence
may be more difficult to prove than in the vanishing case). In this case one says that the
deformations of Ay are unobstructed (since all obstructions vanish even though the space of
obstructions doesn’t).

8.8. Deformation-theoretic interpretation of symplectic reflection algebras. Let V'
be a symplectic vector space (over C) and Weyl(V') the Weyl algebra of V. Let G be a finite
group acting symplectically on V. Then from the definition, we have

AO = Hl,O[G7 V] =G KX Weyl(V)
Let us calculate the Hochschild cohomology of this algebra.
Theorem 8.18 (Alev, Farinati, Lambre, Solotar, [AFLS|). The cohomology space

HH (G x Weyl(V)) is naturally isomorphic to the space of conjugation invariant functions
on the set S; of elements g € G such that rank (1 — g)|y = .

Corollary 8.19. The odd cohomology of G x Weyl(V) vanishes, and HH*(G x Weyl(V))
is the space C[S]¢ of conjugation invariant functions on the set of symplectic reflections. In
particular, there exists a universal deformation A of Ay = G x Weyl(V) parametrized by

C[S]“.
Proof. Directly from the theorem. 0
Proof of Theorem 8.18.
Lemma 8.20. Let B be a C-algebra together with an action of a finite group G. Then
HH*(G x B,G x B) = (P HH*(B, By))“,
geG

where Bg is the bimodule isomorphic to B as a space where the left action of B is the usual
one and the right action is the usual action twisted by g.

Proof. The algebra G x B is a projective B-module. Therefore, using the Shapiro lemma,
we get
HH*(G X _B7 G X B) == EXt){GXG)IX(B@BOP)(G X B, G X B)
= Extg,.  xpepr)(B,G X B) = Extpgpe(B, G x B)¢
= (D Extiepe (B, Bg)¢ = (@D HH*(B, By))°,
geG geG
as desired. 0
Now apply the lemma to B = Weyl(V). For this we need to calculate HH*(B, Byg),

where g is any element of G. We may assume that g is diagonal in some symplectic basis:
g =diag(A\;, A\7%, ..., A, AY). Then by the Kiinneth formula we find that

HH*(B, Bg) = Q) HH" (A1, A1gy),

i=1
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where A; is the Weyl algebra of the 2-dimensional space, (generated by z,y with defining
relation ry — yz = 1), and g; = diag(\;, \; 1).
Thus we need to calculate HH*(B, Bg), B = A, g = diag(A\, \71).

Proposition 8.21. HH*(B, Byg) is 1-dimensional, concentrated in degree 0 if A =1 and in
degree 2 otherwise.

Proof. If B = A, then B has the following Koszul resolution as a B-bimodule:
B®B—B®C*®B— B®B— B.
Here the first map is given by the formula
bi®by — D1 @r@ybs —by QYR xby — b1y QT R by + 017 R Yy X bo,
the second map is given by
b1 @ @by = bix @by — by @ by, b1 @Y @ by = b1y @ by — by @ ybo,

and the third map is the multiplication.
Thus the cohomology of B with coefficients in Bg can be computed by mapping this
resolution into Bg and taking the cohomology. This yields the following complex C*:

(8.2) 0 — Bg— Bg® Bg — Bg — 0,

where the first nontrivial map is given by bg — [bg,y] ® x — [bg, ] ® y, and the second
nontrivial map is given by bg ® = — [z, bg|, bg @ y — [y, bg].

Consider first the case g = 1. Equip the complex C'* with the Bernstein filtration (deg(z) =
deg(y) = 1), starting with 0,1,2, for C° C*, C?, respectively (this makes the differential
preserve the filtration). Consider the associated graded complex Cj,. In this complex,
brackets are replaced with Poisson brackets, and thus it is easy to see that Cg, is the De
Rham complex for the affine plane, so its cohomology is C in degree 0 and 0 in other degrees.
Therefore, the cohomology of C'*® is the same.

