
LECTURE NOTES ON CHEREDNIK ALGEBRAS 

PAVEL ETINGOF AND XIAOGUANG MA 

Contents 

1. Introduction 4

2. Classical and quantum Olshanetsky-Perelomov systems for finite Coxeter groups 6

2.1. The rational quantum Calogero-Moser system 6

2.2. Complex reflection groups 6

2.3. Parabolic subgroups 7

2.4. Olshanetsky-Perelomov operators 7

2.5. Dunkl operators 8

2.6. Proof of Theorem 2.9 9

2.7. Uniqueness of the operators Lj 11

2.8. Classical Dunkl operators and Olshanetsky-Perelomov Hamiltonians 11

2.9. Rees algebras 12

2.10. Proof of Theorem 2.24 12

2.11. Notes 13

3. The rational Cherednik algebra 14

3.1. Definition and examples 14

3.2. The PBW theorem for the rational Cherednik algebra 15

3.3. The spherical subalgebra 15

3.4. The localization lemma 16

3.5. Category O for rational Cherednik algebras 16

3.6. The grading element 17

3.7. Standard modules 18

3.8. Finite length 19

3.9. Characters 19

3.10. Irreducible modules 20

3.11. The contragredient module 20

3.12. The contravariant form 20

3.13. The matrix of multiplicities 21

3.14. Example: the rank 1 case 21

3.15. The Frobenius property 22

3.16. Representations of H1,c of type A 23

3.17. Notes 25

4. The Macdonald-Mehta integral 26

4.1. Finite Coxeter groups and the Macdonald-Mehta integral 26

4.2. Proof of Theorem 4.1 26

4.3. Application: the supports of Lc(C) 31

4.4. Notes 35


1 



5. Parabolic induction and restriction functors for rational Cherednik algebras 36

5.1. A geometric approach to rational Cherednik algebras 36

5.2. Completion of rational Cherednik algebras 36

5.3. The duality functor 37

5.4. Generalized Jacquet functors 37

5.5. The centralizer construction 37

5.6. Completion of rational Cherednik algebras at arbitrary points of h/G 38

5.7. The completion functor 39

5.8. Parabolic induction and restriction functors for rational Cherednik algebras 40

5.9. Some evaluations of the parabolic induction and restriction functors 41

5.10. Dependence of the functor Resb on b 41

5.11. Supports of modules 43

5.12. Notes 44

6. The Knizhnik-Zamolodchikov functor 45

6.1. Braid groups and Hecke algebras 45

6.2. KZ functors 45

6.3. The image of the KZ functor 47

6.4. Example: the symmetric group Sn 48

6.5. Notes 48

7. Rational Cherednik algebras and Hecke algebras for varieties with group actions 49

7.1. Twisted differential operators 49

7.2. Some algebraic geometry preliminaries 49

7.3. The Cherednik algebra of a variety with a finite group action 49

7.4. Globalization 51

7.5. Modified Cherednik algebra 52

7.6. Orbifold Hecke algebras 52

7.7. Hecke algebras attached to Fuchsian groups 53

7.8. Hecke algebras of wallpaper groups and del Pezzo surfaces 55

7.9. The Knizhnik-Zamolodchikov functor 55

7.10. Proof of Theorem 7.15 56

7.11. Example: the simplest case of double affine Hecke algebras 57

7.12. Affine and extended affine Weyl groups 58

7.13. Cherednik’s double affine Hecke algebra of a root system 58

7.14. Algebraic flatness of Hecke algebras of polygonal Fuchsian groups 59

7.15. Notes 61

8. Symplectic reflection algebras 62

8.1. The definition of symplectic reflection algebras 62

8.2. The PBW theorem for symplectic reflection algebras 62

8.3. Koszul algebras 63

8.4. Proof of Theorem 8.6 63

8.5. The spherical subalgebra of the symplectic reflection algebra 64

8.6. The center of the symplectic reflection algebra Ht,c 65

8.7. A review of deformation theory 66

8.8. Deformation-theoretic interpretation of symplectic reflection algebras 69

8.9. Finite dimensional representations of H0,c. 71


2 



8.10. Azumaya algebras 72

8.11. Cohen-Macaulay property and homological dimension 73

8.12. Proof of Theorem 8.32 74

8.13. Notes 75

9. Calogero-Moser spaces 76

9.1. Hamiltonian reduction along an orbit 76

9.2. The Calogero-Moser space 76

9.3. The Calogero-Moser integrable system 77

9.4. Proof of Wilson’s theorem 79

9.5. The Gan-Ginzburg theorem 80

9.6. The space Mc for Sn and the Calogero-Moser space. 81

9.7. The Hilbert scheme Hilbn(C2) and the Calogero-Moser space 82

9.8. The cohomology of Cn 83

9.9. Notes 84

10. Quantization of Claogero-Moser spaces 85

10.1. Quantum moment maps and quantum Hamiltonian reduction 85

10.2. The Levasseur-Stafford theorem 85

10.3. Corollaries of Theorem 10.1 87

10.4. The deformed Harish-Chandra homomorphism 88

10.5. Notes 89

References 90


3 



1. Introduction


Double affine Hecke algebras, also called Cherednik algebras, were introduced by Chered­
nik in 1993 as a tool in his proof of Macdonald’s conjectures about orthogonal polynomials for 
root systems. Since then, it has been realized that Cherednik algebras are of great indepen­
dent interest; they appeared in many different mathematical contexts and found numerous 
applications. 

The present notes are based on a course on Cherednik algebras given by the first author 
at MIT in the Fall of 2009. Their goal is to give an introduction to Cherednik algebras, and 
to review the web of connections between them and other mathematical objects. For this 
reason, the notes consist of many parts that are relatively independent of each other. Also, 
to keep the notes within the bounds of a one-semester course, we had to limit the discussion 
of many important topics to a very brief outline, or to skip them altogether. For a more 
in-depth discussion of Cherednik algebras, we refer the reader to research articles dedicated 
to this subject. 

The notes do not contain any original material. In each section, the sources of the expo­
sition are listed in the notes at the end of the section. 

The organization of the notes is as follows. 
In Section 2, we define the classical and quantum Calogero-Moser systems, and their 

analogs for any Coxeter groups introduced by Olshanetsky and Perelomov. Then we intro­
duce Dunkl operators, prove the fundamental result of their commutativity, and use them to 
establish integrability of the Calogero-Moser and Olshanetsky-Perelomov systems. We also 
prove the uniqueness of the first integrals for these systems. 

In Section 3, we conceptualize the commutation relations between Dunkl operators and 
coordinate operators by introducing the main object of these notes - the rational Cherednik 
algebra. We develop the basic theory of rational Cherednik algebras (proving the PBW 
theorem), and then pass to the representation theory of rational Cherednik algebras, more 
precisely, study the structure of category O. After developing the basic theory (parallel to 
the case of semisimple Lie algebras), we completely work out the representations in the rank 
1 case, and prove a number of results about finite dimensional representations and about 
representations of the rational Cherednik algebra attached to the symmetric group. 

In Section 4, we evaluate the Macdonald-Mehta integral, and then use it to find the sup­
ports of irrieducible modules over the rational Cherednik algebras with the trivial lowest 
weight, in particular giving a simple proof of the theorem of Varagnolo and Vasserot, classi­
fying such representations which are finite dimensional. 

In Section 5, we describe the theory of parabolic induction and restriction functors for 
rational Cherednik algebras, developed in [BE], and give some applications of this theory, 
such as the description of the category of Whittaker modules and of possible supports of 
modules lying in category O. 

In Section 6, we define Hecke algebras of complex reflection groups, and the Knizhnik-
Zamolodchikov (KZ) functor from the category O of a rational Cherednik algebra to the 
category of finite dimensional representations of the corresponding Hecke algebra. We use 
this functor to prove the formal flatness of Hecke algebras of complex reflection groups (a 
theorem of Broué, Malle, and Rouquier), and state the theorem of Ginzburg-Guay-Opdam-
Rouquier that the KZ functor is an equivalence from the category O modulo its torsion part 
to the category of representations of the Hecke algebra. 
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In Section 7, we define rational Cherednik algebras for orbifolds. We also define the 
corresponding Hecke algebras, and define the KZ functor from the category of modules over 
the former to that over the latter. This generalizes to the “curved” case the KZ functor 
for rational Cherednik algebras of complex reflection groups, defined in Section 6. We then 
apply the KZ functor to showing that if the universal cover of the orbifold in question has 
a trivial H2 (with complex coefficients), then the orbifold Hecke algebra is formally flat, 
and explain why the condition of trivial H2 cannot be dropped. Next, we list examples of 
orbifold Hecke algebras which satisfy the condition of vanishing H2 (and hence are formally 
flat). These include usual, affine, and double affine Hecke algebras, as well as Hecke algebras 
attached to Fuchsian groups, which include quantizations of del Pezzo surfaces and their 
Hilbert schemes; we work these examples out in some detail, highlighting connections with 
other subjects. Finally, we discuss the issue of algebraic flatness, and prove it in the case of 
algebras of rank 1 attached to Fuchsian groups, using the theory of deformations of group 
algebras of Coxeter groups developed in [ER]. 
In Section 8, we define symplectic reflection algebras (which inlude rational Cherednik al­

gebras as a special case), and generalize to them some of the theory of Section 3. Namely, we 
use the theory of deformations of Koszul algebras to prove the PBW theorem for symplectic 
reflection algebras. We also determine the center of symplectic reflection algebras, showing 
that it is trivial when the parameter t is nonzero, and is isomorphic to the shperical subal­
gebra if t = 0. Next, we give a deformation-theoretic interpretation of symplectic reflection 
algebras as universal deformations of Weyl algebras smashed with finite groups. Finally, we 
discuss finite dimensional representations of symplectic reflection algebras for t = 0, show­
ing that the Azumaya locus on the space of such representations coincides with the smooth 
locus. This uses the theory of Cohen-Macaulay modules and of homological dimension in 
commutative algebra. In particular, we show that for Cherednik algebras of type An−1, the 
whole representation space is smooth and coincides with the spectrum of the center. 

In Section 9, we give another description of the spectrum of the center of the rational 
Cherednik algebra of type An−1 (for t = 0), as a certain space of conjugacy classes of pairs 
of matrices, introduced by Kazhdan, Kostant, and Sternberg, and called the Calogero-Moser 
space (this space is obtained by classical hamiltonian reduction, and is a special case of a 
quiver variety). This yields a new construction of the Calogero-Moser integrable system. 
We also sketch a proof of the Gan-Ginzburg theorem claiming that the quotient of the 
commuting scheme by conjugation is reduced, and hence isomorphic to C2n/Sn. Finally, we 
explain that the Calogero-Moser space is a topologically trivial deformation of the Hilbert 
scheme of the plane, we use the theory of Cherednik algebras to compute the cohomology 
ring of this space. 
In Section 10, we generalize the results of Section 9 to the quantum case. Namely, we 

prove the quantum analog of the Gan-Ginzburg theorem (the Harish Chandra-Levasseur-
Stafford theorem), and explain how to quantize the Calogero-Moser space using quantum 
Hamiltonian reduction. Not surprisingly, this gives the same quantization as was constructed 
in the previous sections, namely, the spherical subalgebra of the rational Cherednik algebra. 

Acknowledgements. We are grateful to the participants of the course on Cherednik 
algebras at MIT, especially to Roman Travkin and Aleksander Tsymbalyuk, for many useful 
comments and corrections. This work was partially supported by the NSF grants DMS­
0504847 and DMS-0854764. 
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2.	 Classical and quantum Olshanetsky-Perelomov systems for finite 
Coxeter groups 

2.1. The rational quantum Calogero-Moser system. Consider the differential operator 
n� ∂2 � 1 

H = 
i=1 

∂xi 
2 − c(c + 1) 

i=� j 
(xi − xj )2 

. 

This is the quantum Hamiltonian for a system of n particles on the line of unit mass and the 
interaction potential (between particle 1 and 2) c(c + 1)/(x1 − x2)2 . This system is called 
the rational quantum Calogero-Moser system. 
It turns out that the rational quantum Calogero-Moser system is completely integrable. 

Namely, we have the following theorem. 

Theorem 2.1. There exist differential operators Lj with rational coefficients of the form 
n� ∂ 

Lj = ( )j + lower order terms, j = 1, . . . , n, 
∂xii=1 

which are invariant under the symmetric group Sn, homogeneous of degree −j, and such 
that L2 = H and [Lj , Lk] = 0, ∀j, k = 1, . . . , n. 

We will prove this theorem later. � ∂ 
Remark 2.2. L1 = i . 

∂xi 

2.2. Complex reflection groups. Theorem 2.1 can be generalized to the case of any finite 
Coxeter group. To describe this generalization, let us recall the basic theory of finite Coxeter 
groups and, more generally, complex reflection groups. 

Let h be a finite-dimensional complex vector space. We say that a semisimple element 
s ∈ GL(h) is a (complex) reflection if rank (1 − s) = 1. This means that s is conjugate to 
the diagonal matrix diag(λ, 1, . . . , 1) where λ = 1. 

Now assume h carries a nondegenerate inner product (·, ). We say that a semisimple ·
element s ∈ O(h) is a real reflection if rank (1 − s) = 1; equivalently, s is conjugate to 
diag(−1, 1, . . . , 1). 
Now let G ⊂ GL(h) be a finite subgroup. 

Definition 2.3. (i) We say that G is a complex reflection group if it is generated by 
complex reflections. 

(ii) If	h carries an inner product, then a finite subgroup G ⊂ O(h) is a real reflection 
group (or a finite Coxeter group) if G is generated by real reflections. 

For the complex reflection groups, we have the following important theorem. 

Theorem 2.4 (The Chevalley-Shepard-Todd theorem, [Che]). A finite subgroup G of GL(h) 
is a complex reflection group if and only if the algebra (Sh)G is a polynomial (i.e., free) 
algebra. 

By the Chevalley-Shepard-Todd theorem, the algebra (Sh)G has algebraically independent 
generators Pi, homogeneous of some degrees di for i = 1, . . . , dim h. The numbers di are 
uniquely determined, and are called the degrees of G. 
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i 

Example 2.5. If G = Sn, h = Cn−1 (the space of vectors in Cn with zero sum of co­
ordinates), then one can take Pi(p1, . . . , pn) = p i+1 + + pi+1 , i = 1, . . . , n − 1 (where � 1 n· · · 

pi = 0). 

2.3. Parabolic subgroups. Let G ⊂ GL(h) be a finite subgroup. 

Definition 2.6. A parabolic subgroup of G is the stabilizer Ga of a point a ∈ h. 

Note that by Chevalley’s theorem, a parabolic subgroup of a complex (respectively, real) 
reflection group is itself a complex (respectively, real) reflection group. 

Also, if W is a real reflection group, then it can be shown that a subgroup W � ⊂ W is 
parabolic if and only if it is conjugate to a subgroup generated by a subset of simple reflections 
of W . In this case, the rank of W �, i.e. the number of generating simple reflections, equals 
the codimension of the space hW � . 

Example 2.7. Consider the Coxeter group of type E8. It has the Dynkin diagram: 
• 

The parabolic subgroups will be Coxeter groups whose Dynkin diagrams are obtained by 
deleting vertices from the above graph. In particular, the maximal parabolic subgroups are 
D7, A7, A1 × A6, A2 × A1 × A4, A4 × A3, D5 × A2, E6 × A1, E7. 

Suppose G� ⊂ G is a parabolic subgroup, and b ∈ h is such that Gb = G�. In this case, 
we have a natural G�-invariant decomposition h = hG

� ⊕ (h∗G
� 
)⊥, and b ∈ hG

� 
. Thus we have 

a nonempty open set hG
� 
of all a ∈ hG

� 
for which Ga = G�; this set is nonempty because it reg 

contains b. We also have a G�-invariant decomposition h∗ = h∗G
� ⊕ (hG

� 
)⊥, and we can define 

the open set h∗G
� 
of all λ ∈ hG

� 
for which Gλ = G�. It is clear that this set is nonempty. Thisreg 

implies, in particular, that one can make an alternative definition of a parabolic subgroup 
of G as the stabilizer of a point in h∗. 

2.4. Olshanetsky-Perelomov operators. Let s ⊂ GL(h) be a complex reflection. Denote 
by αs ∈ h∗ an eigenvector in h∗ of s with nontrivial eigenvalue. 
Let W ⊂ O(h) be a real reflection group and S ⊂ W the set of reflections. Clearly, W 

acts on S by conjugation. Let c : S → C be a conjugation invariant function. 

Definition 2.8. [OP] The quantum Olshanetsky-Perelomov Hamiltonian attached to W is 
the second order differential operator 

H := Δh − 
s∈S 

(cscs + 1)(αs, 
α2 
s 

αs) 
, 

where Δh is the Laplace operator on h. 

Here we use the inner product on h∗ which is dual to the inner product on h. 
Let us assume that h is an irreducible representation of W (i.e. W is an irreducible finite 

Coxeter group, and h is its reflection representation.) In this case, we can take P1(p) = p2 . 

Theorem 2.9. The system defined by the Olshanetsky-Perelomov operator H is completely 
integrable. Namely, there exist differential operators Lj on h with rational coefficients and 
symbols Pj , such that Lj are homogeneous (of degree −dj ), L1 = H, and [Lj , Lk] = 0, ∀j, k. 
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This theorem is obviously a generalization of Theorem 2.1 about W = Sn.

To prove Theorem 2.9, one needs to develop the theory of Dunkl operators.


Remark 2.10. 1. We will show later that the operators Lj are unique. 
2. Theorem 2.9 for classical root systems was proved by Olshanetsky and Perelomov 

(see [OP]), following earlier work of Calogero, Sutherland, and Moser in type A. For a 
general Weyl group, this theorem (in fact, its stronger trigonometric version) was proved by 
analytic methods in the series of papers [HO],[He3],[Op3],[Op4]. A few years later, a simple 
algebraic proof using Dunkl operators, which works for any finite Coxeter group, was found 
by Heckman, [He1]; this is the proof we will give below. 

For the trigonometric version, Heckman also gave an algebraic proof in [He2], which used 
non-commuting trigonometric counterparts of Dunkl operators. This proof was later im­
proved by Cherednik ([Ch1]), who defined commuting (although not Weyl group invariant) 
versions of Heckman’s trigonometric Dunkl operators, now called Dunkl-Cherednik opera­
tors. 

2.5. Dunkl operators. Let G ⊂ GL(h) be a finite subgroup. Let S be the set of reflections 
in G. For any reflection s ∈ S, let λs be the eigenvalue of s on αs ∈ h∗ (i.e. sαs = λsαs), 
and let α∨ ∈ h be an eigenvector such that sα∨ = λ−1α∨. We normalize them in such a way s s s s 
that �αs, α∨

s � = 2. 
Let c : S → C be a function invariant with respect to conjugation. Let a ∈ h. 
The following definition was made by Dunkl for real reflection groups, and by Dunkl and 

Opdam for complex reflection groups. 

Definition 2.11. The Dunkl operator Da = Da(c) on C(h) is defined by the formula � 2csαs(a)
Da = Da(c) := ∂a − 

(1 − λs)αs 
(1 − s). 

s∈S 

Clearly, Da ∈ CG � D(hreg), where hreg is the set of regular points of h (i.e. not preserved 
by any reflection), and D(hreg) denotes the algebra of differential operators on hreg. 

Example 2.12. Let G = Z2, h = C. Then there is only one Dunkl operator up to scaling, 
and it equals to 

c 
D = ∂x − (1 − s), 

x 
where the operator s is given by the formula (sf)(x) = f(−x). 

Remark 2.13. The Dunkl operators Da map the space of polynomials C[h] to itself. 

Proposition 2.14. (i) For any x ∈ h∗, one has 

[Da, x] = (a, x) − cs(a, αs)(x, α
∨)s.s 

s∈S 

(ii) If g ∈ G then gDag
−1 = Dga. 

Proof. (i) The proof follows immediately from the identity 

x − sx =
1 − λs 

(x, α∨)αs. 
2 s 

(ii) The identity is obvious from the invariance of the function c. � 
8 
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The main result about Dunkl operators, on which all their applications are based, is the 
following theorem. 

Theorem 2.15 (C. Dunkl, [Du1]). The Dunkl operators commute: 

[Da, Db] = 0 for any a, b ∈ h. 

Proof. Let x ∈ h∗. We have 

[[Da, Db], x] = [[Da, x], Db] − [[Db, x], Da]. 

Now, using Proposition 2.14, we obtain: 

[[Da, x], Db] = −[ cs(a, αs)(x, α
∨
s )s, Db] 

s∈S 

= − 
� 

cs(a, αs)(x, αs
∨)(b, αs)sDα∨

s 
· 1 − 

2 
λ−s 

1 

. 
s∈S 

Since a and b occur symmetrically, we obtain that [[Da, Db], x] = 0. This means that for any 
f 

f ∈ C[h], [Da, Db]f = f [Da, Db]1 = 0. So for f, g ∈ C[h], g · [Da, Db] 
g 
= [Da, Db]f = 0. Thus 

f 
[Da, Db] = 0 which implies [Da, Db] = 0 in the algebra CG � D(hreg) (since this algebra 

g 
acts faithfully on C(h)). � 

2.6. Proof of Theorem 2.9. For any element B ∈ CW � D(hreg), define m(B) to be the 
differential operator C(h)W C(h), defined by B. That is, if B = ),� → g∈W Bgg, Bg ∈ D(hreg
then m(B) = g∈W Bg. It is clear that if B is W -invariant, then ∀A ∈ CW � D(hreg), 

m(AB) = m(A)m(B). 

Proposition 2.16 ([Du1], [He1]). Let {y1, . . . , yr} be an orthonormal basis of h. Then we 
have 

r

m( Dy
2 
i 
) = H, 

i=1 � cs(αs, αs)
where H = Δh − ∂α∨ . 

ss∈S αs 

Proof. For any y ∈ h, we have m(Dy 
2) = m(Dy∂y). A simple computation shows that 

Dy∂y = ∂y 
2 − 

� csα
α
s

s 

(y)
(1 − s)∂y 

s∈S 

= ∂y 
2 − 

� csαs(y)
(∂y(1 − s) + αs(y)∂α∨s). 

αs 
s 

s∈S 

This means that 

m(Dy
2) = ∂y 

2 − 
� csα

α
s(

s 

y)2 

∂α∨ . 
s 

s∈S
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So we get 

m( 
r

Dy
2 
i 
) = 

r

∂y
2 
i 
− cs

r
αs
α

(y

s

i)
2 

∂αs
∨ = H, � i=1 i=1 s∈S i=1 

since r
i=1 αs(yi)

2 = (αs, αs). � 

Recall that by the Chevalley-Shepard-Todd theorem, the algebra (Sh)W is free. Let P1 = 
p2, P2, . . . , Pr be homogeneous generators of (Sh)W . 

Corollary 2.17. The differential operators Lj = m(Pj (Dy1 , . . . , Dyr )) are pairwise commu­
tative, have symbols Pj , homogeneity degree −dj , and L1 = H. 

Proof. Since Dunkl operators commute, the operators Lj are well defined. Since m(AB) = 
m(A)m(B) when B is invariant, the operators Lj are pairwise commutative. The rest is 
clear. � 

Now to prove Theorem 2.9, we will show that the operators H and H are conjugate to 
each other by a certain function; this will complete the proof. 

Proposition 2.18. Let δc(x) := αs(x)
cs . Then we have s∈S 

δ−1 H δc = H. c ◦ ◦ 
Remark 2.19. The function δc(x) is not rational. It is a multivalued analytic function. 
Nevertheless, it is easy to see that for any differential operator L with rational coefficients, 
δc
−1 L δc also has rational coefficients. ◦ ◦ 
Proof of Proposition 2.18. We have 

r� � cs(αs, αs)
∂yi (log δc)∂yi = 

s 
.∂α∨

2αsi=1 s∈S 

Therefore, we have 

δc ◦ H δc
−1 = Δh − 

� cs(αs, αs) 
s 
+ U, ◦ 

αs 
∂α∨

s∈S 

where 

U = δc(Δhδ
−1 

� cs(cs + 1)(αs, αs) 
.c ) − 

α2 
s∈S s 

Let us compute U . We have � cs(cs + 1)(αs, αs) � cscu(αs, αu)
δc(Δhδc

−1) = 
α2 

+ . 
s αsαu 

s∈S s �=u∈S 

We claim that the last sum Σ is actually zero. Indeed, this sum is invariant under the Coxeter 
group, so s∈S αs · Σ is a regular anti-invariant function of degree |S| − 2. But the smallest 
degree of a nonzero anti-invariant is |S|, so Σ = 0, U = 0, and we are done (Proposition 2.18 
and Theorem 2.9 are proved). � 

Remark 2.20. A similar method works for any complex reflection group G. Namely, the 
operators Li = m(Pi(Dy1 , . . . , Dyr )) form a quantum integrable system. However, if G is not 
a real reflection group, this system does not have a quadratic Hamiltonian in momentum 
variables (so it does not have a physical meaning). 
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2.7. Uniqueness of the operators Lj. 

Proposition 2.21. The operators Lj are unique. 

Proof. Assume that we have two choices for Lj : Lj and L�
j. Denote Lj − L�

j by M . 
Assume M = 0. We have 

(i)	M is a differential operator on h with rational coefficients, of order smaller than dj 
and homogeneity degree −dj ; 

(ii) [M, H] = 0. 

Let M0 be the symbol of M . Then M0 is a polynomial of p ∈ h∗ with coefficients in C(h). 
We have, from (ii), 

{M0, p 2} = 0, ∀p ∈ h∗, 

and from (i) we see that the coefficients of M0 are not polynomial (as they have negative 
degree). 
However, we have the following lemma. 

Lemma 2.22. Let h be a finite dimensional vector space. Let ψ : (x, p) �→ ψ(x, p) be a 
rational function on h ⊕ h∗ which is a polynomial in p ∈ h∗. Let f : h∗ → C be a polynomial 
such that the differentials df(p) for p ∈ h∗ span h (e.g., f(p) = p2). Suppose that the 
Poisson bracket of f and ψ vanishes: {ψ, f} = 0. Then ψ is a polynomial. 

Proof. (R. Raj) Let Z ⊂ h be the pole divisor of ψ. Let x0 ∈ h be a generic point in Z. Then 
ψ−1 is regular and vanishes at (x0, p) for generic p ∈ h∗. Also from {ψ−1, f} = 0, we have 
ψ−1 vanishes along the entire flowline of the Hamiltonian flow defined by f and starting at 
x0. This flowline is defined by the formula 

x(t) = x0 + tdf(p), p(t) = p, 

and it must be contained in the pole divisor of ψ near x0. This implies that df(p) must be 
in Tx0 Z for almost every, hence for every p ∈ h∗. This is a contradiction with the assumption 
on f , which implies that in fact ψ has no poles. � 

2.8. Classical Dunkl operators and Olshanetsky-Perelomov Hamiltonians. We con­
tinue to use the notations in Section 2.4. 

Definition 2.23. The classical Olshanetsky-Perelomov Hamiltonian corresponding to W is 
the following classical Hamiltonian on hreg × h∗ = T ∗hreg: � c2(αs, αs)

H0(x, p) = p 2 − s

αs
2(x) 

. 
s∈S 

Theorem 2.24 ([OP],[HO, He3, Op3, Op4],[He1]). The Hamiltonian H0 defines a classical 
integrable system. Namely, there exist unique regular functions L0 on hreg ×h∗, where highest j 

terms in p are Pj , such that L0 are homogeneous of degree −dj (under x �→ λx, x ∈ h∗, p �→j 

λ−1p, p ∈ h), and such that L0 = H0 and {L0 
j , Lk

0 } = 0, ∀j, k.1 

Proof. The proof is given in the next subsection.	 � 
11 
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Example 2.25. Let W = Sn, h = Cn−1 . Then 
n� � 1 

H0 = p 2 
i − c 2 

(xi − xj )2 
( the classical Calogero-Moser Hamiltonian). 

i=1 i=j 

So the theorem says that there are functions L0 
j , j = 1, . . . , n − 1, 

L0 
j = pi

j+1 + lower terms, 
i 

homogeneous of degree zero, such that L0 = H0 and {L0, Lk
0 } = 0. 1 j 

2.9. Rees algebras. Let A be a filtered algebra over a field k: k = F 0A ⊂ F 1A ⊂ · · · , 
∪iF iA = A. Then the Rees algebra A = Rees(A) is defined by the formula A = ⊕∞

n=0F nA. 
This is an algebra over k[�], where � is the element 1 of the summand F 1A. 

2.10. Proof of Theorem 2.24. The proof of Theorem 2.24 is similar to the proof of its 
quantum analog. Namely, to construct the functions Lj 

0 , we need to introduce classical 
Dunkl operators. To do so, we introduce a parameter � (Planck’s constant) and define 
Dunkl operators Da(�) = Da(c, �) with �: 

Da(c, �) = �Da(c/�) = �∂a − 
� 

(1

2c

− 
sα

λ
s

s

(

)

a

α

) 

s 
(1 − s), where a ∈ h. 

s∈S 

These operators can be regarded as elements of the Rees algebra A = Rees(CW � D(hreg)), 
where the filtration is by order of differential operators (and W sits in degree 0). Reducing 
these operators modulo �, we get classical Dunkl operators Da

0(c) ∈ A0 := A/�A = CW � 
O(T ∗hreg). They are given by the formula 

D0(c) = pa − 
� 

(1

2c

− 
sα

λ
s

s

(

)

a

α

) 

s 
(1 − s),a

s∈S 

where pa is the classical momentum (the linear function on h∗ corresponding to a ∈ h). 
It follows from the commutativity of the quantum Dunkl operators Da(c) that the Dunkl 

operators Da(c, �) commute. Hence, so do the classical Dunkl operators Da
0: 

[Da
0, Db 

0] = 0. 