Now consider g # 1. In this case, declare that C°, C1, C? start in degrees 2,1,0 respectively
(which makes the differential preserve the filtration), and again consider the graded complex
Cy.. The graded Euler characteristic of this complex is (t* — 2t +1)(1 — )% = 1.

The cohomology in the Cy, term is the set of b € C[z, y] such that ab = ba? for all a. This

means that HH® = 0.

The cohomology of the Cf, term is the quotient of C[z, y] by the ideal generated by a — a?,
a € Clz,y]. Thus the cohomology HH? of the rightmost term is 1-dimensional, in degree 0.
By the Euler characteristic argument, this implies that HH' = 0. The cohomology of the
filtered complex C* is therefore the same, and we are done. O

The proposition implies that in the n-dimensional case HH*(B, Bg) is 1-dimensional, con-
centrated in degree rank (1 — ¢). It is not hard to check that the group G acts on the sum
of these 1-dimensional spaces by simply permuting the basis vectors. Thus the theorem is
proved. 0]

Remark 8.22. Another proof of Theorem 8.18 is given in [Pi].

Theorem 8.23. The algebra Hi . [G,V], with formal c, is the universal deformation of
Hio[G,V] = G x Weyl(V). More specifically, the map f : C[S]® — HH*(G x Weyl(V))
induced by this deformation coincides with the isomorphism of Corollary 8.19.

70



Proof. The proof (which we will not give) can be obtained by a direct computation with the
Koszul resolution for G x Weyl(V'). Such a proof is given in [Pi]. The paper [EG] proves
a slightly weaker statement that the map f is an isomorphism, which suffices to show that

Hi.(G,V) is the universal deformation of H; o[G, V]. O

8.9. Finite dimensional representations of Hj.. Let M. = SpecZ,.. We can regard
Ho.. = Ho[G, V] as a finitely generated module over Zy. = O(M,). Let x € M. be a central
character, x : Zg. — C. Denote by (x) the ideal in Hy . generated by the kernel of x.

Proposition 8.24. If x is generic then Ho./{x) is the matriz algebra of size |G|. In par-
ticular, Ho . has a unique irreducible representation V), with central character x. This repre-
sentation 1s isomorphic to CG as a G-module.

Proof. 1t is shown by a standard argument (which we will skip) that it is sufficient to check
the statement in the associated graded case ¢ = 0. In this case, for generic x, G x SV/(x) =
G x Fun(O,), where O, is the (free) orbit of G consisting of the points of V* that map to
x € V*/G, and Fun(O,) is the algebra of functions on O,,. It is easy to see that this algebra
is isomorphic to a matrix algebra, and has a unique irreducible representation, Fun(O,),
which is a regular representation of G. U

Corollary 8.25. Any irreducible representation of Hy . has dimension < |G]|.
Proof. We will use the following lemma.

Lemma 8.26 (The Amitsur-Levitzki identity). For any N x N matrices Xq, ..., Xon with
entries in a commutative ring A,

> (=17 Xo)  Xow) = 0.

occBop

Proof. Consider the ring Maty(A) @ A(&1, ..., &m). Let X =" X;§ € R. So we have

X2 = Z[X“ X]]&gj & MatN(A X Aeven(gh ... ;§2n))-

i<j

It is obvious that Tr X2 = 0. Similarly, one can easily show that Tr X* =0, ..., Tr X?¥ = 0.
Since the ring A ®@ A" (&1, ..., &2,) is commutative, from the Cayley-Hamilton theorem, we
know that X2V = (0 which implies the lemma. O

Since for generic x the algebra Hg./(x) is a matrix algebra, the algebra Hy . satisfies the
Amitsur-Levitzki identity. Next, note that since Ho, is a finitely generated Z; .-module (by
passing to the associated graded and using Hilbert’s theorem), every irreducible representa-
tion of Hy. is finite dimensional. If Hy. had an irreducible representation E of dimension
m > |G|, then by the density theorem the matrix algebra Mat,, would be a quotient of
Hp.. But one can show that the Amitsur-Levitzki identity of degree |G| is not satisfied for
matrices of bigger size than |G|. Contradiction. Thus, dim F < |G|, as desired. O