We also have the following analog of Proposition 2.14: 

Proposition 2.26. (i) For any x ∈ h∗, one has 

[Da
0 , x] = − cs(a, αs)(x, αs

∨)s. 
s∈S 

(ii) If g ∈ W then gD0g−1 = D0 .a ga

Now let us construct the classical Olshanetsky-Perelomov Hamiltonians. As in the quan­
tum case, we have the operation m(·), which is given by the formula g∈W Bg · g �→ Bg, 
B ∈ O(T ∗hreg). We define the Hamiltonian 

r

H0 := m( (Dy
0 
i 
)2). 

i=1 
12 



By taking the limit of quantum situation, we find
� cs(αs, αs) 
= p .H0

2 − 
αs(x) 

pα∨
s 

s∈S 

Unfortunately, this is no longer conjugate to H0. However, consider the (outer) automor­
phism θc of the algebra CW � O(T ∗hreg) defined by the formulas 

θc(x) = x, θc(s) = s, θc(pa) = pa + ∂a log δc, 

for x ∈ h∗, a ∈ h, s ∈ W . It is easy to see that if b0 ∈ A0 and b ∈ A is a deformation of 
b0 then θc(b0) = lim� c/�bδc/�. Therefore, taking the limit � 0 in Proposition 2.16, we 0 δ

−1 
→ → 

find that H0 = θc(H0). 
Now set Lj 

0 = m(θc(Pj (Dy
0 
1 
, . . . , Dy

0 
r 
))). These functions are well defined since Da 

0 com­

mute, are homogeneous of degree zero, and L0
1 = H0. 

Moreover, we can define the operators Lj (�) in Rees(D(hreg)W ) in the same way as Lj , but 
using the Dunkl operators Dyi (�) instead of Dyi . Then [Lj (�), Lk(�)] = 0, and Lj (�) �=0 = 
L0 
j . This implies that L0 Poisson commute: {L0, Lk

0} = 0. 
|

j j 
Theorem 2.24 is proved. 

Remark 2.27. As in the quantum situation, Theorem 2.24 can be generalized to complex 
reflection groups, giving integrable systems with Hamiltonians which are non-quadratic in 
momentum variables. 

2.11. Notes. Section 2.1 follows Section 5.4 of [E4]; the definition of complex reflection 
groups and their basic properties can be found in [GM]; the definition of parabolic subgroups 
and the notations are borrowed from Section 3.1 of [BE]; the remaining parts of this section 
follow Section 6 of [E4]. 
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3. The rational Cherednik algebra


3.1. Definition and examples. Above we have made essential use of the commutation 
relations between operators x ∈ h∗, g ∈ G, and Da, a ∈ h. This makes it natural to consider 
the algebra generated by these operators. 

Definition 3.1. The rational Cherednik algebra associated to (G, h) is the algebra Hc(G, h) 
generated inside A = Rees(CG � D(hreg)) by the elements x ∈ h∗, g ∈ G, and Da(c, �), a ∈ h. 
If t ∈ C, then the algebra Ht,c(G, h) is the specialization of Hc(G, h) at � = t. 

Proposition 3.2. The algebra Hc is the quotient of the algebra CG � T(h ⊕ h∗)[�] (where 
T denotes the tensor algebra) by the ideal generated by the relations 

[x, x�] = 0, [y, y�] = 0, [y, x] = �(y, x) − cs(y, αs)(x, α
∨)s,s 

s∈S 

where x, x� ∈ h∗, y, y� ∈ h. 

Proof. Let us denote the algebra defined in the proposition by Hc
� = Hc

�(G, h). Then accord­
ing to the results of the previous sections, we have a surjective homomorphism φ : Hc

� Hc 

defined by the formula φ(x) = x, φ(g) = g, φ(y) = Dy(c, �). 
→ 

Let us show that this homomorphism is injective. For this purpose assume that yi is a 
basis of h, and xi is the dual basis of h∗. Then it is clear from the relations of Hc

� that Hc
� is 

spanned over C[�] by the elements 
r r

(3.1) g yi
mi xi

ni . 
i=1 i=1 

Thus it remains to show that the images of the elements (3.1) under the map φ, i.e. the 
elements 

r r

g Dyi (c, �)mi xi
ni . 

i=1 i=1 

are linearly independent. But this follows from the obvious fact that the symbols of these 
elements in CG �C[h∗ × hreg][�] are linearly independent. The proposition is proved. � 

Remark 3.3. 1. Similarly, one can define the universal algebra H(G, h), in which both � 
and c are variables. (So this is an algebra over C[�, c].) It has two equivalent definitions 
similar to the above. 

2. It is more convenient to work with algebras defined by generators and relations than 
with subalgebras of a given algebra generated by a given set of elements. Therefore, from 
now on we will use the statement of Proposition 3.2 as a definition of the rational Cherednik 
algebra Hc. According to Proposition 3.2, this algebra comes with a natural embedding 
Θc : Hc → Rees(CG � D(hreg)), defined by the formula x → x, g → g, y → Dy(c, �). This 
embedding is called the Dunkl operator embedding. 

Example 3.4. 1. Let G = Z2, h = C. In this case c reduces to one parameter, and the 
algebra Ht,c is generated by elements x, y, s with defining relations 

s 2 = 1, sx = −xs, sy = −ys, [y, x] = t − 2cs. 
14 
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2. Let G = Sn, h = Cn . In this case there is also only one complex parameter c, and the 
algebra Ht,c is the quotient of Sn �C�x1, . . . , xn, y1, . . . , yn� by the relations 

[xi, xj ] = [yi, yj ] = 0, [yi, xj ] = csij , [yi, xi] = t − c sij . 
j=i 

Here C�E� denotes the free algebra on a set E, and sij is the transposition of i and j. 

3.2. The PBW theorem for the rational Cherednik algebra. Let us put a filtration 
on Hc by setting deg y = 1 for y ∈ h and deg x = deg g = 0 for x ∈ h∗, g ∈ G. Let gr(Hc) 
denote the associated graded algebra of Hc under this filtration, and similarly for Ht,c. We 
have a natural surjective homomorphism 

ξ : CG �C[h ⊕ h∗][�] → gr(Hc). 

For t ∈ C, it specializes to surjective homomorphisms 

ξt : CG �C[h ⊕ h∗] → gr(Ht,c). 

Proposition 3.5 (The PBW theorem for rational Cherednik algebras). The maps ξ and ξt 
are isomorphisms. 

Proof. The statement is equivalent to the claim that the elements (3.1) are a basis of Ht,c, 
which follows from the proof of Proposition 3.2. � 

Remark 3.6. 1. We have 

H0,0 = CG �C[h ⊕ h∗] and H1,0 = CG � D(h). 
2. For any λ ∈ C∗, the algebra Ht,c is naturally isomorphic to Hλt,λc. 
3. The Dunkl operator embedding Θc specializes to embeddings 

Θ0,c : H0,c �→ CG �C[h∗ × hreg], 

given by x �→ x, g �→ g, y �→ D0, and a

Θ1,c : H1,c �→ CG � D(hreg), 
given by x �→ x, g �→ g, y �→ Da. So H0,c is generated by x, g, D0, and H1,c is generated by a

x, g, Da. 
Since Dunkl operators map polynomials to polynomials, the map Θ1,c defines a represen­

tation of H1,c on C[h]. This representation is called the polynomial representation of H1,c. 

3.3. The spherical subalgebra. Let e ∈ CG be the symmetrizer, e = |G|−1 
g∈G g. We 

have e 2 = e.


Definition 3.7. Bc := eHce is called the spherical subalgebra of Hc. The spherical subalgebra

of Ht,c is Bt,c := Bc/(� − t) = eHt,ce.


Note that 

e (CG � D(hreg)) e = D(hreg)G , e (CG �C[hreg × h∗]) e = C[hreg × h∗]G . 

Therefore, the restriction gives the embeddings: Θ1,c : B1,c )G, and Θ0,c : B0,c �
C[h∗ × hreg]G . In particular, we have 

�→ D(hreg → 

Proposition 3.8. The spherical subalgebra B0,c is commutative and does not have zero 
divisors. Also B0,c is finitely generated. 

15 
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Proof. The first statement is clear from the above. The second statement follows from the 
fact that gr(B0,c) = B0,0 = C[h × h∗]G, which is finitely generated by Hilbert’s theorem. � 

Corollary 3.9. Mc = SpecB0,c is an irreducible affine algebraic variety. 

Proof. Directly from the definition and the proposition. � 

We also obtain 

Proposition 3.10. Bc is a flat quantization (non-commutative deformation) of B0,c over 
C[�]. 

So B0,c carries a Poisson bracket {·, ·}(thus Mc is a Poisson variety), and Bc is a quanti­
zation of the Poisson bracket, i.e. if a, b ∈ Bc and a0, b0 are the corresponding elements in 
B0,c, then 

[a, b]/� ≡ {a0, b0} (mod �). 

Definition 3.11. The Poisson variety Mc is called the Calogero-Moser space of G, h with 
parameter c. 

3.4. The localization lemma. Let H loc = Ht,c[δ
−1] be the localization of Ht,c as a module t,c 

over C[h] with respect to the discriminant δ (a polynomial vanishing to the first order on 
each reflection plane). Define also Bloc = eH loc e.t,c t,c 

Proposition 3.12. (i) For t = 0 the map Θt,c induces an isomorphism of algebras 
H loc 

�
), which restricts to an isomorphism Bloc )G .t,c → CG � D(hreg t,c → D(hreg

(ii) The map Θ0,c induces an isomorphism of algebras H loc → CG � C[h∗ × hreg], which 0,c


restricts to an isomorphism Bloc ]G .
0,c → C[h∗ × hreg

Proof. This follows immediately from the fact that the Dunkl operators have poles only on 
the reflection hyperplanes. � 

Since gr(B0,c) = B0,0 = C[h∗ ⊕ h]G, we get the following geometric corollary. 

Corollary 3.13. (i) The family of Poisson varieties Mc is a flat deformation of the 
Poisson variety M0 := (h × h∗)/G. In particular, Mc is smooth outside of a subset of 
codimension 2. 

(ii) We have a natural map βc : Mc h/G, such that βc
−1(hreg/G) is isomorphic to →

(hreg ×h∗)/G. The Poisson structure on Mc is obtained by extension of the symplectic 
Poisson structure on (hreg × h∗)/G. 

Example 3.14. Let W = Z2, h = C. Then B0,c = �x2, xp, p2 −c2/x2�. Let X := x2, Z := xp 
and Y := p2 −c2/x2 . Then Z2 − XY = c2 . So Mc is isomorphic to the quadric Z2 −XY = c2 

in the 3-dimensional space and it is smooth for c = 0. 

3.5. Category O for rational Cherednik algebras. From the PBW theorem, we see that 
H1,c = Sh∗ ⊗ CG ⊗ Sh. It is similar to the structure of the universal enveloping algebra of a 
simple Lie algebra: U(g) = U(n−)⊗U(h)⊗U(n+). Namely, the subalgebra CG plays the role 
of the Cartan subalgebra, and the subalgebras Sh∗ and Sh play the role of the positive and 
negative nilpotent subalgebras. This similarity allows one to define and study the category 
O analogous to the Bernstein-Gelfand-Gelfand category O for simple Lie algebras. 

16 
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Definition 3.15. The category Oc(G, h) is the category of modules over H1,c(G, h) which 
are finitely generated over Sh∗ and locally finite under Sh (i.e., for M ∈ Oc(G, h), ∀v ∈ M , 
(Sh)v is finite dimensional). 

If M is a locally finite (Sh)G-module, then 

M = ⊕λ∈h∗/GMλ, 

where 
Mλ = {v ∈ M |∀p ∈ (Sh)G , ∃N s.t. (p − λ(p))N v = 0}, 

(notice that h∗/G = Specm(Sh)G). 

Proposition 3.16. Mλ are H1,c-submodules. 

Proof. Note first that we have an isomorphism µ : H1,c(G, h) ∼ H1,c= (G, h∗), which is given 
by xa Now let x1, . . . , xr be a basis of h∗ and y1, . . . , yr a basis of h.�→ ya, yb �→ −xb, g �→ g. 
Suppose P = P (x1, . . . , xr) ∈ (Sh∗)G . Then we have 

∂ 
[y, P ] = 

∂y 
P ∈ Sh∗, where y ∈ h, 

(this follows from the fact that both sides act in the same way in the polynomial represen­
tation, which is faithful). So using the isomorphism µ, we conclude that if Q ∈ (Sh)G, Q = 
Q(y1, . . . , yr), then [x, Q] = −∂xQ for x ∈ h∗. 

Now, to prove the proposition, the only thing we need to check is that Mλ is invariant 
under x ∈ h∗. For any v ∈ Mλ, we have (Q − λ(Q))N v = 0 for some N . Then 

(Q − λ(Q))N+1 xv = (N + 1)∂xQ (Q − λ(Q))N v = 0.· 

So xv ∈ Mλ. 

Corollary 3.17. We have the following decomposition: 

Oc(G, h) = Oc(G, h)λ, 
λ∈h∗/G 

where Oc(G, h)λ is the subcategory of modules where (Sh)G acts with generalized eigenvalue 
λ. 

Proof. Directly from the definition and the proposition.	 � 

Note that Oc(G, h)λ is an abelian category closed under taking subquotients and exten­
sions. 

3.6. The grading element. Let � 1 � 2cs
(3.2)	 h = xiyi + 

2 
dim h − 

1 − λs 
s. 

i s∈S 

Proposition 3.18. We have 

[h, x] = x, x ∈ h∗, [h, y] = −y, y ∈ h. 
17 
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Proof. Let us prove the first relation; the second one is proved similarly. We have 

[h, x] = 
� 

xi[yi, x] − 
� 

1

2

− 
cs 

λs 
· λs 

2 
− 1

(α∨, x)αs · ss 
i � 

s∈S � 
= xi(yi, x) − (α∨, x)(αs, yi)s + (α∨, x)αs · s.xi cs s cs s 

i i � 
s∈S � 

s∈S 

The last two terms cancel since i xi(αs, yi) = αs, so we get i xi(yi, x) = x. � 

Proposition 3.19. Let G = W be a real reflection group. Let � 1 � 1 � 1 �

h = xiyi + dim h − css, E = − xi 

2 , F = yi 
2 .


2	 2 2 
i	 i is∈S 

Then 

(i)	h = i(xiyi + yixi)/2; 
(ii)	h, E, F form an sl2-triple. 

Proof. A direct calculation.	 � 

Theorem 3.20. Let M be a module over H1,c(G, h). 

(i)	 If h acts locally nilpotently on M , then h acts locally finitely on M . 
(ii)	 If M is finitely generated over Sh∗, then M ∈ Oc(G, h)0 if and only if h acts locally 

finitely on M . 

Proof. (i) Assume that Sh acts locally nilpotently on M . Let v ∈ M . Then Sh v is a finite · 
dimensional vector space and let d = dim Sh v. We prove that v is h-finite by induction · 
in dimension d. We can use d = 0 as base, so only need to do the induction step. The 
space Sh v must contain a nonzero vector u such that y u = 0, ∀y ∈ h. Let U ⊂ M be ·	 · 
the subspace of vectors with this property. h acts on U by an element of CG, hence locally 
finitely. So it is sufficient to show that the image of v in M/�U� is h-finite (where �U� is 
the submodule generated by U). But this is true by the induction assumption, as u = 0 in 
M/�U�. 

(ii) We need to show that if h acts locally finitely on M , then h acts locally nilpotently 
on M . Assume h acts locally finitely on M . Then M = ⊕β∈B M [β], where B ⊂ C. Since M 
is finitely generated over Sh∗, B is a finite union of sets of the form z + Z≥0, z ∈ C. So Sh 
must act locally nilpotently on M . � 

We can obtain the following corollary easily. 

Corollary 3.21. Any finite dimensional H1,c(G, h)-module is in Oc(G, h)0. 

We see that any module M ∈ Oc(G, h)0 has a grading by generalized eigenvalues of h: 
M = ⊕β M [β]. 

3.7. Standard modules. Let τ be a finite dimensional representation of G. The standard 
module over H1,c(G, h) corresponding to τ (also called the Verma module) is 

Mc(G, h, τ) = Mc(τ ) = H1,c(G, h) ⊗CG�Sh τ ∈ Oc(G, h)0, 
where Sh acts on τ by zero. 

So from the PBW theorem, we have that as vector spaces, Mc(τ) ∼= τ ⊗ Sh∗. 
18 
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Remark 3.22. More generally, ∀λ ∈ h∗, let Gλ = Stab(λ), and τ be a finite dimensional 
representation of Gλ. Then we can define Mc,λ(G, h, τ) = H1,c(G, h) ⊗CGλ�Sh τ , where Sh 
acts on τ by λ. These modules are called the Whittaker modules. 

Let τ be irreducible, and let hc(τ) be the number given by the formula


dim h � 2cs

hc(τ) = 

2 
− 

1 − λs 
s|τ . 

s∈S 

Then we see that h acts on τ ⊗ Smh∗ by the scalar hc(τ) + m. 

Definition 3.23. A vector v in an H1,c-module M is singular if yiv = 0 for all i. 

Proposition 3.24. Let U be an H1,c(G, h)-module. Let τ ⊂ U be a G-submodule consisting 
of singular vectors. Then there is a unique homomorphism φ : Mc(τ ) U of C[h]-modules →
such that φ|τ is the identity, and it is an H1,c-homomorphism. 

Proof. The first statement follows from the fact that Mc(τ) is a free module over C[h] gen­
erated by τ . Also, it follows from the Frobenius reciprocity that there must exist a map φ 
which is an H1,c-homomorphism. This implies the proposition. � 

3.8. Finite length. 

Proposition 3.25. ∃K ∈ R such that for any M ⊂ N in Oc(G, h)0, if M [β] = N [β] for

Re (β) ≤ K, then M = N .


Proof. Let K = maxτ Re hc(τ). Then if M = N , M/N begins in degree β0 with Re β0 > K,

which is impossible since by Proposition 3.24, β0 must equal hc(τ) for some τ . � 

Corollary 3.26. Any M ∈ Oc(G, h)0 has finite length. 

Proof. Directly from the proposition. � 

3.9. Characters. For M ∈ Oc(G, h)0, define the character of M as the following formal 
series in t: � 

ch M (g, t) = tβTr M [β](g) = Tr M (gt
h), g ∈ G. 

β 

Proposition 3.27. We have 

χτ (g)t
hc(τ ) 

ch Mc(τ)(g, t) = . 
deth∗ (1 − tg) 

Proof. We begin with the following lemma. 

Lemma 3.28 (MacMahon’s Master theorem). Let V be a finite dimensional space, A : V →
V a linear operator. Then � 1 

tnTr (SnA) = . 
n≥0 

det(1 − tA) 

Proof of the lemma. If A is diagonalizable, this is obvious. The general statement follows by 
continuity. � 

1 
The lemma implies that Tr Sh∗ (gtD) = where D is the degree operator. This 

det(1 − gt) 
implies the required statement. � 

19 
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3.10. Irreducible modules. Let τ be an irreducible representation of G.


Proposition 3.29. Mc(τ) has a maximal proper submodule Jc(τ).


Proof. The proof is standard. Jc(τ) is the sum of all proper submodules of Mc(τ), and it is

not equal to Mc(τ) because any proper submodule has a grading by generalized eigenspaces 
of h, with eigenvalues β such that β − hc(τ) > 0. � 

We define Lc(τ) = Mc(τ )/Jc(τ), which is an irreducible module. 

Proposition 3.30. Any irreducible object of Oc(G, h)0 has the form Lc(τ) for an unique τ . 

Proof. Let L ∈ Oc(G, h)0 be irreducible, with lowest eigenspace of h containing an irreducible 
G-module τ . Then by Proposition 3.24, we have a nonzero homomorphism Mc(τ) L, which 
is surjective, since L is irreducible. Then we must have L = Lc(τ). 

→ 
� 

Remark 3.31. Let χ be a character of G. Then we have an isomorphism H1,c(G, h) →
H1,cχ(G, h), mapping g ∈ G to χ−1(g)g. This automorphism maps Lc(τ) to Lcχ(χ−1 ⊗ τ) 
isomorphically. 

3.11. The contragredient module. Set c̄(s) = c(s−1). We have a natural isomorphism 
γ : H1,c̄(G, h∗)op → H1,c(G, h), acting trivially on h and h∗, and sending g ∈ G to g−1 . 
Thus if M is an H1,c(G, h)-module, then the full dual space M∗ is an H1,c̄(M, h∗)-module. 

If M ∈ Oc(G, h)0, then we can define M †, which is the h-finite part of M∗. 

Proposition 3.32. M † belongs to Oc̄(G, h∗)0. 
Proof. Clearly, if L is irreducible, then so is L†. Then L† is generated by its lowest h­
eigenspace over H1,c̄(G, h∗), hence over Sh∗. Thus, L† ∈ Oc̄(G, h∗)0. Now, let M ∈ Oc(G, h)0 

be any object. Since M has finite length, so does M †. Moreover, M † has a finite filtration 
with successive quotients of the form L†, where L ∈ Oc(G, h)0 is irreducible. This implies 
the required statement, since Oc(G, h)0 is closed under taking extensions. � 

Clearly, M †† = M . Thus, M �→ M † is an equivalence of categories Oc(G, h) → Oc̄(G, h∗)op. 

3.12. The contravariant form. Let τ be an irreducible representation of G. By Propo­
sition 3.24, we have a unique homomorphism φ : Mc(G, h, τ) Mc̄(G, h∗, τ ∗)† which is the→
identity in the lowest h-eigenspace. Thus, we have a pairing 

βc : Mc(G, h, τ) × Mc̄(G, h
∗, τ ∗) → C, 

which is called the contravariant form. 

Remark 3.33. If G = = = c, and τ ∼ τ ∗W is a real reflection group, then h ∼ h∗, c ¯ = via a 
symmetric form. So for real reflection groups, βc is a symmetric form on Mc(τ ). 

Proposition 3.34. The maximal proper submodule Jc(τ ) is the kernel of φ (or, equivalently, 
of the contravariant form βc). 

Proof. Let K be the kernel of the contravariant form. It suffices to show that Mc(τ)/K is 
irreducible. We have a diagram: 

φ 
Mc(G, h, τ) �� Mc(G, h∗, τ ∗)† 

������������ 

��
ξ 

Lc(G, h, τ) η 
∼ �� Lc(G, h∗, τ ∗)† 
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Indeed, a nonzero map ξ exists by Proposition 3.24, and it factors through Lc(G, h, τ), 
with η being an isomorphism, since Lc(G, h∗, τ ∗)† is irreducible. Now, by Proposition 3.24 
(uniqueness of φ), the diagram must commute up to scaling, which implies the statement. � 

Proposition 3.35. Assume that hc(τ) − hc(τ �) never equals a positive integer for any τ, τ � ∈
IrrepG. Then Oc(G, h)0 is semisimple, with simple objects Mc(τ). 

Proof. It is clear that in this situation, all Mc(τ) are simple. Also consider Ext1(Mc(τ),Mc(τ �)). 
If hc(τ)−hc(τ �) ∈/ Z, it is clearly 0. Otherwise, hc(τ) = hc(τ �), and again Ext1(Mc(τ),Mc(τ

�)) = 

→ 

0, since for any extension 

0 Mc(τ 
�) N→ → → Mc(τ) → 0, 

by Proposition 3.24 we have a splitting Mc(τ) N . � 

Remark 3.36. In fact, our argument shows that if Ext1(Mc(τ),Mc(τ
�)) �= 0, then hc(τ) −

hc(τ
�) ∈ N. 

3.13.	 The matrix of multiplicities. For τ, σ ∈ IrrepG, write τ < σ if 

Re hc(σ) − Re hc(τ) ∈ N. 

Proposition 3.37. There exists a matrix of integers N = (nσ,τ ), with nσ,τ ≥ 0, such that 
nτ,τ = 1, nσ,τ = 0 unless σ < τ , and 

Mc(σ) = nσ,τ Lc(τ) ∈ K0(Oc(G, h)0). 

Proof. This follows from the Jordan-Hölder theorem and the fact that objects in Oc(G, h)0 

have finite length. � 

Corollary 3.38. Let N−1 = (n̄τ,σ). Then 

Lc(τ) = n̄τ,σMc(σ). 

Corollary 3.39. We have 

n̄τ,σχσ(g)t
hc(τ ) 

ch Lc(τ )(g, t) =	 . 
deth∗ (1 − tg) 

Both of the corollaries can be obtained from the above proposition easily.

One of the main problems in the representation theory of rational Cherednik algebras is


the following problem. 
Problem: Compute the multiplicities nσ,τ or, equivalently, ch Lc(τ ) for all τ . 
In general, this problem is open. 

3.14. Example: the rank 1 case. Let G = Z/mZ and λ be an m-th primitive root of 1. 
Then the algebra H1,c(G, h) is generated by x, y, s with relations 

m−1

[y, x] = 1 − 2 cj s
j , sxs−1 = λx, sys−1 = λ−1 y. 

j=1 

Consider the one-dimensional space C and let y act by 0 and g ∈ G act by 1. We have 
Mc(C) = C[x]. The contravariant form βc,C on Mc(C) is defined by 

, x n) = an; , x n
� 
) = 0, n = n�.βc,C(x n βc,C(x n �
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nRecall that βc,C satisfies βc,C(x , xn) = βc,C(xn−1, yxn), which gives 

an = an−1(n − bn), 

where bn are new parameters: 
m−1

1 − λjn 

bn := 2 cj (b0 = 0, bn+m = bn). 
1 − λj 

j=1 

Thus we obtain the following proposition. 

Proposition 3.40. (i) Mc(C) is irreducible if only if n − bn = 0 � for any n ≥ 1. 
(ii)	Assume that r is the smallest positive integer such that r = br. Then Lc(C) has 

dimension r (which can be any number not divisible by m) with basis 1, x, . . . , xr−1 . 

Remark 3.41. According to Remark 3.31, this proposition in fact describes all the irre­
ducible lowest weight modules. 

Example 3.42. Consider the case m = 2. The Mc(C) is irreducible unless c ∈ 1/2 + Z≥0. 
If c = (2n + 1)/2 ∈ 1/2 + Z, n ≥ 0, then Lc(C) has dimension 2n + 1. A similar answer is 
obtained for lowest weight C−, replacing c by −c. 
3.15. The Frobenius property. Let A be a Z+-graded commutative algebra. The algebra 
A is called Frobenius if the top degree A[d] of A is 1-dimensional, and the multiplication 
map A[m] × A[d − m] A[d] is a nondegenerate pairing for any 0 ≤ m ≤ d. In particular, →
the Hilbert polynomial of a Frobenius algebra A is palindromic. 

Now, let us go back to considering modules over the rational Cherednik algebra H1,c. Any 
submodule J of the polynomial representation Mc(C) = Mc = C[h] is an ideal in C[h], so 
the quotient A = Mc/J is a Z+-graded commutative algebra. 

Now suppose that G preserves an inner product in h, i.e., G ⊆ O(h). 

Theorem 3.43. If A = Mc(C)/J is finite dimensional, then A is irreducible (A = Lc(C)) 
⇐⇒ A is a Frobenius algebra. 

Proof. 1) Suppose A is an irreducible H1,c-module, i.e., A = Lc(C). By Proposition 3.19, A 
is naturally a finite dimensional sl2-module (in particular, it integrates to the group SL2(C)). 
Hence, by the representation theory of sl2, the top degree of A is 1-dimensional. Let φ ∈ A∗ 

denote a nonzero linear function on the top component. Let βc be the contravariant form 
on Mc(C). Consider the form 

0	 1 
(v1, v2) �→ E(v1, v2) := βc(v1, gv2), where g = −1 0 

∈ SL2(C). 

Then E(xv1, v2) = E(v1, xv2). So for any p, q ∈ Mc(C) = C[h], E(p, q) = φ(p(x)q(x)) (for a 
suitable normalization of φ). 

Since E is a nondegenerate form, A is a Frobenius algebra. 
2)	 Suppose A is Frobenius. Then the highest component is 1-dimensional, and 

E : A ⊗ A → C, E(a, b) = φ(ab) is nondegenerate. We have E(xa, b) = E(a, xb). So 
set β(a, b) = E(a, g−1b). Then β satisfies β(a, xib) = β(yia, b). Thus, for all p, q ∈ C[h], 
β(p(x), q(x)) = β(q(y)p(x), 1). So β = βc up to scaling. Thus, βc is nondegenerate and A is 
irreducible. � 

Remark 3.44. If G � O(h), this theorem is false, in general. 
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Now consider the Frobenius property of Lc(C) for any G ⊂ GL(h). 