In general, for special central characters there are representations of Hy . of dimension less
than |G|. However, in some cases one can show that all irreducible representations have

dimension exactly |G|. For example, we have the following result.
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Theorem 8.27. Let G =6, V =h®bh*, h = C" (the rational Cherednik algebra for &,,).
Then for c # 0, every irreducible representation of Hy. has dimension n! and is isomorphic
to the regqular representation of G,

Proof. Let E be an irreducible representation of Hy .. Let us calculate the trace in £ of any
permutation o # 1. Let j be an index such that o(j) =i # j. Then s;;0(j) = j. Hence in
Ho,. we have

js wisi50) = [y;, xlsijo = csi0 = co.

Hence Tr p(o) = 0, and thus £ is a multiple of the regular representation of S,,. But by
Theorem 8.25, dim E < n!, so we get that F is the regular representation, as desired. 0

8.10. Azumaya algebras. Let Z be a finitely generated commutative algebra over C, M =
SpecZ the corresponding affine scheme, and A a finitely generated Z-algebra.

Definition 8.28. A is said to be an Azumaya algebra of degree N if the completion Ax of

A at every maximal ideal y in Z is the matrix algebra of size N over the completion Zx of
Z.

Thus, an Azumaya algebra should be thought of as a bundle of matrix algebras on M. °
For example, if F is an algebraic vector bundle on M then End(F) is an Azumaya algebra.
However, not all Azumaya algebras are of this form.

Example 8.29. For ¢ € C*, consider the quantum torus
T, = C(X* V) /(XY — ¢V X).

If ¢ is a root of unity of order N, then the center of T, is (XN Y*N) = C[M] where
M = (C*)%. Tt is not difficult to show that T, is an Azumaya algebra of degree N, but
Ty ®cp C(M) 2 Maty(C(M)), so T, is not the endomorphism algebra of a vector bundle.

Example 8.30. Let X be a smooth irreducible variety over a field of characteristic p. Then
D(X), the algebra of differential operators on X, is an Azumaya algebra with rank pdimX,
which is not an endomorphism algebra of a vector bundle. Its center is Z = O(T*X)F, the
Frobenius twisted functions on 7% X.

It is clear that if A is an Azumaya algebra (say, over C) then for every central character
x of A, A/(x) is the algebra Matx(C) of complex N by N matrices, and every irreducible
representation of A has dimension N.

The following important result is due to M. Artin.

Theorem 8.31. Let A be a finitely generated (over C) polynomial identity (PI) algebra of
degree N (i.e. all the polynomial relations of the matriz algebra of size N are satisfied in
A). Then A is an Azumaya algebra if and only if every irreducible representation of A has
dimension exactly N.

Proof. See [Ar] Theorem 8.3. O

5If M is not affine, one can define, in a standard manner, the notion of a sheaf of Azumaya algebras on
M.
72



Thus, by Theorem 8.27, for G = &,,, the rational Cherednik algebra Hy .(&,,, C") for ¢ # 0
is an Azumaya algebra of degree n!. Indeed, this algebra is PI of degree n! because the clas-
sical Dunkl representation embeds it into matrices of size n! over C(x1,..., 2, p1, ..., Pn)°".

Let us say that y € M is an Azumaya point if for some affine neighborhood U of y the
localization of A to U is an Azumaya algebra. Obviously, the set Az(M) of Azumaya points
of M is open.

Now we come back to the study the space M, corresponding to a symplectic reflection
algebra Hy ..

Theorem 8.32. The set Az(M.) coincides with the set of smooth points of M..
The proof of this theorem is given in the following two subsections.
Corollary 8.33. If G =6, and V = @ b*, h = C" (the rational Cherednik algebra case)

then M. is a smooth algebraic variety for ¢ # 0.
Proof. Directly from the above theorem. O

8.11. Cohen-Macaulay property and homological dimension. To prove Theorem 8.32,
we will need some commutative algebra tools. Let Z be a finitely generated commutative
algebra over C without zero divisors. By Noether’s normalization lemma, there exist ele-

ments 21, ..., 2, € Z which are algebraically independent, such that Z is a finitely generated
module over C|zy, ..., z,].