Theorem 3.45. Let U ⊂ Mc(C) = C[h] be a G-subrepresentation of dimension l = dim h, 
sitting in degree r, which consists of singular vectors. Let J = �U�. Assume that A = Mc/J 
is finite dimensional. Then 

(i)	A is Frobenius. 
(ii)	A admits a BGG type resolution:


A ← Mc(C) ← Mc(U) ← Mc(∧2U) ← · · · ← Mc(∧lU) ← 0.


(iii) The character of A is given by the formula 

l 2cs 
χA(g, t) = t 2 − 

� 
1−λs 

detU (1 − gtr) 
.s∈S 

deth∗ (1 − gt) 

In particular, dim A = rl . 
(iv) If G preserves an inner product, then A is irreducible. 

Proof. (i) Since Spec A is a complete intersection, A is Frobenius. 
(ii) We will use the following theorem: 

Theorem 3.46 (Serre). Let f1, . . . , fn ∈ C[t1, . . . , tn] be homogeneous polynomials, and 
assume that C[t1, . . . , tn] is a finitely generated module over C[f1, . . . , fn]. Then this is a free 
module. 

Consider SU ⊂ Sh∗. Then Sh∗ is a finitely generated SU -module (as Sh∗/�U� is finite 
dimensional). By Serre’s theorem, we know that Sh∗ is a free SU -module. The rank of this 
module is rl . Consider the Koszul complex attached to this module. Since the module is 
free, the Koszul complex is exact (i.e., it is a resolution of the zero fiber). At the level of 
SU -modules, it looks exactly like we want in (3.45). 

So we only need to show that the maps of the resolution are morphisms over H1,c. This 
is shown by induction. Namely, let δj : Mc(∧j U) → Mc(∧j−1U) be the corresponding 
differentials (so that δ0 : Mc(C) A is the projection). Then δ0 is an H1,c-morphism, which →
is the base of induction. If δj is an H1,c-morphism, then the kernel of δj is a submodule 
Kj ⊂ Mc(∧j U). Its lowest degree part is ∧j+1U sitting in degree (j + 1)r and consisting of 
singular vectors. Now, δj+1 is a morphism over Sh∗ which maps ∧j+1U identically to itself. 
By Proposition 3.24, there is only one such morphism, and it must be an H1,c-morphism. 
This completes the induction step. 
(iii) follows from (ii) by the Euler-Poincaré formula. 
(iv) follows from Theorem 3.43. 

3.16. Representations of H1,c of type A. Let us now apply the above results to the case 
of type A. We will follow the paper [CE]. 
Let G = Sn, and h be its reflection representation. In this case the function c reduces 

to one number. We will denote the rational Cherednik algebra H1,c(Sn) by Hc(n). It is 
generated by x1, . . . , xn, y1, . . . , yn and CSn with the following relations: �	 � 1 

yi = 0, xi = 0, [yi, xj] = −
n 
+ csij , i =� j, 
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n − 1 � 
[yi, xi] = − c sij . 

n 
j=i 

The polynomial representation Mc(C) of this algebra is the space of C[x1, . . . , xn]T of poly­
nomials of x1, . . . , xn, which are invariant under simultaneous translation T : xi �→ xi + a. 
In other words, it is the space of regular functions on h = Cn/Δ, where Δ is the diagonal. 

Proposition 3.47 (C. Dunkl). Let r be a positive integer not divisible by n, and c = r/n. 
Then Mc(C) contains a copy of the reflection representation h of Sn, which consists of 
singular vectors (i.e. those killed by y ∈ h). This copy sits in degree r and is spanned by the 
functions 

dz 
n
r

fi(x1, . . . , xn) = Res∞[(z − x1) (z − xn)]· · · .

z − xi 

(the symbol Res∞ denotes the residue at infinity). 

Remark 3.48. The space spanned by fi is (n − 1)-dimensional, since fi = 0 (this sum i 
is the residue of an exact differential). 

Proof. This proposition can be proved by a straightforward computation. The functions fi 
are a special case of Jack polynomials. � 

Let Ic be the submodule of Mc(C) generated by fi. Consider the Hc(n)-module Vc = 
Mc(C)/Ic, and regard it as a C[h]-module. We have the following results. 

Theorem 3.49. Let d = (r, n) denote the greatest common divisor of r and n. Then the 
(set-theoretical) support of Vc is the union of Sn-translates of the subspaces of Cn/Δ, defined 
by the equations 

;
 x
 ;
 . . .
 x(d−1)x1 = x2 = = x· · · +1 = · · · = x2 +1 = · · · = xn.n n n n 
d d d d

In particular, the Gelfand-Kirillov dimension of Vc is d − 1. 

Corollary 3.50 ([BEG]). If d = 1 then the module Vc is finite dimensional, irreducible, 
admits a BGG type resolution, and its character is 

χVc (g, t) = t(1−r)(n−1)/2 det |h(1 − gtr) 
. 

det |h(1 − gt) 

Proof. For d = 1 Theorem 3.49 says that the support of Mc(C)/Ic is {0}. This implies that 
Mc(C)/Ic is finite dimensional. The rest follows from Theorem 3.45. � 

Proof of Theorem 3.49. The support of Vc is the zero set of Ic, i.e. the common zero set of 
n� 

fi. Fix x1, . . . , xn ∈ C. Then fi(x1, . . . , xn) = 0 for all i iff λifi = 0 for all λi, i.e. � � 
i=1 

n� n� 
r λi 
nRes∞ (z − xj ) dz = 0.


z − xij=1 i=1 

Assume that x1, . . . xn take distinct values y1, . . . , yp with positive multiplicities m1, . . . ,mp. 
The previous equation implies that the point (x1, . . . , xn) is in the zero set iff 

p p
r 

Res∞ (z − yj )
mj n −1 νi(z − y1) · · ·
(z�− yi) · · ·
(z − yp) dz = 0 ∀νi. 

j=1 i=1 
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Since νi are arbitrary, this is equivalent to the condition 
p

Res∞ (z − yj )
mj n

r −1 z idz = 0, i = 0, . . . , p − 1. 
j=1 

We will now need the following lemma. 
p

Lemma 3.51. Let a(z) = (z −yj )µj , where µj ∈ C, j µj ∈ Z and j µj > −p. Suppose 
j=1 

Res∞a(z)z 
idz = 0, i = 0, 1, . . . , p − 2. 

Then a(z) is a polynomial. 

Proof. Let g(z) be a polynomial. Then 

0 = Res∞d(g(z) a(z)) = Res∞(g�(z)a(z) + a�(z)g(z))dz, · 
and hence � � 

Res g�(z) + 
µj 

g(z) a(z)dz = 0.∞ 
z − yji 

Let g(z) = z l (z − yj). Then g�(z) + 
z − 
µj 
yj 
g(z) is a polynomial of degree l + p − 1 

j � j � 
with highest coefficient l + p + µj = 0 (as � µj > −p). This means that for every l ≥ 0, 
Res∞z 

l+p−1 a(z)dz is a linear combination of residues of zqa(z)dz with q < l + p − 1. By 
the assumption of the lemma, this implies by induction in l that all such residues are 0 and 
hence a is a polynomial. � 

In our case (mj r/n − 1) = r − p (since mj = n) and the conditions of the lemma are 
p

satisfied. Hence (x1, . . . , xn) is in the zero set of Ic iff (z − yj)
mj n

r −1 is a polynomial. This 
j=1 

is equivalent to saying that all mj are divisible by n/d. 
We have proved that (x1, . . . , xn) is in the zero set of Ic if and only if (z − x1) (z − xn)· · · 

is the (n/d)-th power of a polynomial of degree d. This implies the theorem. � 

Remark 3.52. For c > 0, the above representations are the only irreducible finite di­
mensional representations of H1,c(Sn). Namely, it is proved in [BEG] that the only finite 
dimensional representations of H1,c(Sn) are multiples of Lc(C) for c = r/n, and of Lc(C−) 
(where C− is the sign representation) for c = −r/n, where r is a positive integer relatively 
prime to n. 

3.17. Notes. The discussion of the definition of rational Cherednik algebras and their basic 
properties follows Section 7 of [E4]. The discussion of the category O for rational Cherednik 
algebras follows Section 11 of [E4]. The material in Sections 3.14-3.16 is borrowed from [CE]. 
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4. The Macdonald-Mehta integral


4.1. Finite Coxeter groups and the Macdonald-Mehta integral. Let W be a finite 
Coxeter group of rank r with real reflection representation hR equipped with a Euclidean 
W -invariant inner product (·, ). Denote by h the complexification of hR. The reflection ·
hyperplanes subdivide hR into |W | chambers; let us pick one of them to be the dominant 
chamber and call its interior D. For each reflection hyperplane, pick the perpendicular vector 
α ∈ hR with (α, α) = 2 which has positive inner products with elements of D, and call it 
the positive root corresponding to this hyperplane. The walls of D are then defined by the 
equations (αi, v) = 0, where αi are simple roots. Denote by S the set of reflections in W , 
and for a reflection s ∈ S denote by αs the corresponding positive root. Let 

δ(x) = (αs, x) 
s∈S 

be the corresponding discriminant polynomial. Let di, i = 1, . . . , r, be the degrees of the 
generators of the algebra C[h]W . Note that W = i di.| | 

−kLet H1,c(W, h) be the rational Cherednik algebra of W . Here we choose c = as a 
constant function. Let Mc = Mc(C) be the polynomial representation of H1,c(W, h), and βc 
be the contravariant form on Mc defined in Section 3.12. We normalize it by the condition 
βc(1, 1) = 1. 

Theorem 4.1. (i) (The Macdonald-Mehta integral) For Re (k) ≥ 0, one has � r� Γ(1 + kdi)
(4.1) (2π)−r/2 e−(x,x)/2|δ(x)|2kdx = 

Γ(1 + k) 
. 

hR i=1 

(ii) Let b(k) := βc(δ, δ). Then 

r �� di−1

b(k) = W (kdi + m).| | 
i=1 m=1 

For Weyl groups, this theorem was proved by E. Opdam [Op1]. The non-crystallographic 
cases were done by Opdam in [Op2] using a direct computation in the rank 2 case (reducing 
(4.1) to the beta integral by passing to polar coordinates), and a computer calculation by F. 
Garvan for H3 and H4. 

Example 4.2. In the case W = Sn, we have the following integral (the Mehta integral): � n� � Γ(1 + kd) 
.(2π)−(n−1)/2 

{x∈Rn| 
� 

i xi=0} 
e−(x,x)/2 

�

|xi − xj |2kdx = 
Γ(1 + k)

i=j d=2 

In the next subsection, we give a uniform proof of Theorem 4.1 which is given in [E2]. We 
emphasize that many parts of this proof are borrowed from Opdam’s previous proof of this 
theorem. 

4.2. Proof of Theorem 4.1. 

Proposition 4.3. The function b is a polynomial of degree at most |S|, and the roots of b 
are negative rational numbers. 
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Proof. Since δ has degree |S|, it follows from the definition of b that it is a polynomial of 
degree ≤ |S|. 
Suppose that b(k) = 0 for some k ∈ C. Then βc(δ, P ) = 0 for any polynomial P . Indeed, 

if there exists a P such that βc(δ, P ) = 0, then there exists such a P which is antisymmetric 
of degree |S|. Then P must be a multiple of δ which contradicts the equality βc(δ, δ) = 0. 

Thus, Mc is reducible and hence has a singular vector, i.e. a nonzero homogeneous poly­
nomial f of positive degree d living in an irreducible representation τ of W killed by ya. 
Applying the element h = i xai yai + r/2 + k s to f , we get s∈S 

d 
,k = −

mτ 

where mτ is the eigenvalue of the operator T := (1 − s) on τ . But it is clear (by s∈S
computing the trace of T ) that mτ ≥ 0 and mτ ∈ Q. This implies that any root of b is 
negative rational. � 

Denote the Macdonald-Mehta integral by F (k). 

Proposition 4.4. One has 

F (k + 1) = b(k)F (k). 

Proof. Let F = i ya
2 
i 
/2. Introduce the Gaussian inner product on Mc as follows: 

Definition 4.5. The Gaussian inner product γc on Mc is given by the formula 

γc(v, v
�) = βc(exp(F)v, exp(F)v

�). 

This makes sense because the operator F is locally nilpotent on Mc. Note that δ is a 
nonzero W -antisymmetric polynomial of the smallest possible degree, so ( ya

2 
i 
)δ = 0 and 

hence 

(4.2) γc(δ, δ) = βc(δ, δ) = b(k). 

For a ∈ h, let xa ∈ h∗ ⊂ H1,c(W, h), ya ∈ h ⊂ H1,c(W, h) be the corresponding generators 
of the rational Cherednik algebra. 

Proposition 4.6. Up to scaling, γc is the unique W -invariant symmetric bilinear form on 
Mc satisfying the condition 

γc((xa − ya)v, v
�) = γc(v, yav

�), a ∈ h. 

Proof. We have 

γc((xa − ya)v, v
�) = βc(exp(F)(xa − ya)v, exp(F)v

�) = βc(xa exp(F)v, exp(F)v
�) 

= βc(exp(F)v, ya exp(F)v
�) = βc(exp(F)v, exp(F)yav

�) = γc(v, yav
�). 

Let us now show uniqueness. If γ is any W -invariant symmetric bilinear form satisfying 
the condition of the Proposition, then let β(v, v�) = γ(exp(−F)v, exp(−F)v�). Then β is 
contravariant, so it’s a multiple of βc, hence γ is a multiple of γc. � 

Now we will need the following known result (see [Du2], Theorem 3.10). 
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Proposition 4.7. For Re (k) ≥ 0 we have 

(4.3) γc(f, g) = F (k)−1 f(x)g(x)dµc(x) 
hR 

where 
dµc(x) := e−(x,x)/2|δ(x)|2kdx. 

Proof. It follows from Proposition 4.6 that γc is uniquely, up to scaling, determined by the 
condition that it is W -invariant, and y† = xa − ya. These properties are easy to check for the a 
right hand side of (4.3), using the fact that the action of ya is given by Dunkl operators. � 

Now we can complete the proof of Proposition 4.4. By Proposition 4.7, we have 

F (k + 1) = F (k)γc(δ, δ), 

so by (4.2) we have 
F (k + 1) = F (k)b(k). 

Let �

b(k) = b0 (k + ki)

ni .


We know that ki > 0, and also b0 > 0 (because the inner product β0 on real polynomials is 
positive definite). 

Corollary 4.8. We have � �ni� Γ(k + ki)
F (k) = bk 

0 . 
Γ(ki)i 

Proof. Denote the right hand side by F∗(k) and let φ(k) = F (k)/F∗(k). Clearly, φ(0) = 1. 
Proposition 4.4 implies that φ(k) is a 1-periodic positive function on [0, ∞). Also by the 
Cauchy-Schwarz inequality, 

F (k)F (k�) ≥ F ((k + k�)/2)2 , 

so log F (k) is convex for k ≥ 0. This implies that φ = 1, since (log F∗(k))
�� → 0 as k →

+∞. � 

Remark 4.9. The proof of this corollary is motivated by the standard proof of the following 
well known characterization of the Γ function. 

Proposition 4.10. The Γ function is determined by three properties: 
(i) Γ(x) is positive on [1, +∞) and Γ(1) = 1; 
(ii) Γ(x + 1) = xΓ(x); 
(iii) log Γ(x) is a convex function on [1, +∞). 

Proof. It is easy to see from the definition Γ(x) = 
0 
∞ 
tx−1e−tdt that the Γ function has 

properties (i) and (ii); property (iii) follows from this definition and the Cauchy-Schwarz 
inequality. 
Conversely, suppose we have a function F (x) satisfying the above properties, then we have 

F (x) = φ(x)Γ(x) for some 1-periodic function φ(x) with φ(x) > 0. Thus, we have 

(log F )�� = (log φ)�� + (log Γ)��. 
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Since limx +∞(log Γ)�� = 0, (log F )�� ≥ 0, and φ is periodic, we have (log φ)�� ≥ 0. Since� n+1 
→

(log φ)��dx = 0, we see that (log φ)�� ≡ 0. So we have φ(x) ≡ 1. � 
n 

In particular, we see from Corollary 4.8 and the multiplication formulas for the Γ function 
that part (ii) of Theorem 4.1 implies part (i). 

It remains to establish (ii). 

Proposition 4.11. The polynomial b has degree exactly |S|. 

Proof. By Proposition 4.3, b is a polynomial of degree at most |S|. To see that the degree is 
precisely |S|, let us make the change of variable x = k1/2y in the Macdonald-Mehta integral 
and use the steepest descent method. We find that the leading term of the asymptotics of 
log F (k) as k → +∞ is |S|k log k. This together with the Stirling formula and Corollary 4.8 
implies the statement. � 

Proposition 4.12. The function 
r� 1 − e2πikdj 

G(k) := F (k) 
2πik1 − e

j=1 

analytically continues to an entire function of k. 

Proof. Let ξ ∈ D be an element. Consider the real hyperplane Ct = itξ + hR, t > 0. Then 
Ct does not intersect reflection hyperplanes, so we have a continuous branch of δ(x)2k on 
Ct which tends to the positive branch in D as t 0. Then, it is easy to see that for any → 

2πik�(w)w ∈ W , the limit of this branch in the chamber w(D) will be e |δ(x)|2k, where �(w) is 
the length of w. Therefore, by letting t = 0, we get 

1 � 
(2π)−r/2 e−(x,x)/2δ(x)2kdx = F (k)( e 2πik�(w)) 

Ct 
|W | 

w∈W 

(as this integral does not depend on t by Cauchy’s theorem). But it is well known that 

2πik�(w) 
r

1 − e2πikdj 

e = ,
1 − e2πik 

w∈W j=1 

([Hu], p.73), so � 
(2π)−r/2|W | 

Ct 

e−(x,x)/2δ(x)2kdx = G(k). 

Since 
Ct 
e−(x,x)/2δ(x)2kdx is clearly an entire function, the statement is proved. 

Corollary 4.13. For every k0 ∈ [−1, 0] the total multiplicity of all the roots of b of the 
form k0 − p, p ∈ Z+, equals the number of ways to represent k0 in the form −m/di, m = 
1, . . . , di − 1. In other words, the roots of b are ki,m = −m/di − pi,m, 1 ≤ m ≤ di − 1, where 
pi,m ∈ Z+. 

Proof. We have 

G(k − p) = 
F (k) 

r
1 − e2πikdj 

,
b(k − 1) b(k − p) 

j=1 
1 − e2πik · · · 
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Now plug in k = 1 + k0 and a large positive integer p. Since by Proposition 4.12 the left 
hand side is regular, so must be the right hand side, which implies the claimed upper bound 
for the total multiplicity, as F (1 + k0) > 0. The fact that the bound is actually attained 
follows from the fact that the polynomial b has degree exactly |S| (Proposition 4.11), and 
the fact that all roots of b are negative rational (Proposition 4.3). � 

It remains to show that in fact in Corollary 4.13, pi,m = 0 for all i, m; this would imply 
(ii) and hence (i). 

Proposition 4.14. Identity (4.1) of Theorem 4.1 is satisfied in C[k]/k2 . 

Proof. Indeed, we clearly have F (0) = 1. Next, a rank 1 computation gives F �(0) = −γ|S|, 
where γ is the Euler constant (i.e. γ = limn +∞(1+ +1/n − log n)), while the derivative → · · · 
of the right hand side of (4.1) at zero equals to 

r

−γ (di − 1). 
i=1 

But it is well known that 
r

(di − 1) = |S|, 
i=1 

([Hu], p.62), which implies the result. � 

Proposition 4.15. Identity (4.1) of Theorem 4.1 is satisfied in C[k]/k3 . 

Note that Proposition 4.15 immediately implies (ii), and hence the whole theorem. Indeed, 
it yields that 

r di−1

(log F )��(0) = (log Γ)��(m/di), 
i=1 m=1 

so by Corollary 4.13 

r � r di−1� di−1 �� 
(log Γ)��(m/di + pi,m) = (log Γ)��(m/di), 

i=1 m=1 i=1 m=1 

which implies that pi,m = 0 since (log Γ)�� is strictly decreasing on [0, ∞). 
To prove Proposition 4.15, we will need the following result about finite Coxeter groups. 
Let ψ(W ) = 3|S|2 − r (d2 − 1).i=1 i 

Lemma 4.16. One has 

(4.4) ψ(W ) = ψ(G), 
G∈Par2(W ) 

where Par2(W ) is the set of parabolic subgroups of W of rank 2. 

Proof. Let 
r

Q(q) = |W | 
� 

1

1 
−
− 
q

q 
. 

di 
i=1 
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It follows from Chevalley’s theorem that


Q(q) = (1 − q)r det(1 − qw|h)−1 . 
w∈W 

Let us subtract the terms for w = 1 and w ∈ S from both sides of this equation, divide both 
sides by (q − 1)2, and set q = 1 (cf. [Hu], p.62, formula (21)). Let W2 be the set of elements 
of W that can be written as a product of two different reflections. Then by a straightforward 
computation we get 

1 � 1 
ψ(W ) = . 

24 
w∈W2 

r − Tr h(w) 

In particular, this is true for rank 2 groups. The result follows, as any element w ∈ W2 

belongs to a unique parabolic subgroup Gw of rank 2 (namely, the stabilizer of a generic 
point hw, [Hu], p.22). � 

Proof of Proposition 4.15. Now we are ready to prove the proposition. By Proposition 4.14, 
it suffices to show the coincidence of the second derivatives of (4.1) at k = 0. The second 
derivative of the right hand side of (4.1) at zero is equal to 

π2 r

6
(d2 − 1) + γ2|S|2 .i 

i=1 

On the other hand, we have 

F ��(0) = (2π)−r/2 e−(x,x)/2 log α2(x) log β2(x)dx. 
α,β∈S hR 

Thus, from a rank 1 computation we see that our job is to establish the equality � r

(2π)−r/2 
� 

e−(x,x)/2 log α2(x) log 
α

β2

2

(

(

x

x

)

)
dx = 

π

6 

2 

( 
� 

(di 
2 − 1) − 3|S|2) = − 

π

6 

2 

ψ(W ). 
α=β∈S hR i=1 

Since this equality holds in rank 2 (as in this case (4.1) reduces to the beta integral), in 
general it reduces to equation (4.4) (as for any α �= β ∈ S, sα and sβ are contained in a 
unique parabolic subgroup of W of rank 2). The proposition is proved. � 

4.3. Application: the supports of Lc(C). In this subsection we will use the Macdonald-
Mehta integral to computation of the support of the irreducible quotient of the polynoamial 
representation of a rational Cherednik algebra (with equal parameters). We will follow the 
paper [E3]. 
First note that the vector space h has a stratification labeled by parabolic subgroups of W . 

Indeed, for a parabolic subgroup W � ⊂ W , let hW � be the set of points in h whose stabilizer reg 

is W �. Then � 
h = hW � ,reg 

W �∈Par(W ) 

where Par(W ) is the set of parabolic subgroups in W . 
For a finitely generated module M over C[h], denote the support of M by supp (M). 
The following theorem is proved in [Gi1], Section 6 and in [BE] with different method. We 

will recall the proof from [BE] later. 
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Theorem 4.17. Consider the stratification of h with respect to stabilizers of points in W . 
Then the support supp (M) of any object M of Oc(W, h) in h is a union of strata of this 
stratification. 

This makes one wonder which strata occur in supp (Lc(τ)), for given c and τ . In [VV], 
Varagnolo and Vasserot gave a partial answer for τ = C. Namely, they determined (for W 
being a Weyl group) when Lc(C) is finite dimensional, which is equivalent to supp (Lc(C)) = 
0. For the proof (which is quite complicated), they used the geometry affine Springer fibers. 
Here we will give a different (and simpler) proof. In fact, we will prove a more general result. 

Recall that for any Coxeter group W , we have the Poincaré polynomial: 
r

PW (q) = 
� 

q �(w) = 
� 1 − qdi(W ) 

, where di(W ) are the degrees of W. 
w∈W i=1 

1 − q 

Lemma 4.18. If W � ⊂ W is a parabolic subgroup of W , then PW is divisible by PW � . 

Proof. By Chevalley’s theorem, C[h] is a free module over C[h]W and C[h]W � is a direct 
summand in this module. So C[h]W � is a projective module, thus free (since it is graded). 

Hence, there exists a polynomial Q(q) such that we have 

Q(q)hC[h]W (q) = hC[h]W � (q), 

where hV (q) denotes the Hilbert series of a graded vector space V . Notice that we have 
1 

hC[h]W (q) = , so we have 
PW (q)(1 − q)r 

Q(q) 
PW (q) 

= 
1 

PW � (q)
, i.e. Q(q) = PW (q)/PW � (q). 

� 

Corollary 4.19. If m ≥ 2 then we have the following inequality: 

#{i|m divides di(W )} ≥ #{i|m divides di(W �)}. 

Proof. This follows from Lemma 4.18 by looking at the roots of the polynomials PW and 
PW � . � 

Our main result is the following theorem. 

Theorem 4.20. [E3] Let c ≥ 0. Then a ∈ supp (Lc(C)) if and only if 

PW 
(e 2πic) = 0. 

PWa 

�

We can obtain the following corollary easily. 

Corollary 4.21. (i) Lc(C) �= Mc(C) if and only if c ∈ Q>0 and the denominator m of 
c divides di for some i; 

(ii) Lc(C) is finite dimensional if and only if 
PW 

(e2πic) = 0, i.e., iff 
PW � 

#{i|m divides di(W )} > #{i|m divides di(W �)}. 
for any maximal parabolic subgroup W � ⊂ W . 
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Remark 4.22. Varagnolo and Vasserot prove that Lc(C) is finite dimensional if and only if 
there exists a regular elliptic element in W of order m. Case-by-case inspection shows that 
this condition is equivalent to the combinatorial condition of (2). Also, a uniform proof of 
this equivalence is given in the appendix to [E3], written by S. Griffeth. 

Example 4.23. For type An−1, i.e., W = Sn, we get that Lc(C) is finite dimensional if and 
only if the denominator of c is n. This agrees with our previous results in type An−1. 

Example 4.24. Suppose W is the Coxeter group of type E7. Then we have the following 
list of maximal parabolic subgroups and the degrees (note that E7 itself is not a maximal 
parabolic). 

Subgroups E7 D6 A3 × A2 × A1 A6 

Degrees 2,6,8,10,12,14,18 2,4,6,6,8,10 2,3,4,2,3,2 2,3,4,5,6,7 

Subgroups A4 × A2 E6 D5 × A1 A5 × A1 

Degrees 2,3,4,5,2,3 2,5,6,8,9,12 2,4,5,6,8,2 2,3,4,5,6,2 

So Lc(C) is finite dimensional if and only if the denominator of c is 2, 6, 14, 18. 

The rest of the subsection is dedicated to the proof of Theorem 4.20. First we recall some 
basic facts about the Schwartz space and tempered distributions. 

Let S(Rn) be the set of Schwartz functions on Rn, i.e. 

S(Rn) = {f ∈ C∞(Rn)|∀α, β, sup |x α∂β f(x)| < ∞}. 
This space has a natural topology. 

A tempered distribution on Rn is a continuous linear functional on S(Rn). Let S�(Rn) 
denote the space of tempered distributions. 
We will use the following well known lemma. 

Lemma 4.25. (i) C[x]e−x2/2 ⊂ S(Rn) is a dense subspace. 
(ii)	Any tempered distribution ξ has finite order, i.e., ∃N = N(ξ) such that if f ∈ S(Rn) 

satisfying f = df = = dN−1f = 0 on supp ξ, then �ξ, f� = 0.· · · 
Proof of Theorem 4.20. Recall that on Mc(C), we have the Gaussian form γc from Section 
4.2. We have for Re (c) ≤ 0, 

(2π)−r/2 

γc(P, Q) = 
FW (−c) 

e−x2/2|δ(x)|−2cP (x)Q(x)dx, 
hR 

where P, Q are polynomials and 

FW (k) = (2π)−r/2 e−x2/2|δ(x)|2kdx 
hR 

is the Macdonald-Mehta integral. 
Consider the distribution:


(2π)−r/2


ξW = 
FW (−c) 

|δ(x)|−2c .
c 

It is well-known that this distribution is meromorphic in c (Bernstein’s theorem). Moreover, 
since γc(P, Q) is a polynomial in c for any P and Q, this distribution is in fact holomorphic 
in c ∈ C. 
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Proposition 4.26. 

supp (ξc
W ) = {a ∈ hR

FWa (−c) = 0} = {a ∈ hR
PW 

(e 2πic) = 0}| 
FW 

� |
PWa 

�

= {a ∈ hR|#{i|denominator of c divides di(W )}
= #{i|denominator of c divides di(Wa)}}. 

Proof. First note that the last equality follows from the product formula for the Poincaré 
polynomial, and the second equality from the Macdonald-Mehta identity. Now let us prove 
the first equality. 

Look at ξW near a ∈ h. Equivalently, we can consider c 

(2π)−r/2


ξW (x + a) = 
FW (−c) 

|δ(x + a)|−2c

c 

with x near 0. We have 

δW (x + a) = αs(x + a) = (αs(x) + αs(a)) 
s∈S� 

s∈S� 
= αs(x) (αs(x) + αs(a))· 

s∈S∩Wa s∈S\S∩Wa 

= δWa (x) Ψ(x),· 
where Ψ is a nonvanishing function near a (since αs(a) = 0 if � s /∈ S ∩ Wa). 

So near a, we have 

ξW FWa ξWa −2c 
c (x + a) = 

FW 
(−c) · (x) · |Ψ| ,c 

and the last factor is well defined since Ψ is nonvanishing. Thus ξc
W (x) is nonzero near a if 

and only if 
FWa (−c) = 0 which finishes the proof. � 
FW 

�

Proposition 4.27. For c ≥ 0, 

supp (ξc
W ) = supp Lc(C)R, 

where the right hand side stands for the real points of the support. 

Proof. Let a /∈ supp Lc(C) and assume a ∈ supp ξW . Then we can find a P ∈ Jc(C) = ker γcc 
such that P (a) = 0. Pick a compactly supported test function � φ ∈ C∞(hR) such that P does c 
not vanish anywhere on supp φ, and �ξW , φ� �= 0 (this can be done since P (a) �= 0 and ξW 

c c 
is nonzero near a). Then we have φ/P ∈ S(hR). Thus from Lemma 4.25 (i) it follows that 
there exists a sequence of polynomials Pn such that 

Pn(x)e
−x2/2 → 

P

φ 
in S(hR), when n →∞. 

So PPne−x2/2 → φ in S(hR), when n →∞. 
But we have �ξcW , PPne

−x2/2� = γc(P, Pn) = 0 which is a contradiction. This implies that 
supp ξc

W ⊂ (supp Lc(C))R. 
To show the opposite inclusion, let P be a polynomial on h which vanishes identically on 

supp ξW . By Lemma 4.25 (ii), there exists N such that �ξW , P N (x)Q(x)e−x2/2� = 0. Thus, c c 
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for any polynomial Q, γc(P N , Q) = 0, i.e. P N ∈ Ker γc. Thus, P |supp Lc(C) = 0. This implies 
the required inclusion, since supp ξc

W is a union of strata. � 

Theorem 4.20 follows from Proposition 4.26 and Proposition 4.27. � 

4.4. Notes. Our exposition in Sections 4.1 and 4.2 follows the paper [E2]; Section 4.3 follows 
the paper [E3]. 
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5.	 Parabolic induction and restriction functors for rational Cherednik 
algebras 

5.1. A geometric approach to rational Cherednik algebras. An important property 
of the rational Cherednik algebra H1,c(G, h) is that it can be sheafified, as an algebra, over 
h/G (see [E1]). More specifically, the usual sheafification of H1,c(G, h) as a Oh/G-module 
is in fact a quasicoherent sheaf of algebras, H1,c,G,h. Namely, for every affine open subset 
U ⊂ h/G, the algebra of sections H1,c,G,h(U) is, by definition, C[U ] ⊗C[h]G H1,c(G, h). 
The same sheaf can be defined more geometrically as follows (see [E1], Section 2.9). Let 

U� be the preimage of U in h. Then the algebra H1,c,G,h(U) is the algebra of linear operators 
on O(U�) generated by O(U�), the group G, and Dunkl operators � 2cs αs(a)

∂a − (1 − s), where a ∈ h. 
1 − λs αs 

s∈S 

5.2. Completion of rational Cherednik algebras. For any b ∈ h we can define the 
completion � (G, h)b to be the algebra of sections of the sheaf H1,c,G,h on the formal neigh­H1,c

borhood of the image of b in h/G. Namely, � (G, h)bH1,c is generated by regular functions on 
the formal neighborhood of the G-orbit of b, the group G, and Dunkl operators. 
The algebra � (G, h)b inherits from H1,c(G, h) the natural filtration F by order of dif­H1,c

• 

ferential operators, and each of the spaces F n � (G, h)b has a projective limit topology; the H1,c

whole algebra is then equipped with the topology of the nested union (or inductive limit). 
Consider the completion of the rational Cherednik algebra at zero, H�1,c(G, h)0. It naturally 

contains the algebra C[[h]]. Define the category � (G, h) of representations of � (G, h)0Oc	 H1,c

which are finitely generated over C[[h]]0 = C[[h]]. 
We have a completion functor �: Oc(G, h) → O�c(G, h), defined by 

M = H1,c(G, h)0 ⊗H1,c(G,h) M = C[[h]] ⊗C[h] M. 

Also, for N ∈ O�c(G, h), let E(N) be the subspace spanned by generalized eigenvectors of 
h in N where h is defined by (3.2). Then it is easy to see that E(N) ∈ Oc(G, h)0. 

Theorem 5.1. The restriction of the completion functor � to Oc(G, h)0 is an equivalence 
of categories Oc(G, h)0 → O�c(G, h). The inverse equivalence is given by the functor E. 

Proof. It is clear that M ⊂ � M) (as M is spanned by generalized eigenvectors M , so M ⊂ E(�
of h). Let us demonstrate the opposite inclusion. Pick generators m1, . . . ,mr of M which 
are generalized eigenvectors of h with eigenvalues µ1, . . . , µr. Let 0 M). Then v= v ∈ E(� = � 

fimi, where fi ∈ C[[h]]. Assume that (h− µ)N v = 0 for some N . 
�
Then v = 

� 
f
(µ−µi)mi,i	 i i 

= E(�where for f ∈ C[[h]] we denote by f (d) the degree d part of f . Thus v ∈ M , so M M). 

It remains to show that E�(N) = N , i.e. that N is the closure of E(N). In other words, 
letting m denote the maximal ideal in C[[h]], we need to show that the natural map E(N) 
N/mj N is surjective for every j. 

→ 

To do so, note that h preserves the descending filtration of N by subspaces mj N . On 
the other hand, the successive quotients of these subspaces, mj N/mj+1N , are finite dimen­
sional, which implies that h acts locally finitely on their direct sum grN , and moreover each 
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generalized eigenspace is finite dimensional. Now for each β ∈ C denote by Nj,β the general­
ized β-eigenspace of h in N/mjN . We have surjective homomorphisms Nj+1,β → Nj,β, and 
for large enough j they are isomorphisms. This implies that the map E(N) N/mj N is 
surjective for every j, as desired. 

→ 
� 

Example. Suppose that c = 0. Then Theorem 5.1 specializes to the well known fact that 
the category of G-equivariant local systems on h with a locally nilpotent action of partial 
differentiations is equivalent to the category of all G-equivariant local systems on the formal 
neighborhood of zero in h. In fact, both categories in this case are equivalent to the category 
of finite dimensional representations of G. 

We can now define the composition functor J 
J (M) = E(M). The functor J is called the Jacquet functor ([Gi2]). 

: Oc(G, h) → Oc(G, h)0, by the formula 

5.3. The duality functor. Recall that in Section 3.11, for any H1,c(G, h)-module M , the 
full dual space M∗ is naturally an H1,c̄(G, h∗)-module, via πM ∗ (a) = πM (γ(a))

∗. 
It is clear that the duality functor ∗ defines an equivalence between the category Oc

(G, h∗)op, and that M † = E(M∗) (where M † is the contragredient, or restricted dual �O¯

(G, h)0 

and
 c

module to M defined in Section 3.11). 

5.4. Generalized Jacquet functors. 

h-nilpotent. 

�P F Mroposition 5.2. or any ∈ Oc(G, h), a vector v ∈ M is h-finite if and only if it is


Proof. The “if” part follows from Theorem 3.20. To prove the “only if” part, assume that 
(h − µ)N v = 0. Then for any u ∈ Srh v, we have (h − µ + r)N u = 0. But by Theorem 5.1, · 
the real parts of generalized eigenvalues of h in M are bounded below. Hence Srh v = 0 for · 
large enough r, as desired. � 

According to Proposition 5.2, the functor E can be alternatively defined by setting E(M) 
to be the subspace of M which is locally nilpotent under the action of h. 
This gives rise to the following generalization of E: for any λ ∈ h∗ 

Oc(G, h) → Oc(G, h)λ by setting Eλ(M) to be the space of generalized eigenvectors of 
C[h∗]G in M with eigenvalue λ. 

we define the functor

Eλ :

This way, we have E0 = E. 
We can also define the generalized Jacquet functor Jλ 

formula Jλ(M) = Eλ(M). Then we have J0 

Jλ to Oc(G, h)λ is the identity functor. 

: Oc(G, h) → Oc(G, h)λ by the 
= J , and one can show that the restriction of


5.5. The centralizer construction. For a finite group H, let eH = H −1|
 |
 g be the
g∈H 
symmetrizer of H.


If G ⊃ H are finite groups, and A is an algebra containing C[H], then define the algebra 
Z(G, H, A) to be the centralizer EndA(P ) of A in the right A-module P = FunH (G, A) of 
H-invariant A-valued functions on G, i.e. such functions f : G A that f(hg) = hf(g).→
Clearly, P is a free A-module of rank |G/H|, so the algebra Z(G, H, A) is isomorphic to 
Mat|G/H|(A), but this isomorphism is not canonical. 

The following lemma is trivial. 

Lemma 5.3. The functor N �→ I(N) := P ⊗A N = FunH (G, N) defines an equivalence of 
categories A − mod Z(G, H, A) − mod.→ 
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5.6. Completion of rational Cherednik algebras at arbitrary points of h/G. The 
following result is, in essence, a consequence of the geometric approach to rational Cherednik 
algebras, described in Subsection 5.1. It should be regarded as a direct generalization to the 
case of Cherednik algebras of Theorem 8.6 of [L] for affine Hecke algebras. 

Let b ∈ h. Abusing notation, denote the restriction of c to the set Sb of reflections in Gb 

also by c. 

Theorem 5.4. One has a natural isomorphism 

H1,c

�H H1 1,c ,cθ :
 (G, h)b → Z(G, Gb, (Gb, h)0), 

defined by the following formulas. Suppose that f ∈ P = FunGb (G, (Gb, h)0). Then 

(θ(u)f)(w) = f(wu), u ∈ G; 

for any α ∈ h∗, 
(b)(θ(xα)f)(w) = (xwα + (wα, b))f(w), 

where xα ∈ h∗ ⊂ H1,c(G, h), xα 
(b) ∈ h∗ ⊂ H1,c(Gb, h) are the elements corresponding to α; and 

for any a ∈ h, 

2cs αs(wa)(b)(5.1) (θ(ya)f)(w) = ywaf(w) − (f(w) − f(sw)).

s∈S:s/∈Gb 

1 − λs xα
(b
s 
) 
+ αs(b) 

where ya ∈ h ⊂ H1,c(G, h), ya 
(b) ∈ h ⊂ H1,c(Gb, h). 

Proof. The proof is by a direct computation. We note that in the last formula, the fraction 
αs(wa)/(xα

(b
s 
) 
+ αs(b)) is viewed as a power series (i.e., an element of C[[h]]), and that only 

the entire sum, and not each summand separately, is in the centralizer algebra. � 

Remark. Let us explain how to see the existence of θ without writing explicit formulas, 
and how to guess the formula (5.1) for θ. It is explained in [E1] (see e.g. [E1], Section 
2.9) that the sheaf of algebras obtained by sheafification of H1,c(G, h) over h/G is generated 
(on every affine open set in h/G) by regular functions on h, elements of G, and Dunkl 
operators. Therefore, this statement holds for formal neighborhoods, i.e., it is true on the 
formal neighborhood of the image in h/G of any point b ∈ h. However, looking at the formula 
for Dunkl operators near b, we see that the summands corresponding to s ∈ S, s ∈/ Gb are 
actually regular at b, so they can be safely deleted without changing the generated algebra 
(as all regular functions on the formal neighborhood of b are included into the system of 
generators). But after these terms are deleted, what remains is nothing but the Dunkl 
operators for (Gb, h), which, together with functions on the formal neighborhood of b and 
the group Gb, generate the completion of H1,c(Gb, h). This gives a construction of θ without 
using explicit formulas. 
Also, this argument explains why θ should be defined by formula (5.1) of Theorem 5.4. 

Indeed, what this formula does is just restores the terms with s / Gb that have been ∈
previously deleted. 

The map θ defines an equivalence of categories 

H1,c H1,cθ
∗ : (G, h)b − mod Z(G, Gb,→ (Gb, h)0) − mod. 
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Corollary 5.5. We have a natural equivalence of categories 

ψλ : Oc(G, h)λ → Oc(Gλ, h/h
Gλ )0. 

Proof. The category Oc(G, h)λ is the category of modules over H1,c(G, h) which are finitely 
generated over C[h] and extend by continuity to the completion of the algebra H1,c(G, h) 
at λ. So it follows from Theorem 5.4 that we have an equivalence Oc(G, h)λ → Oc(Gλ, h)0. 
Composing this equivalence with the equivalence ζ : Oc(Gλ, h)0 → Oc(Gλ, h/hGλ )0, we obtain 
the desired equivalence ψλ. � 

Remark 5.6. Note that in this proof, we take the completion of H1,c(G, h) at a point of 
λ ∈ h∗ rather than b ∈ h. 

H1,c

which are finitely generated over � b.C[h]

�Oc(G, h)b5.7. The completion functor. Let
 be the category of modules over
 (G, h)b 

Proposition 5.7. The duality functor ∗ defines an anti-equivalence of categories Oc(G, h)λ → 
(G, h∗)λ�Oc̄ .


Proof. This follows from the fact (already mentioned above) that Oc(G, h)λ is the category 
of modules over H1,c(G, h) which are finitely generated over C[h] and extend by continuity 
to the completion of the algebra H1,c(G, h) at λ. � 

Let us denote the functor inverse to ∗ also by ∗; it is the functor of continuous dual (in 
the formal series topology). 

Oc Mb. 
→ Oc(G, h)0 in the opposite direction, sending a module N to 

the space Eb(N) of h-nilpotent vectors in N . 

(G, h)bWe have an exact functor of completion at b, Oc
have a functor Eb : �Oc (G, h)0 → , M �→
 We also


(G, h)b 

Proposition 5.8. The functor Eb is right adjoint to the completion functor �b. 

Proof. We have 

H1,cHom � (H1,c(G,h)b 
Mb, N) = Hom �H1,c(G,h)b 

(
 (G, h)b ⊗H1,c(G,h) M, N) 

= HomH1,c(G,h)(M, N |H1,c(G,h)) = HomH1,c(G,h)(M, Eb(N)). 

Remark 5.9. Recall that by Theorem 5.1, if b = 0 then these functors are not only adjoint 
but also inverse to each other. 

M)∗(G, h∗)b, one has Eb(M∗) = (Proposition 5.10.
 (i) For M ∈ O¯

Mb)
∗ = Eb(M∗) in Oc̄(G, h∗)b. 

are exact. 

in Oc(G, h)0.c

(ii) For M ∈ Oc(G, h)0, (
(iii) The functors Eb, Eb 

Proof. (i),(ii) are straightforward from the definitions. (iii) follows from (i),(ii), since the 
completion functors are exact. � 
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5.8. Parabolic induction and restriction functors for rational Cherednik algebras. 
Theorem 5.4 allows us to define analogs of parabolic restriction functors for rational Chered­
nik algebras. 

Namely, let b ∈ h, and Gb = G�. Define a functor Resb : Oc(G, h)0 → Oc(G�, h/hG
� 
)0 by 

the formula 
Resb(M) = (ζ E θ∗)(�I−1 Mb).◦ ◦ ◦ 

We can also define the parabolic induction functors in the opposite direction. Namely, let 
N ∈ Oc(G�, h/hG

� 
)0. Then we can define the object Indb(N) ∈ Oc(G, h)0 by the formula 

Indb(N) = (Eb θ−1 I)(ζ�−1(N)0).◦ ∗ ◦ 

Proposition 5.11. (i) The functors Indb, Resb are exact. 
(ii) One has Indb(Resb(M)) = Eb(�Mb). 

Proof. Part (i) follows from the fact that the functor Eb and the completion functor � b are 
exact (see Proposition 5.10). Part (ii) is straightforward from the definition. � 

Theorem 5.12. The functor Indb is right adjoint to Resb. 

Proof. We have 

Hom(Resb(M), N) = Hom((ζ E θ∗)(� I−1 θ∗)(�I−1 Mb), N) = Hom((E Mb), ζ
−1(N))◦ ◦ ◦ ◦ ◦ 

= Hom((I−1 θ∗)(� ζ�−1(N)0 Mb, (θ
−1 I)(ζ�−1(N)0))Mb), ) = Hom(�◦ ∗ ◦ 

= Hom(M, (Eb θ−1 I)(ζ�−1(N)0)) = Hom(M, Indb(N)).◦ ∗ ◦ 

At the end we used Proposition 5.8. � 

Then we can obtain the following corollary easily. 

Corollary 5.13. The functor Resb maps projective objects to projective ones, and the functor 
Indb maps injective objects to injective ones. 

We can also define functors resλ : Oc(G, h)0 → Oc(G�, h/hG
� 
)0 and indλ : Oc(G�, h/hG

� 
)0 →

(G, h)0, attached to λ ∈ h∗G
� 
, by Oc reg 

resλ := † ◦ Resλ ◦ †, indλ := † ◦ Indλ ◦ †, 

where † is as in Subsection 5.3. 

Corollary 5.14. The functors resλ, indλ are exact. The functor indλ is left adjoint to resλ. 
The functor indλ maps projective objects to projective ones, and the functor resλ injective 
objects to injective ones. 

Proof. Easy to see from the definition of the functors and the Theorem 5.12. � 

We also have the following proposition, whose proof is straightforward. 

Proposition 5.15. We have 

indλ(N) = (J ◦ ψ−1)(N), and resλ(M) = (ψλ ◦ M),Eλ)(�λ 

where ψλ is defined in Corollary 5.5. 
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5.9. Some evaluations of the parabolic induction and restriction functors. For 
generic c, the category Oc(G, h) is semisimple, and naturally equivalent to the category 
RepG of finite dimensional representations of G, via the functor τ �→ Mc(G, h, τ). (If G is 
a Coxeter group, the exact set of such c (which are called regular) is known from [GGOR] 
and [Gy]). 

Proposition 5.16. (i) Suppose that c is generic. Upon the above identification, the 
functors Indb, indλ and Resb, resλ go to the usual induction and restriction functors 
between categories RepG and RepG�. In other words, we have 

Resb(Mc(G, h, τ)) = ⊕
ξ∈�nτξMc(G

�, h/hG
� 
, ξ),

G� 

and 
Indb(Mc(G

�, h/hG
� 
, ξ)) = ⊕τ∈G�nτξMc(G, h, τ), 

where nτξ is the multiplicity of occurrence of ξ in τ |G� , and similarly for resλ, indλ. 
(ii) The equations of (i) hold at the level of Grothendieck groups for all c. 

Proof. Part (i) is easy for c = 0, and is obtained for generic c by a deformation argument. 
Part (ii) is also obtained by deformation argument, taking into account that the functors 
Resb and Indb are exact and flat with respect to c. � 

Example 5.17. Suppose that G� = 1. Then Resb(M) is the fiber of M at b, while Indb(C) = 
PKZ , the object defined in [GGOR], which is projective and injective (see Remark 5.22). This 
shows that Proposition 5.16 (i) does not hold for special c, as PKZ is not, in general, a direct 
sum of standard modules. 

5.10. Dependence of the functor Resb on b. Let G� ⊂ G be a parabolic subgroup. In 
the construction of the functor Resb, the point b can be made a variable which belongs to 
the open set hG

� 
.reg��Ghreg 

h/G be the natural map (note that this map is an étale covering of the image with 

be the formal neighborhood of the locally closed set hG
� 

regNamely, let
 in h, and let


reg → ��Ghπ :


H1,c

be the pullback of the sheaf H1,c,G,h under π. We can regard it as a sheaf of algebras over 
hG

� 
. Similarly to Theorem 5.4 we have an isomorphism reg

H1,c H1,c

the Galois group NG(G
�)/G�, where NG(G

�) is the normalizer of G� in G). Let (G, h)hG�
reg 

(G�, h/hG
� 
)0) ˆ reg⊗D(hG�

Z(G, G�,θ :
 (G, h)hG�
reg 

),
→


where D(hG� 
) is the sheaf of differential operators on hG

� 
, and ⊗̂ is an appropriate completion reg reg

of the tensor product. 
Thus, repeating the construction of Resb, we can define the functor 

Res : Oc(G, h)0 → Oc(G�, h/hG
� 
)0 � Loc(hG

� 
),reg

where Loc(hG
� 
) stands for the category of local systems (i.e. O-coherent D-modules) on hG

� 
.reg reg

This functor has the property that Resb is the fiber of Res at b. Namely, the functor Res is 
defined by the formula 

Res(M) = (E I−1 θ∗)(MhG
�

reg 
),
◦
 ◦


is the restriction of the sheaf M on h to the formal neighborhood of hG
� 

regwhere
MhG
�

reg 
.
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Remark 5.18. If G� is the trivial group, the functor Res is just the KZ functor from [GGOR], 
which we will discuss later. Thus, Res is a relative version of the KZ functor. 

Remark 5.19. Note that the object Res(M) is naturally equivariant under the group 
NG(G

�)/G�. 

Thus, we see that the functor Resb does not depend on b, up to an isomorphism. A similar 
statement is true for the functors Indb, resλ, indλ. 

Conjecture 5.20. For any b ∈ h, λ ∈ h∗ such that Gb = Gλ, we have isomorphisms of 
functors Resb ∼ = indλ.= resλ, Indb ∼

Remark 5.21. Conjecture 5.20 would imply that Indb is left adjoint to Resb, and that Resb 
maps injective objects to injective ones, while Indb maps projective objects to projective 
ones. 

Remark 5.22. If b and λ are generic (i.e., Gb = Gλ = 1) then the conjecture holds. Indeed, 
in this case the conjecture reduces to showing that we have an isomorphism of functors 
Fiberb(M) ∼ Fiberλ(M

†)∗ (M ∈ Oc Since both functors are exact functors to the = (G, h)). 
category of vector spaces, it suffices to check that dim Fiberb(M) = dimFiberλ(M

†). But this 
is true because both dimensions are given by the leading coefficient of the Hilbert polynomial 
of M (characterizing the growth of M). 

It is important to mention, however, that although Resb is isomorphic to Resb� if Gb = Gb� , 
this isomorphism is not canonical. So let us examine the dependence of Resb on b a little 
more carefully. 

Theorem 5.16 implies that if c is generic, then 

Res(Mc(G, h, τ)) = ⊕ξMc(G
�, h/hG

� 
, ξ) ⊗ Lτξ, 

where Lτξ is a local system on hG
� 
of rank nτξ. Let us characterize the local system Lτξ reg 

explicitly. 

Proposition 5.23. The local system Lτξ is given by the connection on the trivial bundle 
given by the formula � 2cs dαs � = d − (1 − s). 

s∈S:s/∈G� 1 − λs αs 

with values in HomG� (ξ, τ |G� ). 

Proof. This follows immediately from formula (5.1). � 

Definition 5.24. We will call the connection of Proposition 5.23 the parabolic KZ (Knizhnik-
Zamolodchikov) connection. 

Example 5.25. Let G = Sn and G� = Sn1 × · · ·× Snk with n1 + · · · + nk = n. In this case, 
there is only one parameter c. 
Let h = Cn be the permutation representation of G. Then 

hG
� 
= (Cn)G

� 
= {v ∈ h v = (z1, . . . , z1, z2, . . . , z2, . . . , zk, . . . , zk)}.| � �� � � �� � � �� � 

n1 n2 nk 
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Thus, the parabolic KZ connection on the trivial bundle with fiber being a representation τ 
of Sn has the form � n1+···+np n1+···+nq 

d − c 
dzp − dzq 

(1 − sij ). 
1≤p<q≤k i=n1+ +np−1+1 j=n1+ +nq−1+1 

zp − zq ··· ···

So the differential equations for a flat section F (z) of this bundle have the form 
··· ···

∂F � n1+�+np n1+�+nq 
(1 − sij )F 

= c . 
∂zp

q �=p i=n1+···+np−1+1 j=n1+···+nq−1+1 
zp − zq 

So F (z) = G(z) p<q(zp − zq)cnpnq , where the function G satisfies the differential equation 

∂G � n1+�+np n1+�···+nq 
sij G

···

. 
∂zp 

= −c 
q=p i=n1+ +np−1+1 j=n1+ +nq−1+1 

zp − zq� ··· ···

Let τ = V ⊗n where V is a finite dimensional space with dim V = N (this class of repre­
sentations contains as summands all irreducible representations of Sn). Let Vp = V ⊗np , so 
that τ = V1 ⊗ · · · ⊗ Vk. Then the equation for G can be written as 

∂G � ΩpqG 
∂zp 

= −c
zp − zq 

, p = 1, . . . , k, 
q=p �Nwhere Ω = Es,t ⊗ Et,s is the Casimir element for glN (Ei,j is the N by N matrix with s,t=1 

the only 1 at the (i, j)-th place, and the rest of the entries being 0). 
This is nothing but the well known Knizhnik-Zamolodchikov system of equations of the 

WZW conformal field theory, for the Lie algebra glN , see [EFK]. (Note that the repre­
sentations Vi are “the most general” in the sense that any irreducible finite dimensional 
representation of glN occurs in V ⊗r for some r, up to tensoring with a character.) 

This motivates the term “parabolic KZ connection”. 

5.11. Supports of modules. The following two basic propositions are proved in [Gi1], 
Section 6. We will give different proofs of them, based on the restriction functors. 

Proposition 5.26. Consider the stratification of h with respect to stabilizers of points in G. 
Then the (set-theoretical) support SuppM of any object M of Oc(G, h) in h is a union of 
strata of this stratification. 

Proof. This follows immediately from the existence of the flat connection along the set of 
points b with a fixed stabilizer G� on the bundle Resb(M). � 

Proposition 5.27. For any irreducible object M in Oc(G, h), SuppM/G is an irreducible 
algebraic variety. 

Proof. Let X be a component of SuppM/G. Let M � be the subspace of elements of M 
whose restriction to a neighborhood of a generic point of X is zero. It is obvious that M � is 
an H1,c(G, h)-submodule in M . By definition, it is a proper submodule. Therefore, by the 
irreducibility of M , we have M � = 0. Now let f ∈ C[h]G be a function that vanishes on X. 
Then there exists a positive integer N such that fN maps M to M �, hence acts by zero on 
M . This implies that SuppM/G = X, as desired. � 
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Propositions 5.26 and 5.27 allow us to attach to every irreducible module M ∈ Oc(G, h), 
a conjugacy class of parabolic subgroups, CM ∈ Par(G), namely, the conjugacy class of the 
stabilizer of a generic point of the support of M . Also, for a parabolic subgroup G� ⊂ G, 
denote by X (G�) the set of points b ∈ h whose stabilizer contains a subgroup conjugate to 
G�. 
The following proposition is immediate. 

Proposition 5.28. (i) Let M ∈ Oc(G, h)0 be irreducible. If b is such that Gb ∈ CM , 
then Resb(M) is a nonzero finite dimensional module over H1,c(Gb, h/hGb ). 

(ii) Conversely, let b ∈ h, and L be a finite dimensional module H1,c(Gb, h/hGb ). Then 
the support of Indb(L) in h is X (Gb). 

Let FD(G, h) be the set of c for which H1,c(G, h) admits a finite dimensional representation. 

Corollary 5.29. Let G� be a parabolic subgroup of G. Then X (G�) is the support of some 
irreducible representation from Oc(G, h)0 if and only if c ∈ FD(G�, h/hG

� 
). 

Proof. Immediate from Proposition 5.28. � 

Example 5.30. Let G = Sn, h = Cn−1 . In this case, the set Par(G) is the set of partitions 
of n. Assume that c = r/m, (r, m) = 1, 2 ≤ m ≤ n. By a result of [BEG], finite dimensional 
representations of Hc(G, h) exist if and only if m = n. Thus the only possible classes CM 

for irreducible modules M have stabilizers Sm ×· · ·× Sm, i.e., correspond to partitions into 
parts, where each part is equal to m or 1. So there are [n/m] + 1 possible supports for 
modules, where [a] denotes the integer part of a. 

5.12. Notes. Our discussion of the geometric approach to rational Cherednik algebras in 
Section 5.1 follows [E1] and Section 2.2 of [BE]. Our exposition in the other sections follows 
the corresponding parts of the paper [BE]. 
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6. The Knizhnik-Zamolodchikov functor


6.1. Braid groups and Hecke algebras. Let G be a complex reflection group and let h 
be its reflection representation. For any reflection hyperplane H ⊂ h, its pointwise stabilizer 
is a cyclic group of order mH . Fix a collection of nonzero constants q1,H , . . . , qmH −1,H which 
are G-invariant, namely, if H and H � are conjugate to each other under some element in G, 
then qi,H = qi,H� for i = 1, . . . ,mH − 1. 

Let BG = π1(hreg/G, x0) be the braid group of G, and TH ∈ BG be a representative of 
the conjugacy class defined by a small circle around the image of H in h/G oriented in the 
counterclockwise direction. 

The following theorem follows from elementary algebraic topology. 

Proposition 6.1. The group G is the quotient of the braid group BG by the relations 

T mH 
H = 1 

for all reflection hyperplanes H. 