Definition 8.34. The algebra Z (or the variety SpecZ) is said to be Cohen-Macaulay if Z
is a locally free (=projective) module over C[z1,. .., z,]. °

Remark 8.35. It was shown by Serre that if Z is locally free over C|zy, ..., z,]| for some
choice of 21, ..., z,, then it happens for any choice of them (such that Z is finitely generated
as a module over Clzy,..., z,]).

Remark 8.36. Another definition of the Cohen-Macaulay property is that the dualizing
complex w$, of Z is concentrated in degree zero. We will not discuss this definition here.

It can be shown that the Cohen-Macaulay property is stable under localization. Therefore,
it makes sense to make the following definition.

Definition 8.37. An algebraic variety X is Cohen-Macaulay if the algebra of functions on
every affine open set in X is Cohen-Macaulay.

Let Z be a finitely generated commutative algebra over C without zero divisors, and let
M be a finitely generated module over Z.

Definition 8.38. M is said to be Cohen-Macaulay if for some algebraically independent

Z1y. .., 2n € Z such that Z is finitely generated over C[zy,...,z,], M is locally free over
Clzy .-y 2n)-
Again, if this happens for some z,...,z2,, then it happens for any of them. We also

note that M can be Cohen-Macaulay without Z being Cohen-Macaulay, and that Z is a
Cohen-Macaulay algebra iff it is a Cohen-Macaulay module over itself.
We will need the following standard properties of Cohen-Macaulay algebras and modules.

6Tt was proved by Quillen that a locally free module over a polynomial algebra is free; this is a difficult
theorem, which will not be needed here.
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Theorem 8.39. (i) Let Zy C Zy be a finite extension of finitely generated commutative
C-algebras, without zero divisors, and M be a finitely generated module over Zs. Then
M s Cohen-Macaulay over Zs iff it is Cohen-Macaulay over Z;.
(ii) Suppose that Z is the algebra of functions on a smooth affine variety. Then a Z-
module M is Cohen-Macaulay if and only if it is projective.

Proof. The proof can be found in the text book [Ei. O

In particular, this shows that the algebra of functions on a smooth affine variety is Cohen-
Macaulay. Algebras of functions on many singular varieties are also Cohen-Macaulay.

Example 8.40. The algebra of regular functions on the cone zy = 2% is Cohen-Macaulay.
This algebra can be identified as Cla, b]22 by letting = a2,y = b* and z = ab, where the Z,
action is defined by a — —a, b — —b. It contains a subalgebra Cl[a?, %], and as a module
over this subalgebra, it is free of rank 2 with generators 1, ab.

Example 8.41. Any irreducible affine algebraic curve is Cohen-Macaulay. For example, the
algebra of regular functions on y* = x3 is isomorphic to the subalgebra of C[t] spanned by
1,t%,¢3,.. .. Tt contains a subalgebra C[t?] and as a module over this subalgebra, it is free of
rank 2 with generators 1, 3.

Example 8.42. Consider the subalgebra in C[z, 3] spanned by 1 and x'y’ with i+7j > 2. Tt is
a finite generated module over C[z?, y?], but not free. So this algebra is not Cohen-Macaulay.

Another tool we will need is homological dimension. We will say that an algebra A has
homological dimension < d if any (left) A-module M has a projective resolution of length
< d. The homological dimension of A is the smallest integer having this property. If such
an integer does not exist, A is said to have infinite homological dimension.

It is easy to show that the homological dimension of A is < d if and only if for any A-
modules M, N one has Ext’(M, N) = 0 for i > d. Also, the homological dimension clearly
does not decrease under taking associated graded of the algebra under a positive filtration
(this is clear from considering the spectral sequence attached to the filtration).