Proof. See, e.g., [BMR] Proposition 2.17. � 

Definition 6.2. The Hecke algebra of G is defined to be 
m�H −1 

Hq(G) = C[BG]/�(TH − 1) (TH − exp(2πij/mH )qj,H ), for all H�. 
j=1 

Thus, by Proposition 6.1 we have an isomorphism 

H1(G) ∼= CG. 
So Hq(G) is a deformation of CG. 
Example 6.3 (Coxeter group case). Now let W be a Coxeter group. Let S be the set of 
reflections and let αs = 0 be the reflection hyperplane corresponding to s ∈ S. The Hecke 
algebra Hq(W ) is the quotient of C[BW ] by the relations 

(Ts − 1)(Ts + qs) = 0, 

for all reflections s where Ts is a small counterclockwise circle around the image of the 
hyperplane αs = 0 in h/W . 

6.2. KZ functors. For a complex reflection group G, let Loc(hreg) be the category of local 
systems (i.e., O-coherent D-modules) on hreg, and let Loc(hreg)G be the category of G­
equivariant local systems on hreg, i.e. of local systems on hreg/G. 

Suppose that G� = 1 is the trivial subgroup in G. Then the restriction functor defined in 
Section 5.10 defines a functor Res : Oc(G, h)0 → Loc(hreg/G). Also, we have the monodromy 
functor Mon : Loc(hreg/G) ∼ Rep(BG). The composition of these two functors is a functor = 
from Oc(G, h)0 to Rep(BG), which is exactly the KZ functor defined in [GGOR]. We will 
denote this functor by KZ. 

Theorem 6.4 (Ginzburg, Guay, Opdam, Rouquier, [GGOR]). The KZ functor factors 
through 
RepHq(G), where 

m�H −1 c � (1 − e2πij�/mH )s
qj,H = exp(2πibj,H /mH ), and bj,H = 2 H . 

1 − e−2πi�/mH 
�=1 
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Proof. Assume first that c is generic. Then the category Oc(G, h)0 is semisimple, with simple 
objects Mc(τ), so it is enough to check the statement on Mc(τ). Consider the trivial bundle 
over hreg with fiber τ . The KZ connection on it has the form � 2cs dαs

d − 
1 − λs αs 

(1 − s). 
s∈S 

The residue of the connection form of this connection on the hyperplane H on the j-th 
irreducible representation of Z/mH Z is 

m�H −1 c �s
2

1 − e−2
H 

πi�/mH 
(1 − e 2πij�/mH ). 

�=1 

Therefore, the monodromy operator around this hyperplane is diagonalizable, and the eigen­
values of this operator are 1 and exp(2πij/mH )qj,H , as desired. 

For special c, introduce the generalized Verma module 

Mc,n(τ) = Hc(G, h) ⊗CG�Sh (τ ⊗ Sh/m n+1), 

where m Sh is the maximal ideal of 0, n 0. Clearly, Mc,0 = Mc(τ). Moreover, ⊂ ≥
Mc,n (G, h)0 for any n, since it has a finite filtration whose successive quotients are ∈ Oc
Verma modules. 

Theorem 6.5. For large enough n, Mc,n(CG) contains a direct summand which is a projec­
tive generator of Oc(G, h)0. 

Proof. From the definition, Mc,n = Sh∗ ⊗ CG ⊗ Sh/mn+1 . Let ∂ be the degree operator on 
Mc,n(CG) with deg h∗ = 1, deg h = −1, and deg G = 0, i.e., we have 

[∂, x] = x, [∂, y] = −y, where x ∈ h∗, y ∈ h. 

So h − ∂ is a module endomorphism of Mc,n(CG) where h is the operator defined in (3.2). 
Moreover, h − ∂ acts locally finitely. In particular, we have a decomposition of Mc,n(CG) 
into generalized eigenspaces of h − ∂: 

(CG) = Mβ (CG).Mc,n c,n

β∈C 

We have 

Hom(Mc,n(CG), N) = {vectors in N which are killed by m n+1}, 

and 
Hom(Mβ (CG), N) = {vectors in N which are killed by m n+1 

c,n

and are generalized eigenvectors of h with generalized eigenvalue β}. 
Let Σ � = {hc(τ)|τ is a irreducible representation of G} (recall that 
(τ) = dim h 2cs s τ ), and let hc 2 − s∈S 1−λs 

|

MΣ (CG) = Mβ (CG).c,n c,n

β∈Σ 

Claim: for large n, MΣ (CG) is a projective generator of Oc(G, h)0.c,n
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Proof of the claim. First, for any β, there exists n such that MΣ (CG) is projective (since c,n

the condition of being killed by mn+1 is vacuous for large n). 
Secondly, consider the functor Hom(MΣ (CG), •). For any module N ∈ Oc(G, h)0, ifc,n

Hom(MΣ (CG), N) = 0, then ⊕β∈ΣN [β] = 0. So N = 0. Thus this functor does not kill c,n

nonzero objects, and so MΣ (CG) is a generator. �c,n

Theorem 6.5 is proved. � 

Corollary 6.6. (i) Oc(G, h)0 has enough projectives, so it is equivalent to the category 
of modules over a finite dimensional algebra. 

(ii) Any object of Oc(G, h)0 is a quotient of a multiple of Mc,n(CG) for large enough n. 

Proof. Directly from the definition and the above theorem. � 

Now we can finish the proof of Theorem 6.4. We have shown that for generic c, 
KZ(Mc,n(CG)) ∈ RepHq(G). Hence this is true for any c, since Mc,n(CG) is a flat fam­
ily of modules over Hc(G, h). Then, KZ(M) is a Hq(G)-module for all M , since any M is a 
quotient of Mc,n(CG) and the functor KZ is exact. � 

Corollary 6.7 (Broué, Malle, Rouquier, [BMR]). Let qj,H = exp(tj,H ) where tj,H ’s are 
formal parameters. Then Hq(G) is a free module over C[[tj,H ]] of rank |G|. 

Proof. We have 
Hq(G)/(t) = H1(G) = CG. 

So it remains to show that Hq(G) is free. To show this, it is sufficient to show that any 
τ ∈ IrrepG admits a flat deformation τq to a representation of Hq(G). We can define this 
deformation by letting τq = KZ(Mc(τ )). � 

Remark 6.8. 1. The validity of this Corollary in characteristic zero implies that it is also 
valid over a field positive characteristic. 

2. It is not known in general if the Corollary holds for numerical q (even generically). This 
is a conjecture of Broué, Malle, and Rouquier. But it is known for many cases (including all 
Coxeter groups). 

3. The proof of the Corollary is analytic (it is based on the notion of monodromy). There 
is no known algebraic proof, except in special cases, and in the case of Coxeter groups, which 
we’ll discuss later. 

6.3. The image of the KZ functor. First, let us recall the definition of a quotient category. 
Let A be an abelian category and B ⊂ A a full abelian subcategory. 

Definition 6.9. B is a Serre subcategory if it is closed under subquotients and extensions 
(i.e., if two terms in a short exact sequence are in B, so is the third one). 

If B ⊂ A is a Serre subcategory, one can define a category A/B as follows: 

objects in A/B = objects in A, 
HomA/B(X, Y ) = lim HomA(X

�, Y/Y �). 
−→ 

Y �,X/X�∈B 

The category A/B is an abelian category with the following universal property: any exact 
functor F : A → C that kills B must factor through A/B. 
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Now let Oc(G, h)tor be the full subcategory of Oc(G, h)0 consisting of modules supported 0 
on the reflection hyperplanes. It is a Serre subcategory, and ker(KZ) = Oc(G, h)tor0 . Thus 
we have a functor: 

KZ : Oc(G, h)0/Oc(G, h)tor RepHq(G).0 → 

Theorem 6.10 (Ginzburg, Guay, Opdam, Rouquier, [GGOR]). If dim Hq(G) = |G|, the 
functor KZ is an equivalence of categories. 

Proof. See [GGOR], Theorem 5.14. � 

6.4. Example: the symmetric group Sn. Let h = Cn , G = Sn. Then we have (for 
q ∈ C∗): 

Hq(Sn) = �T1, . . . , Tn−1�/�the braid relations and (Ti − 1)(Ti + q) = 0�.

The following facts are known:

(1) dim Hq(Sn) = n!; 
(2) Hq(Sn) is semisimple if and only if ord(q) = 2, 3, . . . , n. 
Now suppose q is generic. Let λ be a partition of n. Then we can define an Hq(Sn)­

module Sλ, the Specht module for the Hecke algebra in the sense of [DJ]. This is a certain 
deformation of the classical irreducible Specht module for the symmetric group. The Specht 
module carries an inner product �·, ·�. Denote Dλ = Sλ/Rad�·, ·�. 

Theorem 6.11 (Dipper, James, [DJ]). Dλ is either an irreducible Hq(Sn)-module, or 0. 
Dλ = 0 if and only if λ is e-regular where e = ord(q) (i.e., every part of λ occurs less than 
e times).


Proof. See [DJ], Theorem 6.3, 6.8. �


Now let Mc(λ) be the Verma module associated to the Specht module for Sn and Lc(λ) 
be its irreducible quotient. Then we have the following theorem. 

Theorem 6.12. If c ≤ 0, then KZ(Mc(λ)) = Sλ and KZ(Lc(λ)) = Dλ. 

Proof. See Section 6.2 of [GGOR]. � 

Corollary 6.13. If c ≤ 0, then SuppLc(λ) = Cn if and only if λ is e-regular. If c > 0, 
then SuppLc(λ) = Cn if and only if λ∨ is e-regular, or equivalently, λ is e-restricted (i.e.,

λi − λi+1 < e for i = 1, . . . , n − 1).


Proof. Directly from the definition and the above theorem. �


6.5. Notes. The references for this section are [GGOR], [BMR]. 
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7.	 Rational Cherednik algebras and Hecke algebras for varieties with 
group actions 

7.1. Twisted differential operators. Let us recall the theory of twisted differential oper­
ators (see [BB], section 2). 

Let X be a smooth affine algebraic variety over C. Given a closed 2-form ω on X, the 
algebra Dω(X) of differential operators on X twisted by ω can be defined as the algebra 
generated by OX and “Lie derivatives” Lv, v ∈ Vect(X), with defining relations 

fLv = Lfv, [Lv, f ] = Lvf, [Lv, Lw] = L[v,w] + ω(v, w). 

This algebra depends only on the cohomology class [ω] of ω, and equals the algebra D(X) 
of usual differential operators on X if [ω] = 0. 
An important special case of twisted differential operators is the algebra of differential 

operators on a line bundle. Namely, let L be a line bundle on X. Since X is affine, L admits 
an algebraic connection � with curvature ω, which is a closed 2-form on X. Then it is easy 
to show that the algebra D(X, L) of differential operators on L is isomorphic to Dω(X). 

If the variety X is smooth but not necessarily affine, then (sheaves of) algebras of twisted 
differential operators are classified by the space H2(X, Ω≥1), where Ω≥1 is the two-step com-X X 

plex of sheaves Ω1 
X ΩX 

2,cl, given by the De Rham differential acting from 1-forms to closed →
2-forms (sitting in degrees 1 and 2, respectively). If X is projective then this space is 
isomorphic to H2,0(X, C) ⊕ H1,1(X, C). We refer the reader to [BB], Section 2, for details. 

Remark 7.1. One can show that Dω(X) is the universal deformation of D(X) (see [E1]). 

7.2. Some algebraic geometry preliminaries. Let Z be a smooth hypersurface in a 
smooth affine variety X. Let i : Z X be the corresponding closed embedding. Let→
N denote the normal bundle of Z in X (a line bundle). Let OX (Z) denote the module 
of regular functions on X \ Z which have a pole of at most first order at Z. Then we 
have a natural map of OX -modules φ : OX (Z) i∗N . Indeed, we have a natural residue 
map η : Ω1 

X → i∗OZ (where Ω1 
→
is the module of 1-forms), hence a mapOX (Z) ⊗OX X 

η� : OX (Z) → i∗OZ ⊗OX TX = i∗(TX|Z ) (where TX is the tangent bundle). The map 
φ is obtained by composing η� with the natural projection TX|Z → N . 
We have an exact sequence of OX -modules: 

φ 
0 → OX → OX (Z) → i∗N 0− → 

Thus we have a natural surjective map of OX -modules ξZ : TX → OX (Z)/OX . 

7.3. The Cherednik algebra of a variety with a finite group action. We will now 
generalize the definition of Ht,c(G, h) to the global case. Let X be an affine algebraic variety 
over C, and G be a finite group of automorphisms of X. Let E be a G-invariant subspace 
of the space of closed 2-forms on X, which projects isomorphically to H2(X, C). Consider 
the algebra G � OT ∗X , where T ∗X is the cotangent bundle of X. We are going to define a 
deformation Ht,c,ω(G, X) of this algebra parametrized by 

(1) complex numbers t, 
(2)	G-invariant functions c on the (finite) set S of pairs s = (Y, g), where g ∈ G, and Y 

is a connected component of the set of fixed points Xg such that codimY = 1, and 
(3) elements ω ∈ EG = H2(X, C)G . 
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If all the parameters are zero, this algebra will conicide with G � OT ∗X . 
Let t, c = {c(Y, g)}, ω ∈ EG be variables. Let Dω/t(X)r be the algebra (over C[t, t−1, ω]) 

of twisted (by ω/t) differential operators on X with rational coefficients. 

Definition 7.2. A Dunkl-Opdam operator for (X, G) is an element of Dω/t(X)r[c] given by 
the formula � 2c(Y, g)
(7.1) D := tLv − 

1 − λY,g 
· fY (x) · (1 − g), 

(Y,g)∈S 

where λY,g is the eigenvalue of g on the conormal bundle to Y , v ∈ Γ(X, T X) is a vector 
field on X, and fY ∈ OX (Z) is an element of the coset ξY (v) ∈ OX (Z)/OX (recall that ξY 

is defined in Subsection 7.2). 

Definition 7.3. The algebra Ht,c,ω(X, G) is the subalgebra of G � Dω/t(X)r[c] generated 
(over C[t, c, ω]) by the function algebra OX , the group G, and the Dunkl-Opdam operators. 

By specializing t, c, ω to numerical values, we can define a family of algebras over C, which 
we will also denote Ht,c,ω(G, X). Note that when we set t = 0, the term tLv does not become 
0 but turns into the classical momentum. 

Definition 7.4. Ht,c,ω(G, X) is called the Cherednik algebra of the orbifold X/G. 

Remark 7.5. One has H1,0,ω(G, X) = G � Dω(X). Also, if λ �= 0 then Hλt,λc,λω(G, X) = 
Ht,c,ω(G, X). 

Example 7.6. X = h is a vector space and G is a subgroup in GL(h). Let v be a constant 
vector field, and let fY (x) = (αY , v)/αY (x), where αY ∈ h∗ is a nonzero functional vanishing 
on Y . Then the operator D is just the usual Dunkl-Opdam operator Dv in the complex 
reflection case (see Section 2.5). This implies that all the Dunkl-Opdam operators in the 
sense of Definition 7.2 have the form fiDyi + a, where fi ∈ C[h], a ∈ G � C[h], and Dyi 

are the usual Dunkl-Opdam operators (for some basis yi of h). So the algebra Ht,c(G, h) = 
Ht,c,0(G, X) is the rational Cherednik algebra for (G, h), see Section 3.1. 

The algebra Ht,c,ω(G, X) has a filtration F • which is defined on generators by deg(OX ) = 
deg(G) = 0, deg(D) = 1 for Dunkl-Opdam operators D. 

Theorem 7.7 (the PBW theorem). We have 
grF (Ht,c,ω(G, X)) = G � O(T ∗X)[t, c, ω]. 

Proof. Suppose first that X = h is a vector space and G is a subgroup in GL(h). Then, as 
we mentioned, Ht,c,ω(G, h) = Ht,c(G, h) is the rational Cherednik algebra for G, h. So in this 
case the theorem is true. 
Now consider arbitrary X. We have a homomorphism of graded algebras 

ψ : grF (Ht,c,ω(G, X)) → G � O(T ∗X)[t, c, ω] (the principal symbol homomorphism). 

The homomorphism ψ is clearly surjective, and our job is to show that it is injective (this 
is the nontrivial part of the proof). In each degree, ψ is a morphism of finitely generated 
OG -modules. Therefore, to check its injectivity, it suffices to check the injectivity on the 
formal neighborhood of each point z ∈ X/G. 
Let x be a preimage of z in X, and Gx be the stabilizer of x in G. Then Gx acts on the 

formal neighborhood Ux of x in X. 
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Lemma 7.8. Any action of a finite group on a formal polydisk over C is linearizable. 

Proof. Let D be a formal polydisk over C. Suppose we have an action of a finite group G 
on D. Then we have a group homomorphism: 

ρ : G Aut(D) = GLn(C) � AutU (D),→ 

where AutU (D) is the group of unipotent automorphisms of D (i.e. those whose derivative 
at the origin is 1), which is a prounipotent algebraic group. 
Our job is to show that the image of G under ρ can be conjugated into GLn(C). The 

obstruction to this is in the cohomology group H1(G, AutU (D)), which is trivial since G is 
finite and AutU (D) is prounipotent over C. � 

It follows from Lemma 7.8 that it suffices to prove the theorem in the linear case, which 
has been accomplished already. We are done. � 

Remark 7.9. The following remark is meant to clarify the proof of Theorem 7.7. In the case 
X = h, the proof of Theorem 7.7 is based, essentially, on the (fairly nontrivial) fact that the 
usual Dunkl-Opdam operators Dv commute with each other. It is therefore very important 
to note that in contrast with the linear case, for a general X we do not have any natural 
commuting family of Dunkl-Opdam operators. Instead, the operators (7.1) satisfy a weaker 
property, which is still sufficient to validate the PBW theorem. This property says that if 
D1, D2, D3 are Dunkl-Opdam operators corresponding to vector fields v1, v2, v3 := [v1, v2] 
and some choices of the functions fY , then [D1, D2] − D3 ∈ G � O(X) (i.e., it has no poles). 
To prove this property, it is sufficient to consider the case when X is a formal polydisk, with 
a linear action of G. But in this case everything follows from the commutativity of the usual 
Dunkl operators Dv. 

Example 7.10. (1) Suppose G = 1. Then for t = 0, � Ht,0,ω(G, X) = Dω/t(X). 
(2) Suppose G is a Weyl group and X = H the corresponding torus. Then H1,c,0(G, H) 

is called the trigonometric Cherednik algebra. 

7.4. Globalization. Let X be any smooth algebraic variety, and G ⊂ Aut(X). Assume 
that X admits a cover by affine G-invariant open sets. Then the quotient variety X/G 
exists. 

For any affine open set U in X/G, let U � be the preimage of U in X. Then we can 
define the algebra Ht,c,0(G, U �) as above. If U ⊂ V , we have an obvious restriction map 
Ht,c,0(G, V �) Ht,c,0(G, U �). The gluing axiom is clearly satisfied. Thus the collection of →
algebras Ht,c,0(G, U �) can be extended (by sheafification) to a sheaf of algebras on X/G. We 
are going to denote this sheaf by Ht,c,0,G,X and call it the sheaf of Cherednik algebras on 
X/G. Thus, Ht,c,0,G,X (U) = Ht,c,0(G, U �). 
Similarly, if ψ ∈ H2(X, Ω≥1)G , we can define the sheaf of twisted Cherednik algebras X 

Ht,c,ψ,G,X . This is done similarly to the case of twisted differential operators (which is the 
case G = 1). 

Remark 7.11. (1) The construction of Ht,c,ω(G, X) and the PBW theorem extend in a 
straightforward manner to the case when the ground field is not C but an algebraically 
closed field k of positive characteristic, provided that the order of the group G is 
relatively prime to the characteristic. 
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(2) The construction and main properties of the (sheaves of) Cherednik algebras of alge­
braic varieties can be extended without significant changes to the case when X is a 
complex analytic manifold, and G is not necessarily finite but acts properly discon­
tinuously. In the following lectures, we will often work in this generalized setting. 

7.5. Modified Cherednik algebra. It will be convenient for us to use a slight modification 
of the sheaf Ht,c,ψ,G,X . Namely, let η be a function on the set of conjugacy classes of Y such 
that (Y, g) ∈ S. We define Ht,c,η,ψ,G,X in the same way as Ht,c,ψ,G,X except that the Dunkl-
Opdam operators are defined by the formula � 2c(Y, g) � 
(7.2)	 D := tLv + fY (x) (g − 1) + fY (x)η(Y ). 

(Y,g)∈S 
1 − λY,g 

Y 

The following result shows that this modification is in fact tautological. Let ψY be the class 
in H2(X, Ω≥1) defined by the line bundle OX (Y )−1, whose sections are functions vanishing X 
on Y . 

Proposition 7.12. One has an isomorphism 

Ht,c,η,ψ,G,X → Ht,c,ψ+ 
� 

Y η(Y )ψY ,G,X . 

Proof. Let y ∈ Y and z be a function on the formal neighborhood of y such that z|Y = 0 
and dzy = 0. Extend it to a system of local formal coordinates z1 = z, z2, . . . , zd near y. A�	

∂Dunkl-Opdam operator near y for the vector field 
∂z can be written in the form 

∂ 1 
n−1

2c(Y, gm) mD = 
∂z 

+ 
z 
(

1 − λm (g − 1) + η(Y )). 
m=1 Y,g 

Conjugating this operator by the formal expression zη(Y ) := (zm)η(Y )/m, we get 
n−1

∂ 1 � 2c(Y, gm) 
z η(Y ) ◦ D ◦ z−η(Y ) = 

∂z 
+ 
z 1 − λm (g m − 1) 
m=1 Y,g 

This implies the required statement.	 � 

We note that the sheaf H1,c,η,0,G,X localizes to G � DX on the complement of all the 
hypersurfaces Y . This follows from the fact that the line bundle OX (Y ) is trivial on the 
complement of Y . 

7.6. Orbifold Hecke algebras. Let X be a connected and simply connected complex man­
ifold, and G is a discrete group of automorphisms of X which acts properly discontinuously. 
Then X/G is a complex orbifold. Let X � ⊂ X be the set of points with trivial stabilizer. Fix 
a base point x0 ∈ X �. Then the braid group of X/G is defined to be BG = π1(X �/G, x0). 
We have an exact sequence 1 K BG → G 1.→ → →
Now let S be the set of pairs (Y, g) such that Y is a component of Xg of codimension 1 in 

X (such Y will be called a reflection hypersurface). For (Y, g) ∈ S, let GY be the subgroup of 
G whose elements act trivially on Y . This group is obviously cyclic; let nY = |GY |. Let CY 

be the conjugacy class in BG corresponding to a small circle going counterclockwise around 
the image of Y in X/G, and TY be a representative in CY . 

The following theorem follows from elementary topology: 
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Theorem 7.13. K is defined by relations TY
nY = 1, for all reflection hypersurfaces Y (i.e., 

K is the intersection of all normal subgroups of BG containing TY
nY ). 

Proof. See, e.g., [BMR] Proposition 2.17. � 

For any conjugacy class of hypersurfaces Y such that (Y, g) ∈ S we introduce formal 
parameters τ1Y , . . . , τnY Y . The entire collection of these parameters will be denoted by τ . 
Let A0 = C[G]. 

Definition 7.14. We define the Hecke algebra of (G, X), denoted A = Hτ (G, X, x0), to be 
the quotient of the group algebra of the braid group, C[BG][[τ ]], by the relations 

nY

(7.3) (T − e 2πji/nY e τjY ) = 0, T ∈ CY 

j=1 

(i.e., by the closed ideal in the formal series topology generated by these relations). 

Thus, A is a deformation of A0. 
It is clear that up to an isomorphism this algebra is independent on the choice of x0, so 

we will sometimes drop x0 form the notation. 
The main result of this section is the following theorem. 

Theorem 7.15. Assume that H2(X, C) = 0. Then A = Hτ (G, X) is a flat formal defor­
mation of A0, which means A = A0[[τ ]] as a module over C[[τ ]]. 

Example 7.16. Let h be a finite dimensional vector space, and G be a complex reflection 
group in GL(h). Then Hτ (G, h) is the Hecke algebra of G studied in [BMR]. It follows 
from Theorem 7.15 that this Hecke algebra is flat. This proof of flatness is in fact the same 
as the original proof of this result given in [BMR] (based on the Dunkl-Opdam-Cherednik 
operators, and explained above). 

Example 7.17. Let h be a universal covering of a maximal torus of a simply connected 
simple Lie group G, Q∨ be the dual root lattice, and G� = G � Q∨ be its affine Weyl group. 
Then Hτ (h, G�) is the affine Hecke algebra. This algebra is also flat by Theorem 7.15. In 
fact, its flatness is a well known result from representation theory; our proof of flatness is 
essentially due to Cherednik [Ch]. 

Example 7.18. Let G, h, Q∨ be as in the previous example, η ∈ C+ be a complex number 

with a positive imaginary part, and G�� = G � (Q∨ ⊕ ηQ∨) be the double affine Weyl group. 

Then Hτ (h, G
��) is (one of the versions of) the double affine Hecke algebra of Cherednik ([Ch]), 

and it is flat by Theorem 7.15. The fact that this algebra is flat was proved by Cherednik, 
Sahi, Noumi, Stokman (see [Ch],[Sa],[NoSt],[St]) using a different approach (q-deformed 
Dunkl operators). 

7.7. Hecke algebras attached to Fuchsian groups. Let H be a simply connected com­
plex Riemann surface (i.e., Riemann sphere, Euclidean plane, or Lobachevsky plane), and Γ 
be a cocompact lattice in Aut(H) (i.e., a Fuchsian group). Let Σ = H/Γ. Then Σ is a com­
pact complex Riemann surface. When Γ contains elliptic elements (i.e., nontrivial elements 
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of finite order), we are going to regard Σ as an orbifold: it has special points Pi, i = 1, . . . ,m 
with stabilizers Zni . Then Γ is the orbifold fundamental group of Σ.1 

Let g be the genus of Σ, and al, bl, l = 1, . . . , g, be the a-cycles and b-cycles of Σ. Let cj 
be the counterclockwise loops around Pj . Then Γ is generated by al, bl, cj with relations 

nj b−1 cj = 1, cm = alblal
−1 

l .c1c2 · · · 
l 

For each j, introduce formal parameters τkj , k = 1, . . . , nj . Define the Hecke algebra Hτ (Σ) 
of Σ to be generated over C[[τ ]] by the same generators al, bl, cj with defining relations 

nj

(cj − e 2πji/nj 
l le τkj ) = 0, cm = albla
−1b−1 .c1c2 · · · 

k=1 l 

Thus Hτ (Σ) is a deformation of C[Γ]. 
This deformation is flat if H is a Euclidean plane or a Lobachevsky plane. Indeed, Hτ (Σ) = 

Hτ (Γ, H), so the result follows from Theorem 7.15 and the fact that H2(H, C) = 0. 
On the other hand, if H is the Riemann sphere (so that the condition H2(H, C) = 0 is 

violated) and Γ = 1 then this deformation is not flat. Indeed, let � τ = τ(�) be a 1-parameter 
subdeformation of Hτ (Σ) which is flat. Let us compute the determinant of the product 
c1 · · · cm in the regular representation of this algebra (which is finite dimensional if H is the 
sphere). On the one hand, it is 1, as c1 · · · cm is a product of commutators. On the other 
hand, the eigenvalues of cj in this representation are e2πji/nj eτkj with multiplicity |Γ|/nj . 
Computing determinants as products of eigenvalues, we get a nontrivial equation on τkj (�), 
which means that the deformation Hτ is not flat. 
Thus, we see that Hτ (Σ) fails to be flat in the following “forbidden” cases: 

g = 0, m = 2, (n1, n2) = (n, n); 

m = 3, (n1, n2, n3) = (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5). 

Indeed, the orbifold Euler characteristic of a closed surface Σ of genus g with m special 
points x1, . . . , xm whose orders are n1, . . . , nm is 

m� 1 
χorb(Σ, x1, . . . , xm) = 2 − 2g − m + , 

nii=1 

and above solutions are the solutions of the inequality 

χorb(CP 1 , x1, . . . , xm) > 0. 

(note that the solutions for m = 1 and solutions (n1, n2) with n1 = n2 don’t arise, since they 
don’t correspond to any orbifolds). 

1Let X be a connected topological space on with a properly discontinuous action of a discrete group G. 
Then the orbifold fundamental group of the orbifold X/G with base point x ∈ X, denoted πorb (X/G, x),1 
is the set of pairs (g, γ), where g ∈ G and γ is a homotopy class of paths leading from x to gx, with 
multiplication law (g1, γ1)(g2, γ2) = (g1g2, γ), where γ is γ1 followed by g1(γ2). Obviously, in this situation 
we have an exact sequence 

1 π1(X, x) π1
orb (X/G, x) G 1.→ → → → 
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7.8. Hecke algebras of wallpaper groups and del Pezzo surfaces. The case when H 
is the Euclidean plane (i.e., Γ is a wallpaper group) deserves special attention. If there are 
elliptic elements, this reduces to the following configurations: g = 0 and 

m = 3, (n1, n2, n3) = (3, 3, 3), (2, 4, 4), (2, 3, 6) (cases E6, E7, E8), 

or 
m = 4, (n1, n2, n3, n4) = (2, 2, 2, 2) (case D4). 

In these cases, the algebra Hτ (Γ, H) (for numerical τ) has Gelfand-Kirillov dimension 2, 
so it can be interpreted in terms of the theory of noncommutative surfaces. 
Recall that a del Pezzo surface (or a Fano surface) is a smooth projective surface, whose 

anticanonical line bundle is ample. It is known that such surfaces are CP1 × CP1, or a blow­
up of CP2 at up to 8 generic points. The degree of a del Pezzo surface X is by definition the 
self intersection number K K of its canonical class K. For example, a del Pezzo surface of · 
degree 3 is a cubic surface in CP3, and the degree of CP2 with n generic points blown up is 
d = 9 − n. 

n−1Now suppose τ is numerical. Let � = j,k j τkj . Also let n be the largest of nj , and c 
be the corresponding cj . Let e ∈ C[c] ⊂ Hτ (Γ, H) be the projector to an eigenspace of c. 
Consider the “spherical” subalgebra Bτ (Γ, H) := eHτ (Γ, H)e. 

Theorem 7.19 (Etingof, Oblomkov, Rains, [EOR]). (i) If � = 0 then the algebra Bτ (Γ, H) 
is commutative, and its spectrum is an affine del Pezzo surface. More precisely, in 
the case (2, 2, 2, 2), it is a del Pezzo surface of degree 3 (a cubic surface) with a tri­
angle of lines removed; in the cases (3, 3, 3), (2, 4, 4), (2, 3, 6) it is a del Pezzo surface 
of degrees 3,2,1 respectively with a nodal rational curve removed. 

(ii)	The algebra Bτ (Γ, H) for � =� 0 is a quantization of the unique algebraic symplectic 
structure on the surface from (i) with Planck’s constant �. 

Proof. See [EOR].	 � 

Remark 7.20. In the case (2, 2, 2, 2), Hτ (Γ, Γ) is the Cherednik-Sahi algebra of rank 1; it 
controls the theory of Askey-Wilson polynomials. 

Example 7.21. This is a “multivariate” version of the Hecke algebras attached to Fuchsian 
groups, defined in the previous subsection. Namely, letting Γ, H be as in the previous 
subsection, and N ≥ 1, we consider the manifold X = HN with the action of ΓN = SN �ΓN . 
If H is a Euclidean or Lobachevsky plane, then by Theorem 7.15 Hτ (ΓN , X

N ) is a flat 
deformation of the group algebra C[ΓN ]. If N > 1, this algebra has one more essential 
parameter than for N = 1 (corresponding to reflections in SN ). In the Euclidean case, one 
expects that an appropriate “spherical” subalgebra of this algebra is a quantization of the 
Hilbert scheme of a del Pezzo surface. 

7.9. The Knizhnik-Zamolodchikov functor. In this subsection we will define a global 
analog of the KZ functor defined in [GGOR]. This functor will be used as a tool of proof of 
Theorem 7.15. 

Let X be a simply connected complex manifold, and G a discrete group of holomorphic 
transformations of X acting on X properly discontinuously. Let X � ⊂ X be the set of points 
with trivial stabilizer. Then we can define the sheaf of Cherednik algebras H1,c,η,0,G,X on 
X/G. Note that the restriction of this sheaf to X �/G is the same as the restriction of the 
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sheaf G � DX to X �/G (i.e. on X �/G, the dependence of the sheaf on the parameters c and 
η disappears). This follows from the fact that the line bundles OX (Y ) become trivial when 
restricted to X �. 

Now let M be a module over H1,c,η,0,G,X which is a locally free coherent sheaf when 
restricted to X �/G. Then the restriction of M to X �/G is a G-equivariant D-module on 
X � which is coherent and locally free as an O-module. Thus, M corresponds to a locally 
constant sheaf (local system) on X �/G, which gives rise to a monodromy representation of 
the braid group π1(X �/G, x0) (where x0 is a base point). This representation will be denoted 
by KZ(M). This defines a functor KZ, which is analogous to the one in [GGOR]. 

It follows from the theory of D-modules that any OX/G-coherent H1,c,η,0,G,X -module is 
locally free when restricted to X �/G. Thus the KZ functor acts from the abelian category 
Cc,η of OX/G-coherent H1,c,η,0,G,X -modules to the category of representations of π1(X �/G, x0). 
It is easy to see that this functor is exact. 
For any Y , let gY be the generator of GY which has eigenvalue e2πi/nY in the conormal 

bundle to Y . Let (c, η) τ(c, η) be the invertible linear transformation defined by the →
formula 

n�Y −1 
1 − e2πjmi/nY 

τjY = 2πi(2 c(Y, gY
m)

1 − e−2πmi/nY 
− η(Y ))/nY . 

m=1 

Proposition 7.22. The functor KZ maps the category Cc,η to the category of representations 
of the algebra Hτ (c,η)(G, X). 

Proof. The result follows from the corresponding result in the linear case (which we have 
already proved) by restricting M to the union of G-translates of a neighborhood of a generic 
point y ∈ Y , and then linearizing the action of GY on this neighborhood. � 

7.10. Proof of Theorem 7.15. Consider the module M = IndG�DX OX . Then KZ(M)DX 

is the regular representation of G which is denoted by regG. We want to show that M 
deforms uniquely (up to an isomorphism) to a module over H1,c,0,η,G,X for formal c, η. The 
obstruction to this deformation is in Ext2 (M, M) and the freedom of this deformation G�DX 

is in Ext1 (M, M). Since G�DX 

Exti (M, M) = Exti (OX , ResM) = Exti G�DX DX DX 
(OX , OX ⊗ CG) 

= Exti (OX , OX ) ⊗ CG = Hi(X, C) ⊗ CG,DX 

and X is simply connected, we have 

Ext1 (M, M) = 0, and Ext2 (M, M) = 0 if H2(X, C) = 0.G�DX G�DX 

Thus such deformation exists and is unique if H2(X, C) = 0. 
Now let Mc,η be the deformation. Then KZ(Mc,η) is a Hτ (c,η)(G, X)-module from Propo­

sition 7.22 and it deforms flatly the module regG. This implies Hτ (c,η)(G, X) is flat over 
C[[τ ]]. 

Remark 7.23. When X is not simply connected, the theorem is still true under the as­
sumption π2(X) ⊗ C = 0 (i.e. H2(X, � C) = 0, where X� is the universal cover of X), and the 
proof is contained in [E1]. 
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7.11. Example: the simplest case of double affine Hecke algebras. Now let G = 
Z2 � Z2 acting on C. Then the conjugacy classes of reflection hyperplanes are four points: 
0, 1/2, 1/2 + η/2, η/2, where we suppose the lattice in C is Z ⊕ Zη. Correspondingly, the 
presentation of G is as follows: 

generators: T1, T2, T3, T4; relations: T1T2T3T4 = 1, Ti 
2 = 1. 

Thus, the corresponding orbifold Hecke algebra is the following deformation of CG: 
generators: T1, T2, T3, T4; relations: T1T2T3T4 = 1, (Ti − pi)(Ti − qi) = 0, 

where pi, qi (i = 1, . . . , 4), are parameters. 
If we renormalize the Ti, these relations turn into 

(Ti − ti)(Ti + t−i 
1) = 0, T1T2T3T4 = q, 

and we get the type C∨C1 double affine Hecke algebra. If we set three of the four Ti’s 
satisfying the undeformed relation Ti 

2 = 1, we get the double affine Hecke algebra of type 
A1. More precisely, this algebra is generated by T1, . . . , T4 with relations 

T2
2 = T3

2 = T4
2 = 1, (T1 − t)(T1 + t−1) = 0, T1T2T3T4 = q. 

Another presentation of this algebra (which is more widely used) is as follows. Let E = 
C/Z2, an elliptic curve with an Z2 action defined by z �→ −z. Define the partial braid group 

B = πorb(E\{0}/Z2, x),1 

where x is a generic point. Notice that comparing to the usual braid group, we do not 
delete three of the four reflection points. The generators of the group π1(E \ {0}, x) (the 
fundamental group of a punctured 2-torus) are X (corresponding to the a-cycle on the torus), 
Y (corresponding to the b-cycle on the torus) and C (corresponding to the loop around 0). In 
order to construct B, which is an extension of Z2 by π1(E \ {0}, x), we introduce an element 
T s.t. T 2 = C (the half-loop around the puncture). Then X, Y, T satisfy the following 
relations: 

TXT = X−1 , T −1Y T −1 = Y −1 , Y −1X−1Y XT 2 = 1. 

The Hecke algebra of the partial braid group is then defined to be the group algebra of B 
plus an extra relation: (T − q1)(T + q2) = 0. 

A common way to present this Hecke algebra is to renormalize the generators so that one 
has the following relations: 

TXT = X−1, T −1Y T −1 = Y −1, Y −1X−1Y XT 2 = q, (T − t)(T + t−1) = 0. 

This is Cherednik’s definition for HH(q, t), the double affine Hecke algebra of type A1 which 
depends on two parameters q, t. 
There are two degenerations of the algebra HH(q, t). 
1. The trigonometric degeneration. 
Set Y = e�y, q = e� , t = e�c and T = se�cs, where s ∈ Z2 is the reflection. Then s, X, y 

satisfy the following relations modulo �: 
s 2 = 1, sXs−1 = X−1 , sy + ys = 2c, X−1yX − y = 1 − 2cs. 

The algebra generated by s, X, y with these relations is called the type A1 trigonomet­
ric Cherednik algebra. It is easy to show that it is isomorphic to the Cherednik algebra 
H1,c(Z2, C∗), where Z2 acts on C∗ by z z−1 .→ 
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2. The rational degeneration.

In the trigonometric Cherednik algebra, set X = e�x and y = ˆ Then s, x, ˆ
y/�. y satisfy the 

following relations modulo �: 

s 2 = 1, sx = −xs, sˆ ys, ˆ y = 1 − 2cs.y = −ˆ yx − xˆ

The algebra generated by s, x, ŷ with these relations is the rational Cherednik algebra 
H1,c(Z2, C) with the action of Z2 on C is given by z → −z. 

7.12. Affine and extended affine Weyl groups. Let R = be a root system {α} ⊂ Rn 

with respect to a nondegenerate symmetric bilinear form (·, ) on Rn . We will assume that ·
R is reduced. Let {αi}ni=1 ⊂ R be the set of simple roots and R+ (respectively R−) be the 
set of positive (respectively negative) roots. The coroots are denoted by α∨ = 2α/(α, α). 
Let Q∨ = n

i=1 Zα∨
i be the coroot lattice and P ∨ = n

i=1 Zωi∨ the coweight lattice, where 
ωi
∨’s are the fundamental coweights, i.e., (ωi

∨, αj ) = δij . Let θ be the maximal positive root, 
and assume that the bilinear form is normalized by the condition (θ, θ) = 2. Let W be the 
Weyl group which is generated by the reflections sα (α ∈ R). 
By definition, the affine root system is 

Ra = {α̃ = [α, j] ∈ Rn × R| where α ∈ R, j ∈ Z}. 

The set of positive affine roots is Ra = {[α, j] Define α0 = + | j ∈ Z>0} ∪ {[α, 0] | α ∈ R+}. 
[−θ, 1]. We will identify α ∈ R with α̃ = [α, 0] ∈ Ra . 

For an arbitrary affine root α̃ = [α, j] and a vector z̃ = [z, ζ] ∈ Rn × R, the corresponding 
affine reflection is defined as follows: 

sα̃(z̃) = z̃ − 2
(z, α) 

α̃ = z̃ − (z, α∨) α̃. 
(α, α) 

The affine Weyl group W a is generated by the affine reflections {sα̃ | α̃ ∈ R�+}, and we have 
an isomorphism: 

= W � Q∨,W a 
∼

where the translation α∨ ∈ Q∨ is naturally identified with the composition s[−α,1]sα ∈ W a. 
ext 

Define the extended affine Weyl group to be W a = W � P ∨ acting on Rn+1 via b(z̃) = 
ext 

[z, ζ − (b, z)] for z̃ = [z, ζ], b ∈ P ∨. Then W a ⊂ W . Moreover, W a is a normal subgroup of a 
ext ext 

W and W /W a = P ∨/Q∨. The latter group can be identified with the group Π = {πr} ofa a 

the elements of W 
ext 
a permuting simple affine roots under their action in Rn+1 . It is a normal 

commutative subgroup of Aut = Aut(Dyna) (Dyna denotes the affine Dynkin diagram). 
The quotient Aut/Π is isomorphic to the group of the automorphisms preserving α0, i.e. the 
group AutDyn of automorphisms of the finite Dynkin diagram. 

7.13. Cherednik’s double affine Hecke algebra of a root system. In this subsection, 
we will give an explicit presentation of Cherednik’s DAHA for a root system, defined in 
Example 7.18. This is done by giving an explicit presentation of the corresponding braid 
group (which is called the elliptic braid group), and then imposing quadratic relations on the 
generators corresponding to reflections. 
For a root system R, let m = 2 if R is of type D2k, m = 1 if R is of type B2k, Ck, and 

otherwise m = Π . Let mij be the number of edges between vertex i and vertex j in the | |
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affine Dynkin diagram of Ra . Let Xi (i = 1, . . . , n) be a family of pairwise commutative and 
algebraically independent elements. Set 

n n

X[b,j] = Xi
�i qj, where b = �iωi ∈ P, j ∈ Z/mZ. 

i=1 i=1 

ext 
For an element ŵ ∈ W , we can define an action on these X[b,j] by ŵX[b,j] = Xŵ[b,j].a 

Definition 7.24 (Cherednik). The double affine Hecke algebra (DAHA) of the root system 
R, denoted by HH, is an algebra defined over the field Cq,t = C(q1/m, t1/2), generated by 
Ti, i = 0, . . . , n, Π, Xb, b ∈ P , subject to the following relations: 

(1) TiTj Ti · · · = Tj TiTj · · · , mij factors each side; 
(2) (Ti − ti)(Ti + t−1) = 0 for i = 0, . . . , n;i 
(3) πTiπ−1 = Tπ(i), for π ∈ Π and i = 0, . . . , n; 
(4) πXbπ

−1 = Xπ(b), for π ∈ Π, b ∈ P ; 
(5) TiXbTi = XbXα

−
i 

1 , if i > 0 and (b, α∨
i ) = 1; TiXb = XbTi, if i > 0 and (b, αi

∨) = 0; 
(6) T0XbT0 = Xb−α0 if (b, θ) = −1; T0Xb = XbT0 if (b, θ) = 0. 

Here ti are parameters attached to simple affine roots (so that roots of the same length 
give rise to the same parameters). 

The degenerate double affine Hecke algebra (trigonometric Cherednik algebra) HHtrig is 
ext � ngenerated by the group algebra of W a , Π and pairwise commutative yb̃ = i=1(b, α

∨)yi + u 
for b̃ = [b, u] ∈ P × Z, with the following relations: 

siyb − ysi(b)si = −ki(b, αi∨), for i = 1, . . . , n, 

s0yb − ys0(b)s0 = k0(b, θ), πrybπr
−1 = yπr (b) for πr ∈ Π. 

Remark 7.25. This degeneration can be obtained from the DAHA similarly to the case of 
A1, which is described above. 

7.14. Algebraic flatness of Hecke algebras of polygonal Fuchsian groups. Let W 
be the Coxeter group of rank r corresponding to a Coxeter datum: 

mij (i, j = 1, . . . , r, i =� j), such that 2 ≤ mij ≤ ∞ and mij = mji. 

So the group W has generators si i = 1, . . . , r, and defining relations 

s 2 
i = 1, (sisj )

mij = 1 if mij =� ∞. 
It has a sign character ξ : W → {±1} given by ξ(si) = −1. Denote by W+ the kernel of ξ 
(the even subgroup of W ). It is generated by aij = sisj with relations: 

= a−1 mijaij ji , aij ajkaki = 1, aij = 1. 

We can deform the group algebra C[W ] as follows. Define the algebra A(W ) with invertible 
generators si, and tij,k, i, j = 1, . . . , r, k ∈ Zmij for (i, j) such that mij < ∞ and defining 
relations 

tij,k = t−1 si 
2 = 1, [tij,k, ti�j�,k� ] = 0, sptij,k = tji,ksp,ji,−k,


mij


(sisj − tij,k) = 0 if mij < ∞. 
k=1 

Notice that if we set tij,k = exp(2πki/mij ), we get C[W ]. 
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Define also the algebra A+(W ) over R := C[tij,k] (tij,k = t−1 ) by generators aij , i = jji,−k �
(aij = a−1), and relations ji 

mij

(aij − tij,k) = 0 if mij < ∞, aij ajpapi = 1. 
k=1 

If w is a word in letters si, let Tw be the corresponding element of A(W ). Choose a 
function w(x) which attaches to every element x ∈ W , a reduced word w(x) representing x 
in W . 

Theorem 7.26 (Etingof, Rains, [ER]). (i) The elements Tw(x), x ∈ W , form a spanning 
set in A(W ) as a left R-module. 

(ii)	The elements Tw(x), x ∈ W+, form a spanning set in A+(W ) as a left R-module. 
(iii)	The elements Tw(x), x ∈ W , are linearly independent if W has no finite parabolic 

subgroups of rank 3. 

Proof. We only give the proof of (i). Statement (ii) follows from (i). Proof of (iii), which is 
quite nontrivial, can be found in [ER] (it uses the geometry of constructible sheaves on the 
Coxeter complex of W ). 

Let us write the relation 
mij

(sisj − tij,k) = 0 
k=1 

as a deformed braid relation: 

sj sisj . . . + S.L.T. = tij sisj si . . . + S.L.T., 

where tij = (−1)mij +1tij,1 · · · tij,mij , S.L.T. mean “smaller length terms”, and the products 
on both sides have length mij . This can be done by multiplying the relation by sisj · · · (mij 

factors). 
Now let us show that Tw(x) span A(W ) over R. Clearly, Tw for all words w span A(W ). 

So we just need to take any word w and express Tw via Tw(x). 
It is well known from the theory of Coxeter groups (see e.g. [B]) that using the braid 

relations, one can turn any non-reduced word into a word that is not square free, and any 
reduced expression of a given element of W into any other reduced expression of the same 
element. Thus, if w is non-reduced, then by using the deformed braid relations we can reduce 
Tw to a linear combination of Tu with words u of smaller length than w. On the other hand, 
if w is a reduced expression for some element x ∈ W , then using the deformed braid relations 
we can reduce Tw to a linear combination of Tu with u shorter than w, and Tw(x). Thus Tw(x) 
are a spanning set. This proves (i). � 

Thus, A+(W ) is a “deformation” of C[W+] over R, and similarly A(W ) is a “twisted 
deformation” of C[W ]. 
Now let Γ = Γ(m1, . . . ,mr), r ≥ 3, be the Fuchsian group defined by generators cj , 

j = 1, . . . , r, with defining relations 
r

mjcj = 1, cj = 1. 
j=1 

Here 2 ≤ mj < ∞. 
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Suppose Γ acts on H where H is a simply connected complex Riemann surface as in 
Section 7.7. We have the Hecke algebra of Γ, Hτ (H, Γ), defined by the same (invertible) 
generators cj and relations 

r

(cj − exp(2πik/nj )qjk) = 0, cj = 1, 
k j=1 

where qjk = exp(τjk). 
We saw above (Theorem 7.15) that if τjk’s are formal, the algebra Hτ (Γ, H) is flat in τ if 
|Γ| is infinite (i.e., H is Euclidean or hyperbolic). Here is a much stronger non-formal version 
of this theorem. 

Theorem 7.27. The algebra Hτ (Γ, H) is free as a left module over R := C[q±1] if and only � jk 

if (1 − 1/mj ) ≥ 2 (i.e., H is Euclidean or hyperbolic). j 

Proof. Let us consider the Coxeter datum: mij , i, j = 1, . . . , r, such that mi,i+1 := mi 

(i ∈ Z/rZ), and mij = ∞ otherwise. Suppose the corresponding Coxeter group is W . Then 
we can see that Γ = W+. Notice that the algebra Hτ (Γ, H) for genus 0 orbifolds is the 
algebra A+(W ), i.e., we have Hτ (Γ, H) = A+(W ). 

The condition (1 − 1/mj ) ≥ 2 is equivalent to the condition that W has no finite j 

parabolic subgroups of rank 3. From Theorem 7.26 (ii) and Theorem 7.15, we can see that 
A+(W ) is free as a left module over R. We are done. � 

7.15. Notes. Section 7.8 follows Section 6 of the paper [EOR]; Cherednik’s definition of the 
double affine Hecke algebra of a root system is from Cherednik’s book [Ch]; Sections 7.7 and 
7.14 follow the paper [ER]; The other parts of this section follow the paper [E1]. 
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8. Symplectic reflection algebras


8.1. The definition of symplectic reflection algebras. Rational Cherednik algebras for 
finite Coxeter groups are a special case of a wider class of algebras called symplectic reflection 
algebras. To define them, let V be a finite dimensional symplectic vector space over C with 
a symplectic form ω, and G be a finite group acting symplectically (linearly) on V . For 
simplicity let us assume that (∧2V ∗)G = Cω (i.e., V is symplectically irreducible) and that 
G acts faithfully on V (these assumptions are not important, and essentially not restrictive). 

Definition 8.1. A symplectic reflection in G is an element g such that the rank of the 
operator 1 − g on V is 2. 

If s is a symplectic reflection, then let ωs(x, y) be the form ω applied to the projections of 
x, y to the image of 1 − s along the kernel of 1 − s; thus ωs is a skewsymmetric form of rank 
2 on V . 

Let S ⊂ G be the set of symplectic reflections, and c : S → C be a function which is 
invariant under the action of G. Let t ∈ C. 
Definition 8.2. The symplectic reflection algebra Ht,c = Ht,c[G, V ] is the quotient of the 
algebra C[G] � T(V ) by the ideal generated by the relation 

(8.1) [x, y] = tω(x, y) − 2 csωs(x, y)s. 
s∈S 

Example 8.3. Let W be a finite Coxeter group with reflection representation h. We can set 
V = h ⊕ h∗, ω(x, x�) = ω(y, y�) = 0, ω(y, x) = (y, x), for x, x� ∈ h∗ and y, y� ∈ h. In this case 

(1) symplectic reflections are the usual reflections in W ; 
(2) ωs(x, x�) = ωs(y, y�) = 0, ωs(y, x) = (y, αs)(α∨

s , x)/2. 
Thus, Ht,c[G, h ⊕ h∗] coincides with the rational Cherednik algebra Ht,c(G, h) defined in 
Section 3. 

Example 8.4. Let Γ be a finite subgroup of SL2(C), and V = C2 be the tautological 
representation, with its standard symplectic form. Then all nontrivial elements of Γ are 
symplectic reflections, and for any symplectic reflection s, ωs = ω. So the main commutation 
relation of Ht,c[Γ, V ] takes the form 

[y, x] = t − 2cgg. 
g∈Γ,g=1�

Example 8.5. (Wreath products) Let Γ be as in the previous example, G = Sn � Γn, and 
V = (C2)n . Then symplectic reflections are conjugates (g, 1, ..., 1), g ∈ Γ, g =� 1, and also 
conmjugates of transpositions in Sn (so there is one more conjugacy class of reflections than 
in the previous example). 

Note also that for any V, G, H0,0[G, V ] = G � SV , and H1,0[G, V ] = G � Weyl(V ), where 
Weyl(V ) is the Weyl algebra of V , i.e. the quotient of the tensor algebra T(V ) by the 
relation xy − yx = ω(x, y), x, y ∈ V . 

8.2. The PBW theorem for symplectic reflection algebras. To ensure that the sym­
plectic reflection algebras Ht,c have good properties, we need to prove a PBW theorem for 
them, which is an analog of Proposition 3.5. This is done in the following theorem, which 
also explains the special role played by symplectic reflections. 
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Theorem 8.6. Let κ : ∧2V → C[G] be a linear G-equivariant function. Define the algebra 
Hκ to be the quotient of the algebra C[G]�T(V ) by the relation [x, y] = κ(x, y), x, y ∈ V . Put 
an increasing filtration on Hκ by setting deg(V ) = 1, deg(G) = 0, and define ξ : CG � SV → 
grHκ to be the natural surjective homomorphism. Then ξ is an isomorphism if and only if κ 
has the form 

κ(x, y) = tω(x, y) − 2 csωs(x, y)s, 
s∈S 

for some t ∈ C and G-invariant function c : S → C. 

Unfortunately, for a general symplectic reflection algebra we don’t have a Dunkl operator 
representation, so the proof of the more difficult “if” part of this Theorem is not as easy 
as the proof of Proposition 3.5. Instead of explicit computations with Dunkl operators, it 
makes use of the deformation theory of Koszul algebras, which we will now discuss. 

8.3. Koszul algebras. Let R be a finite dimensional semisimple algebra (over C). Let A 
be a Z+-graded algebra, such that A[0] = R, and assume that the graded components of A 
are finite dimensional. 

Definition 8.7. (i) The algebra A is said to be quadratic if it is generated over R by 
A[1], and has defining relations in degree 2. 

(ii) A is Koszul if all elements of Exti(R, R) (where R is the augmentation module over 
A) have grade degree precisely i. 

Remark 8.8. (1) Thus, in a quadratic algebra, A[2] = A[1] ⊗R A[1]/E, where E is the 
subspace (R-subbimodule) of relations. 

(2) It is easy to show	 that a Koszul algebra is quadratic, since the condition to be 
quadratic is just the Koszulity condition for i = 1, 2. 

Now let A0 be a quadratic algebra, A0[0] = R. Let E0 be the space of relations for A0. Let 
E ⊂ A0[1] ⊗R A0[1][[�]] be a free (over C[[�]]) R-subbimodule which reduces to E0 modulo � 
(“deformation of the relations”). Let A be the (�-adically complete) algebra generated over 
R[[�]] by A[1] = A0[1][[�]] with the space of defining relations E. Thus A is a Z+-graded 
algebra. 

The following very important theorem is due to Beilinson, Ginzburg, and Soergel, [BGS] 
(less general versions appeared earlier in the works of Drinfeld [Dr], Polishchuk-Positselski 
[PP], Braverman-Gaitsgory [BG]). We will not give its proof. 

Theorem 8.9 (Koszul deformation principle). If A0 is Koszul then A is a topologically free 
C[[�]] module if and only if so is A[3]. 

Remark. Note that A[i] for i < 3 are obviously topologically free. 
We will now apply this theorem to the proof of Theorem 8.6. 

8.4. Proof of Theorem 8.6. Let κ : ∧2V C[G] be a linear G-equivariant map. We write 
κ(x, y) = 

� 
g∈G κg(x, y)g, where κg(x, y) ∈ ∧

→
2V ∗. To apply Theorem 8.9, let us homogenize 

our algebras. Namely, let A0 = (CG � SV ) ⊗ C[u] (where u has degree 1). Also let � be a 
formal parameter, and consider the deformation A = H�u2κ of A0. That is, A is the quotient 
of G � T(V )[u][[�]] by the relations [x, y] = �u2κ(x, y). This is a deformation of the type 
considered in Theorem 8.9, and it is easy to see that its flatness in � is equivalent to Theorem 
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8.6. Also, the algebra A0 is Koszul, because the polynomial algebra SV is a Koszul algebra. 
Thus by Theorem 8.9, it suffices to show that A is flat in degree 3. 

The flatness condition in degree 3 is “the Jacobi identity” 

[κ(x, y), z] + [κ(y, z), x] + [κ(z, x), y] = 0, 

which must be satisfied in CG � V . In components, this equation transforms into the system 
of equations 

κg(x, y)(z − zg) + κg(y, z)(x − xg) + κg(z, x)(y − yg) = 0 

for every g ∈ G (here zg denotes the result of the action of g on z). 
This equation, in particular, implies that if x, y, g are such that κg(x, y) = 0 then for any 

g g g
�

z ∈ V z − z is a linear combination of x − x and y − y . Thus κg(x, y) is identically zero 
unless the rank of (1 − g)|V is at most 2, i.e. g = 1 or g is a symplectic reflection. 

If g = 1 then κg(x, y) has to be G-invariant, so it must be of the form tω(x, y), where 
t ∈ C. 

If g is a symplectic reflection, then κg(x, y) must be zero for any x such that x − xg = 0. 
Indeed, if for such an x there had existed y with κg(x, y) �= 0 then z − zg for any z would 
be a multiple of y − yg, which is impossible since Im(1 − g)|V is 2-dimensional. This implies 
that κg(x, y) = 2cgωg(x, y), and cg must be invariant. 
Thus we have shown that if A is flat (in degree 3) then κ must have the form given in 

Theorem 8.6. Conversely, it is easy to see that if κ does have such form, then the Jacobi 
identity holds. So Theorem 8.6 is proved. 

8.5. The spherical subalgebra of the symplectic reflection algebra. The properties of 
symplectic reflection algebras are similar to the properties of rational Cherednik algebras we 
have studied before. The main difference is that we no longer have the Dunkl representation 
and localization results, so some proofs are based on different ideas and are more complicated. 

The spherical subalgebra of the symplectic reflection algebra is defined in the same way 
as in the Cherednik algebra case. Namely, let e = |G|−1 

g∈G g, and Bt,c = eHt,ce. 