It follows immediately from this definition that homological dimension is Morita invariant.
Namely, recall that a Morita equivalence between algebras A and B is an equivalence of
categories A-mod — B-mod. Such an equivalence maps projective modules to projective
ones, since projectivity is a categorical property (P is projective if and only if the functor
Hom(P,-) is exact). This implies that if A and B are Morita equivalent then their homological
dimensions are the same.

Then we have the following important theorem.

Theorem 8.43. The homological dimension of a commutative finitely generated C-algebra
Z is finite if and only if Z is reqular, i.e. is the algebra of functions on a smooth affine
variety.

8.12. Proof of Theorem 8.32. First let us show that any smooth point y of M. is an
Azumaya point. Since Ho. = Endg, Ho.e = Endgz, (Ho.e), it is sufficient to show that
the coherent sheaf on M, corresponding to the module Hy e is a vector bundle near x. By
Theorem 8.39 (ii), for this it suffices to show that Hy.e is a Cohen-Macaulay Z, module.
To do so, first note that the statement is true for ¢ = 0. Indeed, in this case the claim is
that SV is a Cohen-Macaulay module over (SV)“. But SV is a polynomial algebra, which

is Cohen-Macaulay, so the result follows from Theorem 8.39, (i).
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Now, we claim that if Z, M are positively filtered and grM is a Cohen-Macaulay grZ-
module then M is a Cohen-Macaulay Z-module. Indeed, let z,...,z, be homogeneous
algebraically independent elements of grZ such that grZ is a finite module over the subalge-
bra generated by them. Let z1,..., 2/, be their liftings to Z. Then 2], ..., 2/, are algebraically
independent, and the module M over C[z1, ..., z/ ] is finitely generated and (locally) free since
so is the module grM over C|zy, ..., z,].

Recall now that grHy.e = SV, grZs,. = (SV)“. Thus the ¢ = 0 case implies the general
case, and we are done.

Now let us show that any Azumaya point of M. is smooth. Let U be an affine open set
in M, consisting of Azumaya points. Then the localization Hy.(U) := Ho. ®z,, Op is an
Azumaya algebra. Moreover, for any y € U, the unique irreducible representation of Hy .(U)
with central character x is the regular representation of G (since this holds for generic x by
Proposition 8.24). This means that e is a rank 1 idempotent in Hy.(U)/(x) for all x. In
particular, Hy .(U)e is a vector bundle on U. Thus the functor F' : Oy-mod — Hg .(U)-mod
given by the formula F(Y) = Ho.(U)e ®0, Y is an equivalence of categories (the quasi-
inverse functor is given by the formula F~'(N) = eN). Thus Hy.(U) is Morita equivalent
to Oy, and therefore their homological dimensions are the same.

On the other hand, the homological dimension of Hy . is finite (in fact, it equals to dim V).
To show this, note that by the Hilbert syzygies theorem, the homological dimension of
SV is dim V. Hence, so is the homological dimension of G x SV (as Extg, gy (M,N) =
Ext%, (M, N)¢). Thus, since grHy,. = G x SV, we get that Hy . has homological dimension
< dim V. Hence, the homological dimension of Hy.(U) is also < dim V' (as the homological
dimension clearly does not increase under the localization). But Hy .(U) is Morita equivalent
to Oy, so Oy has a finite homological dimension. By Theorem 8.43, this implies that U
consists of smooth points.

Corollary 8.44. Az(M,) is also the set of points at which the Poisson structure of M. is
symplectic.

Proof. The variety M, is symplectic outside of a subset of codimension 2, because so is M.
Thus the set S of smooth points of M. where the top exterior power of the Poisson bivector
vanishes is of codimension > 2. Since the top exterior power of the Poisson bivector is locally
a regular function, this implies that S is empty. Thus, every smooth point is symplectic, and
the corollary follows from the theorem. O

8.13. Notes. Our exposition in this section follows Section 8 — Section 10 of [E4].
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