Proposition 8.10. Bt,c is commutative if and only if t = 0. 

Proof. Let A be a Z+-filtered algebra. If A is not commutative, then we can define a nonzero 
Poisson bracket on grA in the following way. Let m be the minimum of deg(a) + deg(b) −
deg([a, b]) (over a, b ∈ A such that [a, b] = 0). Then for homogeneous elements � a0, b0 ∈ A0 of 
degrees p, q, we can define {a0, b0} to be the image in A0[p + q − m] of [a, b], where a, b are 
any lifts of a0, b0 to A. It is easy to check that {· , ·} is a Poisson bracket on A0 of degree 
−m. 

Let us now apply this construction to the filtered algebra A = Bt,c. We have gr(A) = 
A0 = (SV )G . 

Lemma 8.11. A0 has a unique, up to scaling, Poisson bracket of degree −2, and no nonzero 
Poisson brackets of degrees < −2. 

Proof. A Poisson bracket on (SV )G is the same thing as a Poisson bracket on the variety 
V ∗/G. On the smooth part (V ∗/G)s of V ∗/G, it is simply a bivector field, and we can lift 
it to a bivector field on the preimage Vs 

∗ of (V ∗/G)s in V ∗, which is the set of points in V 
with trivial stabilizers. But the codimension on V ∗ \ Vs 

∗ in V ∗ is 2 (as V ∗ \ Vs 
∗ is a union 

of symplectic subspaces), so the bivector on Vs 
∗ extends to a regular bivector on V ∗. So if 
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this bivector is homogeneous, it must have degree ≥ −2, and if it has degree −2 then it 
must be with constant coefficients, so being G-invariant, it is a multiple of ω. The lemma is 
proved. � 

Now, for each t, c we have a natural Poisson bracket on A0 of degree −2, which depends 
linearly on t, c. So by the lemma, this bracket has to be of the form f(t, c)Π, where Π is the 
unique up to scaling Poisson bracket of degree −2, and f a homogeneous linear function. 
Thus the algebra A = Bt,c is not commutative unless f(t, c) = 0. On the other hand, if 
f(t, c) = 0, and Bt,c is not commutative, then, as we’ve shown, A0 has a nonzero Poisson 
bracket of degree < −2. But By Lemma 8.11, there is no such brackets. So Bt,c must be 
commutative if f(t, c) = 0. 

It remains to show that f(t, c) is in fact a nonzero multiple of t. First note that f(1, 0) = 0, 
since B1,0 is definitely noncommutative. Next, let us take a point (t, c) such that Bt,c is 
commutative. Look at the Ht,c-module Ht,ce, which has a commuting action of Bt,c from the 
right. Its associated graded is SV as an (CG � SV, (SV )G)-bimodule, which implies that 
the generic fiber of Ht,ce as a Bt,c-module is the regular representation of G. So we have a 
family of finite dimensional representations of Ht,c on the fibers of Ht,ce, all realized in the 
regular representation of G. Computing the trace of the main commutation relation (8.1) of 
Ht,c in this representation, we obtain that t = 0 (since Tr (s) = 0 for any reflection s). The 
proposition is proved. � 

Note that B0,c has no zero divisors, since its associated graded algebra (SV )G does not. 
Thus, like in the Cherednik algebra case, we can define a Poisson variety Mc, the spectrum 
of B0,c, called the Calogero-Moser space of G, V . Moreover, the algebra Bc := B�,c over C[�] 
is an algebraic quantization of Mc. 

8.6. The center of the symplectic reflection algebra Ht,c. Consider the bimodule Ht,ce, 
which has a left action of Ht,c and a right commuting action of Bt,c. It is obvious that 
EndHt,c Ht,ce = Bt,c (with opposite product). The following theorem shows that the bimodule 
Ht,ce has the double centralizer property (i.e., EndBt,c Ht,ce = Ht,c). 

Note that we have a natural map ξt,c : Ht,c → EndBt,c Ht,ce. 

Theorem 8.12. ξt,c is an isomorphism for any t, c. 

Proof. The complete proof is given [EG]. We will give the main ideas of the proof skipping 
straightforward technical details. The first step is to show that the result is true in the 
graded case, (t, c) = (0, 0). To do so, note the following easy lemma: 

Lemma 8.13. If X is an affine complex algebraic variety with algebra of functions OX and 
G a finite group acting freely on X then the natural map ξX : G � OX → EndOX 

OX is an G 

isomorphism. 

Therefore, the map ξ0,0 : G � SV End(SV )G (SV ) is injective, and moreover becomes an →
isomorphism after localization to the field of quotients C(V ∗)G . To show it’s surjective, take 
a ∈ End(SV )G (SV ). There exists a� ∈ G � C(V ∗) which maps to a. Moreover, by Lemma 
8.13, a� can have poles only at fixed points of G on V ∗. But these fixed points form a subset 
of codimension ≥ 2, so there can be no poles and we are done in the case (t, c) = (0, 0). 

Now note that the algebra EndBt,c Ht,ce has an increasing integer filtration (bounded be­
low) induced by the filtration on Ht,c. This is due to the fact that Ht,ce is a finitely generated 
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eHt,ce-module (since it is true in the associated graded situation, by Hilbert’s theorem about 
invariants). Also, the natural map grEndBt,c Ht,ce EndgrBt,c grHt,ce is clearly injective. →
Therefore, our result in the case (t, c) = (0, 0) implies that this map is actually an iso­
morphism (as so is its composition with the associated graded of ξt,c). Identifying the two 
algebras by this isomorphism, we find that gr(ξt,c) = ξ0,0. Since ξ0,0 is an isomorphism, ξt,c 
is an isomorphism for all t, c, as desired. 2 � 

Denote by Zt,c the center of the symplectic reflection algebra Ht,c. We have the following 
theorem. 

Theorem 8.14. If t = 0, the center of Ht,c is trivial. If t = 0, we have grZ0,c = Z0,0. In 
particular, H0,c is finitely generated over its center. 

Proof. The t = 0 case was proved by Brown and Gordon [BGo] as follows. If t = 0, we have 
grZt,c ⊆ Z0,0 = (SV )G . Also, we have a map 

τt,c : Zt,c → Bt,c = eHt,ce, z �→ ze = eze. 

The map τt,c is injective since gr(τt,c) is injective. In particular, the image of gr(τt,c) is 
contained in Z(Bt,c), the center of Bt,c. Thus it is enough to show that Z(Bt,c) is trivial. To 
show this, note that grZ(Bt,c) is contained in the Poisson center of B0,0 which is trivial. So 
Z(Bt,c) is trivial. 

Now suppose t = 0. We need to show that gr(τ0,c) : gr(Z0,c) Z0,0 is an isomorphism. It →
suffices to show that τ0,c is an isomorphism. To show this, we construct τ0

−
,c 
1 : B0,c → Z0,c as 

follows. 
For any b ∈ B0,c, since B0,c is commutative, we have an element b̃ ∈ EndB0,c (H0,ce) which 

is defined as the right multiplication by b. From Theorem 8.12, b̃ ∈ H0,c. Moreover, b̃ ∈ Z0,c 

since it commutes with H0,c as a linear operator on the faithful H0,c-module H0,ce. So b̃ ∈ Z0,c. 
It is easy to see that b̃e = b. So we can set b̃ = τ0

−
,c 
1(b) which defines the inverse map to 

τ0,c. � 

8.7. A review of deformation theory. Now we would like to explain that symplectic 
reflection algebras are the most general deformations of algebras of the from G � Weyl(V ). 
Before we do so, we give a brief review of classical deformation theory of associative algebras. 

8.7.1. Formal deformations of associative algebras. Let A0 be an associative algebra with 
unit over C. Denote by µ0 the multiplication in A0. 

Definition 8.15. A (flat) formal n-parameter deformation of A0 is an algebra A over 
C[[�]] = C[[�1, . . . , �n]] which is topologically free as a C[[�]]-module, together with an 
algebra isomorphism η0 : A/mA → A0 where m = ��1, . . . , �n� is the maximal ideal in C[[�]]. 

When no confusion is possible, we will call A a deformation of A0 (omitting “formal”). 
Let us restrict ourselves to one-parameter deformations with parameter �. Let us choose 

an identification η : A A0[[�]] as C[[�]]-modules, such that η = η0 modulo �. Then the → 

2Here we use the fact that the filtration is bounded from below. In the case of an unbounded filtration, 
it is possible for a map not to be an isomorphism if its associated graded is an isomorphism. An example of 
this is the operator of multiplication by 1 + t−1 in the space of Laurent polynomials in t, filtered by degree. 
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product in A is completely determined by the product of elements of A0, which has the form 
of a “star-product” 

µ(a, b) = a ∗ b = µ0(a, b) + �µ1(a, b) + �2 µ2(a, b) + · · · , 

where µi : A0 ⊗ A0 → A0 are linear maps, and µ0(a, b) = ab. 

8.7.2. Hochschild cohomology. The main tool in deformation theory of associative algebras 
is Hochschild cohomology. Let us recall its definition. 

Let A be an associative algebra. Let M be a bimodule over A. A Hochschild n-cochain of 
A with coefficients in M is a linear map A⊗n M . The space of such cochains is denoted 
by Cn(A, M). The differential d : Cn(A, M) →

→
Cn+1(A, M) is defined by the formula 

df(a1, . . . , an+1) = f(a1, . . . , an)an+1 − f(a1, . . . , anan+1) + f(a1, . . . , an−1an, an+1) 

− · · · + (−1)nf(a1a2, . . . , an+1) + (−1)n+1 a1f(a2, . . . , an+1). 

It is easy to show that d2 = 0. 

Definition 8.16. The Hochschild cohomology HH•(A, M) is defined to be the cohomology 
of the complex (C•(A, M), d). 

Proposition 8.17. One has a natural isomorphism 

HHi(A, M) Exti → A−bimod(A, M), 

where A−bimod denotes the category of A-bimodules.


Proof. The proof is obtained immediately by considering the bar resolution of the bimodule

A: 

· · · → A ⊗ A ⊗ A → A ⊗ A → A, 

where the bimodule structure on A⊗n is given by 

b(a1 ⊗ a2 ⊗ · · · ⊗ an)c = ba1 ⊗ a2 ⊗ · · · ⊗ anc, 

and the map ∂n : A⊗n A⊗n−1 is given by the formula → 

∂n(a1 ⊗ a2 ⊗ ... ⊗ an) = a1a2 ⊗ · · · ⊗ an − · · · + (−1)n a1 ⊗ · · · ⊗ an−1an. 

Note that we have the associative Yoneda product 

HHi(A, M) ⊗ HHj (A, N) → HHi+j (A, M ⊗A N), 

induced by tensoring of cochains. 
If M = A, the algebra itself, then we will denote HH•(A, M) by HH•(A). For example, 

HH0(A) is the center of A, and HH1(A) is the quotient of the Lie algebra of derivations of A 
by inner derivations. The Yoneda product induces a graded algebra structure on HH•(A); it 
can be shown that this algebra is supercommutative. 
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8.7.3. Hochschild cohomology and deformations. Let A0 be an algebra, and let us look for 
1-parameter deformations A = A0[[�]] of A0. Thus, we look for such series µ which satisfy 
the associativity equation, modulo the automorphisms of the C[[�]]-module A0[[�]] which are 
the identity modulo �. 3 

The associativity equation µ (µ ⊗ Id) = µ (Id ⊗ µ) reduces to a hierarchy of linear ◦	 ◦
equations: 

N	 N

µs(µN−s(a, b), c) = µs(a, µN−s(b, c)). 
s=0 s=0 

(These equations are linear in µN if µi, i < N , are known). 
To study these equations, one can use Hochschild cohomology. Namely, we have the 

following standard facts (due to Gerstenhaber, [Ge]), which can be checked directly. 

(1) The linear equation for µ1 says that µ1 is a Hochschild 2-cocycle. Thus algebra struc­
tures on A0[�]/�2 deforming µ0 are parametrized by the space Z2(A0) of Hochschild 
2-cocycles of A0 with values in M = A0. 

(2) If µ1, µ
�
1 are two 2-cocycles such that µ1 − µ�

1 is a coboundary, then the algebra struc­
tures on A0[�]/�2 corresponding to µ1 and µ�

1 are equivalent by a transformation of 
A0[�]/�2 that equals the identity modulo �, and vice versa. Thus equivalence classes 
of multiplications on A0[�]/�2 deforming µ0 are parametrized by the cohomology 
HH2(A0). 

(3) The linear equation for	 µN says that dµN is a certain quadratic expression bN in 
µ1, . . . , µN−1. This expression is always a Hochschild 3-cocycle, and the equation is 
solvable if and only if it is a coboundary. Thus the cohomology class of bN in HH3(A0) 
is the only obstruction to solving this equation. 

8.7.4. Universal deformation. In particular, if HH3(A0) = 0 then the equation for µn can be 
solved for all n, and for each n the freedom in choosing the solution, modulo equivalences, 
is the space H = HH2(A0). Thus there exists an algebra structure over C[[H]] on the space 
Au := A0[[H]] of formal functions from H to A0, a, b �→ µu(a, b) ∈ A0[[H]], (a, b ∈ A0), such 
that µu(a, b)(0) = ab ∈ A0, and every 1-parameter flat formal deformation A of A0 is given 
by the formula µ(a, b)(�) = µu(a, b)(γ(�)) for a unique formal series γ ∈ �H[[�]], with the 
property that γ�(0) is the cohomology class of the cocycle µ1. 
Such an algebra Au is called a universal deformation of A0. It is unique up to an isomor­

phism (which may involve an automorphism of C[[H]]). 4 

Thus in the case HH3(A0) = 0, deformation theory allows us to completely classify 1­
parameter flat formal deformations of A0. In particular, we see that the “moduli space” 
parametrizing formal deformations of A0 is a smooth space – it is the formal neighborhood 
of zero in H. 
If HH3(A0) is nonzero then in general the universal deformation parametrized by H does 

not exist, as there are obstructions to deformations. In this case, the moduli space of 

3Note that we don’t have to worry about the existence of a unit in A since a formal deformation of an 
algebra with unit always has a unit. 

4In spite of the universal property of Au, it may happen that there is an isomorphism between the algebras 
A1 and A2 corresponding to different paths γ1(�), γ2(�) (of course, reducing to a nontrivial automorphism of 
A0 modulo �). For this reason, sometimes Au is called a semiuniversal, rather than universal, deformation 
of A0. 
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deformations will be a closed subscheme of the formal neighborhood of zero in H, which 
is often singular. On the other hand, even when HH3(A0) =� 0, the universal deformation 
parametrized by (the formal neighborhood of zero in) H may exist (although its existence 
may be more difficult to prove than in the vanishing case). In this case one says that the 
deformations of A0 are unobstructed (since all obstructions vanish even though the space of 
obstructions doesn’t). 

8.8. Deformation-theoretic interpretation of symplectic reflection algebras. Let V 
be a symplectic vector space (over C) and Weyl(V ) the Weyl algebra of V . Let G be a finite 
group acting symplectically on V . Then from the definition, we have 

A0 := H1,0[G, V ] = G � Weyl(V ). 

Let us calculate the Hochschild cohomology of this algebra. 

Theorem 8.18 (Alev, Farinati, Lambre, Solotar, [AFLS]). The cohomology space 
HHi(G � Weyl(V )) is naturally isomorphic to the space of conjugation invariant functions 
on the set Si of elements g ∈ G such that rank (1 − g)|V = i. 

Corollary 8.19. The odd cohomology of G � Weyl(V ) vanishes, and HH2(G � Weyl(V )) 
is the space C[S]G of conjugation invariant functions on the set of symplectic reflections. In 
particular, there exists a universal deformation A of A0 = G � Weyl(V ) parametrized by 
C[S]G . 

Proof. Directly from the theorem. � 

Proof of Theorem 8.18. 

Lemma 8.20. Let B be a C-algebra together with an action of a finite group G. Then 

HH∗(G � B, G � B) = ( HH∗(B, Bg))G , 
g∈G 

where Bg is the bimodule isomorphic to B as a space where the left action of B is the usual 
one and the right action is the usual action twisted by g. 

Proof. The algebra G � B is a projective B-module. Therefore, using the Shapiro lemma, 
we get 

HH∗(G � B, G � B) = Ext∗ 
(G×G)�(B⊗Bop)(G � B, G � B) 

= Ext∗ (B, G � B) = Ext∗ (B, G � B)G 
Gdiagonal�(B⊗Bop) B⊗Bop 

= ( Ext∗ 
B⊗Bop (B, Bg))G = ( HH∗(B, Bg))G , 

g∈G g∈G 

as desired. � 

Now apply the lemma to B = Weyl(V ). For this we need to calculate HH∗(B, Bg), 
where g is any element of G. We may assume that g is diagonal in some symplectic basis: 
g = diag(λ1, λ1

−1, . . . , λn, λn
−1). Then by the Künneth formula we find that 

n

HH∗(B, Bg) = HH∗(A1, A1gi), 
i=1 
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where A1 is the Weyl algebra of the 2-dimensional space, (generated by x, y with defining 
relation xy − yx = 1), and gi = diag(λi, λ

−1).i 
Thus we need to calculate HH∗(B, Bg), B = A1, g = diag(λ, λ−1). 

Proposition 8.21. HH∗(B, Bg) is 1-dimensional, concentrated in degree 0 if λ = 1 and in 
degree 2 otherwise. 

Proof. If B = A1 then B has the following Koszul resolution as a B-bimodule: 

B ⊗ B → B ⊗ C2 ⊗ B → B ⊗ B → B. 

Here the first map is given by the formula 

b1 ⊗ b2 �→ b1 ⊗ x ⊗ yb2 − b1 ⊗ y ⊗ xb2 − b1y ⊗ x ⊗ b2 + b1x ⊗ y ⊗ b2, 

the second map is given by 

b1 ⊗ x ⊗ b2 �→ b1x ⊗ b2 − b1 ⊗ xb2, b1 ⊗ y ⊗ b2 �→ b1y ⊗ b2 − b1 ⊗ yb2, 

and the third map is the multiplication. 
Thus the cohomology of B with coefficients in Bg can be computed by mapping this 

resolution into Bg and taking the cohomology. This yields the following complex C•: 

(8.2) 0 Bg Bg ⊕ Bg Bg 0,→ → → → 

where the first nontrivial map is given by bg �→ [bg, y] ⊗ x − [bg, x] ⊗ y, and the second 
nontrivial map is given by bg ⊗ x �→ [x, bg], bg ⊗ y �→ [y, bg]. 

Consider first the case g = 1. Equip the complex C• with the Bernstein filtration (deg(x) = 
deg(y) = 1), starting with 0, 1, 2, for C0, C1, C2, respectively (this makes the differential 
preserve the filtration). Consider the associated graded complex C• . In this complex, gr

brackets are replaced with Poisson brackets, and thus it is easy to see that C• is the De gr 
Rham complex for the affine plane, so its cohomology is C in degree 0 and 0 in other degrees. 
Therefore, the cohomology of C• is the same. 

Now consider g = 1. In this case, declare that � C0, C1, C2 start in degrees 2,1,0 respectively 
(which makes the differential preserve the filtration), and again consider the graded complex 
C• . The graded Euler characteristic of this complex is (t2 − 2t + 1)(1 − t)−2 = 1. gr

The cohomology in the C0 term is the set of b ∈ C[x, y] such that ab = bag for all a. Thisgr 

means that HH0 = 0. 
The cohomology of the C2 term is the quotient of C[x, y] by the ideal generated by a − ag,gr 

a ∈ C[x, y]. Thus the cohomology HH2 of the rightmost term is 1-dimensional, in degree 0. 
By the Euler characteristic argument, this implies that HH1 = 0. The cohomology of the 
filtered complex C• is therefore the same, and we are done. � 

The proposition implies that in the n-dimensional case HH∗(B, Bg) is 1-dimensional, con­
centrated in degree rank (1 − g). It is not hard to check that the group G acts on the sum 
of these 1-dimensional spaces by simply permuting the basis vectors. Thus the theorem is 
proved. � 

Remark 8.22. Another proof of Theorem 8.18 is given in [Pi]. 

Theorem 8.23. The algebra H1,c[G, V ], with formal c, is the universal deformation of 
H1,0[G, V ] = G � Weyl(V ). More specifically, the map f : C[S]G → HH2(G � Weyl(V )) 
induced by this deformation coincides with the isomorphism of Corollary 8.19. 
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Proof. The proof (which we will not give) can be obtained by a direct computation with the 
Koszul resolution for G � Weyl(V ). Such a proof is given in [Pi]. The paper [EG] proves 
a slightly weaker statement that the map f is an isomorphism, which suffices to show that 
H1,c(G, V ) is the universal deformation of H1,0[G, V ]. � 

8.9. Finite dimensional representations of H0,c. Let Mc = SpecZ0,c. We can regard 
H0,c = H0,c[G, V ] as a finitely generated module over Z0,c = O(Mc). Let χ ∈ Mc be a central 
character, χ : Z0,c → C. Denote by �χ� the ideal in H0,c generated by the kernel of χ. 

Proposition 8.24. If χ is generic then H0,c/�χ� is the matrix algebra of size |G|. In par­
ticular, H0,c has a unique irreducible representation Vχ with central character χ. This repre­
sentation is isomorphic to CG as a G-module. 

Proof. It is shown by a standard argument (which we will skip) that it is sufficient to check 
the statement in the associated graded case c = 0. In this case, for generic χ, G � SV/�χ� = 
G � Fun(Oχ), where Oχ is the (free) orbit of G consisting of the points of V ∗ that map to 
χ ∈ V ∗/G, and Fun(Oχ) is the algebra of functions on Oχ. It is easy to see that this algebra 
is isomorphic to a matrix algebra, and has a unique irreducible representation, Fun(Oχ), 
which is a regular representation of G. � 

Corollary 8.25. Any irreducible representation of H0,c has dimension ≤ |G|. 

Proof. We will use the following lemma. 

Lemma 8.26 (The Amitsur-Levitzki identity). For any N × N matrices X1, . . . , X2N with 
entries in a commutative ring A, 

(−1)σXσ(1) · · · Xσ(2N) = 0. 
σ∈S2n 

Proof. Consider the ring MatN (A) ⊗ ∧(ξ1, . . . , ξ2n). Let X = i Xiξi ∈ R. So we have 

X2 = [Xi, Xj ]ξiξj ∈ MatN (A ⊗ ∧even(ξ1, . . . , ξ2n)). 
i<j 

It is obvious that Tr X2 = 0. Similarly, one can easily show that Tr X4 = 0, . . . , Tr X2N = 0. 
Since the ring A ⊗∧even(ξ1, . . . , ξ2n) is commutative, from the Cayley-Hamilton theorem, we 
know that X2N = 0 which implies the lemma. � 

Since for generic χ the algebra H0,c/�χ� is a matrix algebra, the algebra H0,c satisfies the 
Amitsur-Levitzki identity. Next, note that since H0,c is a finitely generated Z0,c-module (by 
passing to the associated graded and using Hilbert’s theorem), every irreducible representa­
tion of H0,c is finite dimensional. If H0,c had an irreducible representation E of dimension 
m > |G|, then by the density theorem the matrix algebra Matm would be a quotient of 
H0,c. But one can show that the Amitsur-Levitzki identity of degree |G| is not satisfied for 
matrices of bigger size than |G|. Contradiction. Thus, dim E ≤ |G|, as desired. � 

In general, for special central characters there are representations of H0,c of dimension less 
than |G|. However, in some cases one can show that all irreducible representations have 
dimension exactly G . For example, we have the following result. | |
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Theorem 8.27. Let G = Sn, V = h ⊕ h∗, h = Cn (the rational Cherednik algebra for Sn). 
Then for c = 0, every irreducible representation of H0,c has dimension n! and is isomorphic 
to the regular representation of Sn. 

Proof. Let E be an irreducible representation of H0,c. Let us calculate the trace in E of any 
permutation σ = 1. Let j be an index such that σ(j) = i = j. Then sij σ(j) = j. Hence in 
H0,c we have 

[yj , xisij σ] = [yj, xi]sij σ = csij 
2 σ = cσ. 

Hence Tr E (σ) = 0, and thus E is a multiple of the regular representation of Sn. But by 
Theorem 8.25, dim E ≤ n!, so we get that E is the regular representation, as desired. � 

8.10. Azumaya algebras. Let Z be a finitely generated commutative algebra over C, M = 
SpecZ the corresponding affine scheme, and A a finitely generated Z-algebra. 

Definition 8.28. A is said to be an Azumaya algebra of degree N if the completion Âχ of 
A at every maximal ideal χ in Z is the matrix algebra of size N over the completion Ẑχ of 
Z. 

Thus, an Azumaya algebra should be thought of as a bundle of matrix algebras on M . 5 

For example, if E is an algebraic vector bundle on M then End(E) is an Azumaya algebra. 
However, not all Azumaya algebras are of this form. 

Example 8.29. For q ∈ C∗, consider the quantum torus 

Tq = C�X±1, Y ±1�/�XY − qY X�. 

If q is a root of unity of order N , then the center of Tq is �X±N , Y ±N � = C[M ] where 
M = (C∗)2 . It is not difficult to show that Tq is an Azumaya algebra of degree N , but 
Tq ⊗C[M ] C(M) ∼�= MatN (C(M)), so Tq is not the endomorphism algebra of a vector bundle. 

Example 8.30. Let X be a smooth irreducible variety over a field of characteristic p. Then 
D(X), the algebra of differential operators on X, is an Azumaya algebra with rank pdim X , 
which is not an endomorphism algebra of a vector bundle. Its center is Z = O(T ∗X)F, the 
Frobenius twisted functions on T ∗X. 

It is clear that if A is an Azumaya algebra (say, over C) then for every central character 
χ of A, A/�χ� is the algebra MatN (C) of complex N by N matrices, and every irreducible 
representation of A has dimension N . 

The following important result is due to M. Artin. 

Theorem 8.31. Let A be a finitely generated (over C) polynomial identity (PI) algebra of 
degree N (i.e. all the polynomial relations of the matrix algebra of size N are satisfied in 
A). Then A is an Azumaya algebra if and only if every irreducible representation of A has 
dimension exactly N . 

Proof. See [Ar] Theorem 8.3. � 

5If M is not affine, one can define, in a standard manner, the notion of a sheaf of Azumaya algebras on 
M . 
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Thus, by Theorem 8.27, for G = Sn, the rational Cherednik algebra H0,c(Sn, Cn) for c = 0 �
is an Azumaya algebra of degree n!. Indeed, this algebra is PI of degree n! because the clas­
sical Dunkl representation embeds it into matrices of size n! over C(x1, . . . , xn, p1, . . . , pn)Sn . 

Let us say that χ ∈ M is an Azumaya point if for some affine neighborhood U of χ the 
localization of A to U is an Azumaya algebra. Obviously, the set Az(M) of Azumaya points 
of M is open. 
Now we come back to the study the space Mc corresponding to a symplectic reflection 

algebra H0,c. 

Theorem 8.32. The set Az(Mc) coincides with the set of smooth points of Mc. 

The proof of this theorem is given in the following two subsections. 

Corollary 8.33. If G = Sn and V = h ⊕ h∗, h = Cn (the rational Cherednik algebra case) 
then Mc is a smooth algebraic variety for c = 0. 

Proof. Directly from the above theorem. � 

8.11. Cohen-Macaulay property and homological dimension. To prove Theorem 8.32, 
we will need some commutative algebra tools. Let Z be a finitely generated commutative 
algebra over C without zero divisors. By Noether’s normalization lemma, there exist ele­
ments z1, . . . , zn ∈ Z which are algebraically independent, such that Z is a finitely generated 
module over C[z1, . . . , zn]. 
Definition 8.34. The algebra Z (or the variety SpecZ) is said to be Cohen-Macaulay if Z 
is a locally free (=projective) module over C[z1, . . . , zn]. 6 

Remark 8.35. It was shown by Serre that if Z is locally free over C[z1, . . . , zn] for some 
choice of z1, . . . , zn, then it happens for any choice of them (such that Z is finitely generated 
as a module over C[z1, . . . , zn]). 
Remark 8.36. Another definition of the Cohen-Macaulay property is that the dualizing 
complex ωZ 

• of Z is concentrated in degree zero. We will not discuss this definition here. 

It can be shown that the Cohen-Macaulay property is stable under localization. Therefore, 
it makes sense to make the following definition. 

Definition 8.37. An algebraic variety X is Cohen-Macaulay if the algebra of functions on 
every affine open set in X is Cohen-Macaulay. 

Let Z be a finitely generated commutative algebra over C without zero divisors, and let 
M be a finitely generated module over Z. 

Definition 8.38. M is said to be Cohen-Macaulay if for some algebraically independent 
z1, . . . , zn ∈ Z such that Z is finitely generated over C[z1, . . . , zn], M is locally free over 
C[z1, . . . , zn]. 

Again, if this happens for some z1, . . . , zn, then it happens for any of them. We also 
note that M can be Cohen-Macaulay without Z being Cohen-Macaulay, and that Z is a 
Cohen-Macaulay algebra iff it is a Cohen-Macaulay module over itself. 
We will need the following standard properties of Cohen-Macaulay algebras and modules. 

6It was proved by Quillen that a locally free module over a polynomial algebra is free; this is a difficult 
theorem, which will not be needed here. 
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Theorem 8.39. (i) Let Z1 ⊂ Z2 be a finite extension of finitely generated commutative 
C-algebras, without zero divisors, and M be a finitely generated module over Z2. Then 
M is Cohen-Macaulay over Z2 iff it is Cohen-Macaulay over Z1. 

(ii)	 Suppose that Z is the algebra of functions on a smooth affine variety. Then a Z-
module M is Cohen-Macaulay if and only if it is projective. 

Proof. The proof can be found in the text book [Ei].	 � 

In particular, this shows that the algebra of functions on a smooth affine variety is Cohen-
Macaulay. Algebras of functions on many singular varieties are also Cohen-Macaulay. 

Example 8.40. The algebra of regular functions on the cone xy = z2 is Cohen-Macaulay. 
This algebra can be identified as C[a, b]Z2 by letting x = a2, y = b2 and z = ab, where the Z2 

action is defined by a �→ −a, b �→ −b. It contains a subalgebra C[a2, b2], and as a module 
over this subalgebra, it is free of rank 2 with generators 1, ab. 

Example 8.41. Any irreducible affine algebraic curve is Cohen-Macaulay. For example, the 
algebra of regular functions on y2 = x3 is isomorphic to the subalgebra of C[t] spanned by 
1, t2, t3 , . . .. It contains a subalgebra C[t2] and as a module over this subalgebra, it is free of 
rank 2 with generators 1, t3 . 

Example 8.42. Consider the subalgebra in C[x, y] spanned by 1 and xiyj with i+j ≥ 2. It is 
a finite generated module over C[x2, y2], but not free. So this algebra is not Cohen-Macaulay. 

Another tool we will need is homological dimension. We will say that an algebra A has 
homological dimension ≤ d if any (left) A-module M has a projective resolution of length 
≤ d. The homological dimension of A is the smallest integer having this property. If such 
an integer does not exist, A is said to have infinite homological dimension. 
It is easy to show that the homological dimension of A is ≤ d if and only if for any A-

modules M, N one has Exti(M, N) = 0 for i > d. Also, the homological dimension clearly 
does not decrease under taking associated graded of the algebra under a positive filtration 
(this is clear from considering the spectral sequence attached to the filtration). 
It follows immediately from this definition that homological dimension is Morita invariant. 

Namely, recall that a Morita equivalence between algebras A and B is an equivalence of 
categories A-mod B-mod. Such an equivalence maps projective modules to projective →
ones, since projectivity is a categorical property (P is projective if and only if the functor 
Hom(P, ) is exact). This implies that if A and B are Morita equivalent then their homological ·
dimensions are the same. 

Then we have the following important theorem. 

Theorem 8.43. The homological dimension of a commutative finitely generated C-algebra 
Z is finite if and only if Z is regular, i.e. is the algebra of functions on a smooth affine 
variety. 

8.12. Proof of Theorem 8.32. First let us show that any smooth point χ of Mc is an 
Azumaya point. Since H0,c = EndB0,c H0,ce = EndZ0,c (H0,ce), it is sufficient to show that 
the coherent sheaf on Mc corresponding to the module H0,ce is a vector bundle near χ. By 
Theorem 8.39 (ii), for this it suffices to show that H0,ce is a Cohen-Macaulay Z0,c-module. 

To do so, first note that the statement is true for c = 0. Indeed, in this case the claim is 
that SV is a Cohen-Macaulay module over (SV )G . But SV is a polynomial algebra, which 
is Cohen-Macaulay, so the result follows from Theorem 8.39, (i). 
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Now, we claim that if Z, M are positively filtered and grM is a Cohen-Macaulay grZ­
module then M is a Cohen-Macaulay Z-module. Indeed, let z1, . . . , zn be homogeneous 
algebraically independent elements of grZ such that grZ is a finite module over the subalge­
bra generated by them. Let z1

� , . . . , zn
� be their liftings to Z. Then z1

� , . . . , zn
� are algebraically 

independent, and the module M over C[z1� , . . . , zn� ] is finitely generated and (locally) free since 
so is the module grM over C[z1, . . . , zn]. 

Recall now that grH0,ce = SV , grZ0,c = (SV )G . Thus the c = 0 case implies the general 
case, and we are done. 

Now let us show that any Azumaya point of Mc is smooth. Let U be an affine open set 
in Mc consisting of Azumaya points. Then the localization H0,c(U) := H0,c ⊗Z0,c OU is an 
Azumaya algebra. Moreover, for any χ ∈ U , the unique irreducible representation of H0,c(U) 
with central character χ is the regular representation of G (since this holds for generic χ by 
Proposition 8.24). This means that e is a rank 1 idempotent in H0,c(U)/�χ� for all χ. In 
particular, H0,c(U)e is a vector bundle on U . Thus the functor F : OU -mod H0,c(U)-mod →
given by the formula F (Y ) = H0,c(U)e ⊗OU Y is an equivalence of categories (the quasi-
inverse functor is given by the formula F −1(N) = eN). Thus H0,c(U) is Morita equivalent 
to OU , and therefore their homological dimensions are the same. 

On the other hand, the homological dimension of H0,c is finite (in fact, it equals to dim V ). 
To show this, note that by the Hilbert syzygies theorem, the homological dimension of 
SV is dim V . Hence, so is the homological dimension of G � SV (as Ext∗ (M, N) = G�SV 

Ext∗ (M, N)G). Thus, since grH0,c = G � SV , we get that H0,c has homological dimension SV 
≤ dim V . Hence, the homological dimension of H0,c(U) is also ≤ dim V (as the homological 
dimension clearly does not increase under the localization). But H0,c(U) is Morita equivalent 
to OU , so OU has a finite homological dimension. By Theorem 8.43, this implies that U 
consists of smooth points. 

Corollary 8.44. Az(Mc) is also the set of points at which the Poisson structure of Mc is 
symplectic. 

Proof. The variety Mc is symplectic outside of a subset of codimension 2, because so is M0. 
Thus the set S of smooth points of Mc where the top exterior power of the Poisson bivector 
vanishes is of codimension ≥ 2. Since the top exterior power of the Poisson bivector is locally 
a regular function, this implies that S is empty. Thus, every smooth point is symplectic, and 
the corollary follows from the theorem. � 

8.13. Notes. Our exposition in this section follows Section 8 – Section 10 of [E4]. 
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9. Calogero-Moser spaces


9.1. Hamiltonian reduction along an orbit. Let M be an affine algebraic variety and 
G a reductive algebraic group. Suppose M is Poisson and the action of G preserves the 
Poisson structure. Let g be the Lie algebra of G and g∗ the dual of g. Let µ : M→ g∗ be a 
moment map for this action (we assume it exists). It induces a map µ∗ : Sg → C[M]. 
Let O be a closed coadjoint orbit of G, IO be the ideal in Sg corresponding to O, and let 

JO be the ideal in C[M] generated by µ∗(IO). Then JG is a Poisson ideal in C[M]G, and O 
A = C[M]G/JG is a Poisson algebra. O 

Geometrically, Spec(A) = µ−1(O)/G (categorical quotient). It can also be written as 
µ−1(z)/Gz, where z ∈ O and Gz is the stabilizer of z in G. 

Definition 9.1. The scheme µ−1(O)/G is called the Hamiltonian reduction of M with respect 
to G along O. We will denote by R(M, G, O). 

The following proposition is standard. 

Proposition 9.2. If M is a symplectic variety and the action of G on µ−1(O) is free, then 
R(M, G, O) is a symplectic variety, of dimension dim(M) − 2 dim(G) + dim(O). 

9.2. The Calogero-Moser space. Let M = T ∗Matn(C), and G = PGLn(C) (so g = 
sln(C)). Using the trace form we can identify g∗ with g, and M with Matn(C) ⊕ Matn(C). 
Then a moment map is given by the formula µ(X, Y ) = [X, Y ], for X, Y ∈ Matn(C). 
Let O be the orbit of the matrix diag(−1, −1, . . . , −1, n − 1), i.e. the set of traceless 

matrices T such that T + 1 has rank 1. 

Definition 9.3 (Kazhdan, Kostant, Sternberg, [KKS]). The scheme Cn := R(M, G, O) is 
called the Calogero-Moser space. 

Proposition 9.4. The action of G on µ−1(O) is free, and thus (by Proposition 9.2) Cn is a 
smooth symplectic variety (of dimension 2n). 

Proof. It suffices to show that if X, Y are such that XY − Y X + 1 has rank 1, then (X, Y ) 
is an irreducible set of matrices. Indeed, in this case, by Schur’s lemma, if B ∈ GLn is such 
that BX = XB and BY = Y B then B is a scalar, so the stabilizer of (X, Y ) in PGLn is 
trivial. 

To show this, assume that W =� 0 is an invariant subspace of X, Y . In this case, the 
eigenvalues of [X, Y ] on W are a subcollection of the collection of n − 1 copies of −1 and 
one copy of n − 1. The sum of the elements of this subcollection must be zero, since it is the 
trace of [X, Y ] on W . But then the subcollection must be the entire collection, so W = Cn , 
as desired. � 

Thus, Cn is the space of conjugacy classes of pairs of n × n matrices (X, Y ) such that the 
matrix XY − Y X + 1 has rank 1. 

In fact, one also has the following more complicated theorem. 

Theorem 9.5 (G. Wilson, [Wi]). The Calogero-Moser space is connected. 

We will give a proof of this theorem later, in Subsection 9.4. 
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9.3. The Calogero-Moser integrable system. Let M be a symplectic variety, and let 
H1, . . . , Hn be regular functions on M such that {Hi, Hj } = 0 and Hi’s are algebraically 
independent everywhere. Assume that M carries a symplectic action of a reductive algebraic 
group G with moment map µ : M → g∗, which preserves the functions Hi, and let O be 
a coadjoint orbit of G. Assume that G acts freely on µ−1(O), and so the Calogero-Moser 
space R(M, G, O) is symplectic. The functions Hi descend to R(M, G, O). If they are still 
algebraically independent and n = dim R(M, G, O)/2, then we get an integrable system on 
R(M, G, O). 
A vivid example of this is the Kazhdan-Kostant-Sternberg construction of the Calogero-

Moser system. In this case M = T ∗Matn(C) (regarded as the set of pairs of matrices (X, Y ) 
as in Section 9.2), with the usual symplectic form ω = Tr (dY ∧ dX). Let Hi = Tr (Y i), 
i = 1, . . . , n. Let G = PGLn(C) act on M by conjugation, and let O be the coadjoint 
orbit of G considered in Subsection 9.2. Then the system H1, . . . , Hn descends to a system 
of functions in involution on R(M, G, O), which is the Calogero-Moser space Cn. Since 
this space is 2n-dimensional, H1, . . . , Hn form an integrable system on Cn. It is called the 
(rational) Calogero-Moser system. 

The Calogero-Moser flow is, by definition, the Hamiltonian flow on Cn defined by the 
Hamiltonian H = H2 = Tr (Y 2). Thus this flow is integrable, in the sense that it can be 
included in an integrable system. In particular, its solutions can be found in quadratures 
using the inductive procedure of reduction of order. However (as often happens with systems 
obtained by reduction), solutions can also be found by a much simpler procedure, since 
they can be found already on the “non-reduced” space M: indeed, on M the Calogero-
Moser flow is just the motion of a free particle in the space of matrices, so it has the form 
gt(X, Y ) = (X + 2Y t, Y ). The same formula is valid on Cn. In fact, we can use the same 
method to compute the flows corresponding to all the Hamiltonians Hi = Tr (Y i), i ∈ N: 
these flows are given by the formulas 

gt 
(i)
(X, Y ) = (X + iY i−1t, Y ). 

Let us write the Calogero-Moser system explicitly in coordinates. To do so, we first need 
to introduce local coordinates on the Calogero-Moser space Cn. 

To this end, let us restrict our attention to the open set Un which consists of ⊂ Cn 

conjugacy classes of those pairs (X, Y ) for which the matrix X is diagonalizable, with distinct 
eigenvalues; by Wilson’s Theorem 9.5, this open set is dense in Cn. 

A point P ∈ Un may be represented by a pair (X, Y ) such that X = diag(x1, . . . , xn), 
xi = xj . In this case, the entries of T := XY − Y X are (xi − xj )yij . In particular, the 
diagonal entries are zero. Since the matrix T + 1 has rank 1, its entries κij have the form 
aibj for some numbers ai, bj . On the other hand, κii = 1, so bj = a−j 

1 and hence κij = aia
−
j 
1 . 

By conjugating (X, Y ) by the matrix diag(a1, . . . , an), we can reduce to the situation when 
ai = 1, so κij = 1. Hence the matrix T has entries 1 − δij (zeros on the diagonal, ones off 
the diagonal). Moreover, the representative of P with diagonal X and T as above is unique 
up to the action of the symmetric group Sn. Finally, we have (xi − xj )yij = 1 for i =� j, so 
the entries of the matrix Y are yij = 1/(xi − xj) if i =� j. On the other hand, the diagonal 
entries yii of Y are unconstrained. Thus we have obtained the following result. 

Proposition 9.6. Let Cn be the open set of (x1, . . . , xn) ∈ Cn such that xi =� xj for i =� j.reg 

Then there exists an isomorphism of algebraic varieties ξ : T ∗(Cn /Sn) Un given by the reg →
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formula 
(x1, . . . , xn, p1, . . . , pn) �→ (X, Y ), 

where X = diag(x1, . . . , xn), and Y = Y (x, p) := (yij ), 

1 
yij = , i = j, yii = pi. 

xi − xj 
�

In fact, we have a stronger result: 

Proposition 9.7. ξ is an isomorphism of symplectic varieties (where the cotangent bundle 
is equipped with the usual symplectic structure). 

For the proof of Proposition 9.7, we will need the following general and important but 
easy theorem. 

Theorem 9.8 (The necklace bracket formula). Let a1, . . . , ar and b1, . . . , bs be either X or 
Y . Then on M we have 

{Tr (a1 · · · ar), Tr (b1 · · · bs)} =	 Tr (ai+1 · · · ara1 · · · ai−1bj+1 · · · bsb1 · · · bj−1) − 
(i,j):ai=Y,bj =X 

Tr (ai+1 · · · ara1 · · · ai−1bj+1 · · · bsb1 · · · bj−1). 
(i,j):ai=X,bj =Y 

Proof of Proposition 9.7. Let ak = Tr (Xk), bk = Tr (XkY ). It is easy to check using the 
necklace bracket formula that on M we have 

{am, ak} = 0, {bm, ak} = kam+k−1, {bm, bk} = (k − m)bm+k−1. 

On the other hand, ξ∗ak = xi
k , ξ∗bk = xi

kpi. Thus we see that 

{f, g} = {ξ∗f, ξ∗g}, 
where f, g are either ak or bk. But the functions ak, bk, k = 0, . . . , n − 1, form a local 
coordinate system near a generic point of Un, so we are done. � 

Now let us write the Hamiltonian of the Calogero-Moser system in coordinates. It has the 
form � � 1 
(9.1)	 H = Tr (Y (x, p)2) = pi 

2 − 
(xi − xj )2 

. 
i i=j 

Thus the Calogero-Moser Hamiltonian describes the motion of a system of n particles on the 
line with interaction potential −1/x2, which we considered in Section 2. 
Now we finally see the usefulness of the Hamiltonian reduction procedure. The point is 

that it is not clear at all from formula (9.1) why the Calogero-Moser Hamiltonian should be 
completely integrable. However, our reduction procedure implies the complete integrability 
of H, and gives an explicit formula for the first integrals: 7 

Hi = Tr (Y (x, p)i). 

Moreover, this procedure immediately gives us an explicit solution of the system. Namely, 
assume that x(t), p(t) is the solution with initial condition x(0), p(0). Let (X0, Y0) = 

7Thus, for type A we have two methods of proving the integrability of the Calogero-Moser system - one 
using Dunkl operators and one using Hamiltonian reduction. 
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ξ(x(0), p(0)). Then xi(t) are the eigenvalues of the matrix Xt := X0 + 2tY0, and pi(t) = 
x�i(t)/2. 

9.4. Proof of Wilson’s theorem. Let us now give a proof of Theorem 9.5. 
We have already shown that all components of Cn are smooth and have dimension 2n. 

Also, we know that there is at least one component (the closure of Un), and that the other 
components, if they exist, do not contain pairs (X, Y ) in which X is regular semisimple. 
This means that these components are contained in the �hypersurface Δ(X) = 0, where 
Δ(X) stands for the discriminant of X (i.e., Δ(X) := i=j (xi − xj ), where xi are the 
eigenvalues of X). 

Thus, to show that such additional components don’t in fact exist, it suffices to show that 
the dimension of the subscheme Cn(0) cut out in Cn by the equation Δ(X) = 0 is 2n − 1. 

To do so, first notice that the condition rank ([X, Y ] + 1) = 1 is equivalent to the equa­
tion ∧2([X, Y ] + 1) = 0; thus, the latter can be used as the equation defining Cn inside 
T ∗Matn/P GLn. 

Define C0 := Spec(grO(Cn)) to be the degeneration of Cn (we use the filtration on O(Cn)n 

defined by deg(X) = 0, deg(Y ) = 1). Then Cn 
0 is a closed subscheme in the scheme C�n 

0 cut 
out by the equations ∧2([X, Y ]) = 0 in T ∗Matn/PGLn. 
Let ( C�n0)red be the reduced part of C�n0 . Then ( C�n0)red coincides with the categorical quotient 
{(X, Y )|rank ([X, Y ]) ≤ 1}/PGLn. 

Our proof is based on the following proposition. 

Proposition 9.9. The categorical quotient {(X, Y )|rank ([X, Y ]) ≤ 1}/PGLn coincides with 
the categorical quotient {(X, Y )|[X, Y ] = 0}/PGLn. 

Proof. It is clear that {(X, Y )|[X, Y ] = 0}/PGLn is contained in {(X, Y )|rank ([X, Y ]) ≤
1}/PGLn. For the proof of the opposite inclusion we need to show that any regular function 
on {(X, Y )|rank ([X, Y ]) ≤ 1}/PGLn is completely determined by its values on the subvariety 
{(X, Y )|[X, Y ] = 0}/PGLn, i.e. that any invariant polynomial on the set of pairs of matrices 
with commutator of rank at most 1 is completely determined by its values on pairs of 
commuting matrices. To this end, we need the following lemma from linear algebra. 

Lemma 9.10. If A, B are square matrices such that [A, B] has rank ≤ 1, then there exists 
a basis in which both A, B are upper triangular. 

Proof. Without loss of generality, we can assume ker A =� 0 (by replacing A with A − λ if 
needed) and that A = 0. It suffices to show that there exists a proper nonzero subspace 
invariant under A, B; then the statement will follow by induction in dimension. 

Let C = [A, B] and suppose rank C = 1 (since the case rank C = 0 is trivial). If ker A ⊂
ker C, then ker A is B-invariant: if Av = 0 then ABv = BAv + Cv = 0. Thus ker A is the 
required subspace. If ker A � ker C, then there exists a vector v such that Av = 0 but Cv = 0. �
So ABv = Cv =� 0. Thus ImC ⊂ ImA. So ImA is B-invariant: BAv = ABv + Cv ∈ ImA. 
So ImA is the required subspace. 

This proves the lemma. � 

Now we are ready to prove Proposition 9.9. By the fundamental theorem of invariant 
theory, the ring of invariants of X and Y is generated by traces of words of X and Y : 
Tr(w(X, Y )). If X and Y are upper triangular with eigenvalues xi, yi, then any such trace 
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m rhas the form xi yi , i.e. coincides with the value of the corresponding invariant on the 
diagonal parts Xdiag, Ydiag of X and Y , which commute. The proposition is proved. � 

We will also need the following proposition: 

Proposition 9.11. The categorical quotient {(X, Y ) [X, Y ] = 0}/PGLn is isomorphic to 
(Cn × Cn)/Sn, i.e. its function algebra is C[x1, . . . , xn

|
, y1, . . . , yn]

Sn . 

Proof. Restriction to diagonal matrices defines a homomorphism 

ξ : O({(X, Y )|[X, Y ] = 0}/PGLn) → C[x1, . . . , xn, y1, . . . , yn]Sn . 

Since (as explained in the proof of Proposition 9.9), any invariant polynomial of entries of 
commuting matrices is determined by its values on diagonal matrices, this map is injective. 

m rAlso, ξ(Tr (XmY r)) = xi yi , where xi, yi are the eigenvalues of X and Y . 
Now we use the following well known theorem of H. Weyl (from his book “Classical 

groups”). 

Theorem 9.12. Let B be an algebra over C. Then the algebra SnB is generated by elements 
of the form 

b ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗ b ⊗ · · · ⊗ 1 + · · · + 1 ⊗ 1 ⊗ · · · ⊗ b. 

Proof. Since SnB is linearly spanned by elements of the form x ⊗ · · · ⊗ x, x ∈ B, it suffices 
to prove the theorem in the special case B = C[x]. In this case, the result is simply the fact 
that the ring of symmetric functions is generated by power sums, which is well known. � 

]Sn m rCorollary 9.13. The ring C[x1, . . . , xn, y1, . . . , yn is generated by the polynomials xi yi 
for m, r ≥ 0, m + r > 0. 

Proof. Apply Theorem 9.12 in the case B = C[x, y]. � 

Corollary 9.13 implies that ξ is surjective. Proposition 9.11 is proved. � 

Now we are ready to prove Wilson’s theorem. Let Cn(0)0 be the degeneration of Cn(0), i.e. 
the subscheme of C0 cut out by the equation Δ(X) = 0. According to Propositions 9.9 and n 
9.11, the reduced part (Cn(0)0)red is contained in the hypersurface in (Cn × Cn)/Sn cut out 
by the equation (xi − xj ) = 0. This hypersurface has dimension 2n − 1, so we are done. i<j 

9.5. The Gan-Ginzburg theorem. Let Comm(n) be the commuting scheme defined in 
T ∗Matn = Matn × Matn by the equations [X, Y ] = 0, X, Y ∈ Matn. Let G = PGLn, and 
consider the categorical quotient Comm(n)/G (i.e., the Hamiltonian reduction µ−1(0)/G of 
T ∗Matn by the action of G), whose algebra of regular functions is A = C[Comm(n)]G . 
It is not known whether the commuting scheme Comm(n) is reduced (i.e. whether the 

corresponding ideal is a radical ideal); this is a well known open problem. The underlying 
variety is irreducible (as was shown by Gerstenhaber [Ge1]), but very singular, and has a 
very complicated structure. However, we have the following result. 

Theorem 9.14 (Gan, Ginzburg, [GG]). Comm(n)/G is reduced, and isomorphic to C2n/Sn. 
Thus A = C[x1, . . . , xn, y1, . . . , yn]Sn . The Poisson bracket on this algebra is induced from 
the standard symplectic structure on C2n . 
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Sketch of the proof. Look at the almost commuting variety Mn ⊂ gl × gl × Cn × (Cn)∗ 
n n 

defined by 
Mn = {(X, Y, v, f)|[X, Y ] + v ⊗ f = 0}. 

Gan and Ginzburg proved the following result. 

Theorem 9.15. Mn is a complete intersection. It has n +1 irreducible components denoted 
by Mi , labeled by i = dim C�X, Y �v. Also, Mn is generically reduced. n

Since Mn is generically reduced and is a complete intersection, by a standard result of 
commutative algebra it is reduced. Thus C[Mn] has no nonzero nilpotents. This implies 
C[Mn]

G has no nonzero nilpotents. 
However, it is easy to show that the algebra C[Mn]

G is isomorphic to the algebra of 
invariant polynomials of entries of X and Y modulo the “rank 1” relation ∧2[X, Y ] = 0. By 
a scheme-theoretic version of Proposition 9.9 (proved in [EG]), the latter is isomorphic to 
A. This implies the theorem (the statement about Poisson structures is checked directly in 
coordinates on the open part where X is regular semisimple). � 

9.6. The space Mc for Sn and the Calogero-Moser space. Let H0,c = H0,c[Sn, V ] be 
the symplectic reflection algebra of the symmetric group Sn and space V = h ⊕ h∗, where 
h = Cn (i.e., the rational Cherednik algebra H0,c(Sn, h)). Let Mc = Spec B0,c[Sn, V ] be the 
Calogero-Moser space defined in Section 8.5. It is a symplectic variety for c = 0. 

Theorem 9.16. For c = 0 � the space Mc is isomorphic to the Calogero-Moser space Cn as a 
symplectic variety. 

Proof. To prove the theorem, we will first construct a map f : Mc , and then prove that → Cn
f is an isomorphism. 

Without loss of generality, we may assume that c = 1. As we have shown before, the 
algebra H0,c is an Azumaya algebra. Therefore, Mc can be regarded as the moduli space of 
irreducible representations of H0,c. 

Let E ∈ Mc be an irreducible representation of H0,c. We have seen before that E has 
dimension n! and is isomorphic to the regular representation as a representation of Sn. Let 
Sn−1 ⊂ Sn be the subgroup which preserves the element 1. Then the space of invariants 
ESn−1 has dimension n. On this space we have operators X, Y : ESn−1 ESn−1 obtained→
by restriction of the operators x1, y1 on E to the subspace of invariants. We have 

n

[X, Y ] = T := s1i. 
i=2 

Let us now calculate the right hand side of this equation explicitly. Let e be the symmetrizer 
of Sn−1. Let us realize the regular representation E of Sn as C[Sn] with action of Sn by 
left multiplication. Then v1 = e, v2 = es12, . . . , vn = es1n is a basis of ESn−1 . The element 
T commutes with e, so we have � 

Tvi = vj . 
j=i 

This means that T +1 has rank 1, and hence the pair (X, Y ) defines a point on the Calogero-
Moser space Cn. 8 

8Note that the pair (X, Y ) is well defined only up to conjugation, because the representation E is well 
defined only up to an isomorphism. 
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We now set (X, Y ) = f(E). It is clear that f : Mc is a regular map. So it remains to → Cn 

show that f is an isomorphism. This is equivalent to showing that the corresponding map 
of function algebras f ∗ : O(Cn) → B0,c is an isomorphism. 

Let us calculate f and f ∗ more explicitly. To do so, consider the open set U in Mc consisting 
of representations in which xi −xj acts invertibly. These are exactly the representations that 
are obtained by restricting representations of Sn �C[x1, . . . , xn, p1, . . . , pn, δ(x)−1] using the 
classical Dunkl embedding. Thus representations E ∈ U are of the form E = Eλ,µ (λ, µ ∈ Cn , 
and λ has distinct coordinates), where Eλ,µ is the space of complex valued functions on the 
orbit Oλ,µ ⊂ C2n, with the following action of H0,c: � (sijF )(a, b)

(xiF )(a, b) = aiF (a, b), (yiF )(a, b) = biF (a, b) + . 
ai − aj

j=i 

(the group Sn acts by permutations). 
Now let us consider the space ESn−1 . A basis of this space is formed by characteristic λ,µ 

functions of Sn−1-orbits on Oλ,µ. Using the above presentation, it is straightforward to 
calculate the matrices of the operators X and Y in this basis: 

X = diag(λ1, . . . , λn), 

and 
1 

Yij = µi if j = i, Yij = if j = i. 
λi − λj 

�

This shows that f induces an isomorphism f |U : U → Un, where Un is the subset of Cn 

consisting of pairs (X, Y ) for which X has distinct eigenvalues. 
From this presentation, it is straigtforward that f∗(Tr (Xp)) = xp 

1 + + xpn for every · · · 
positive integer p. Also, f commutes with the natural SL2(C)-action on Mc and Cn (by 
(X, Y ) (aX + bY, cX + dY )), so we also get f ∗(Tr (Y p)) = y1 

p + + yn
p , and → · · · 

1 
p

m p−mf ∗(Tr (XpY )) = xi yixi . 
p + 1 

m=0 i 

Now, using the necklace bracket formula on Cn and the commutation relations of H0,c, we 
find, by a direct computation, that f ∗ preserves Poisson bracket on the elements Tr (Xp), 
Tr (XqY ). But these elements are a local coordinate system near a generic point, so it follows 
that f is a Poisson map. Since the algebra B0,c is Poisson generated by xi

p and yi
p for 

all p, we get that f ∗ is a surjective map. 
Also, f ∗ is injective. Indeed, by Wilson’s theorem the Calogero-Moser space is connected, 

and hence the algebra O(Cn) has no zero divisors, while Cn has the same dimension as Mc. 
This proves that f ∗ is an isomorphism, so f is an isomorphism. � 

9.7. The Hilbert scheme Hilbn(C2) and the Calogero-Moser space. The Hilbert 
scheme Hilbn(C2) is defined to be 

Hilbn(C2) = { ideals I ⊂ C[x, y]|codimI = n} 
= {(E, v)|E is a C[x, y]-module of dimension n, v is a cyclic vector of E}. 

The second equality can be easily seen from the short exact sequence 

0 I C[x, y] E 0.→ → 
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Let S(n)C2 = C2 × · · · × C2 , where Sn acts by permutation. We have a natural map � �� � /Sn

n times 

Hilbn(C2) S(n)C2 which sends every ideal I to its zero set (with multiplicities). This map →
is called the Hilbert-Chow map. 

Theorem 9.17 (Fogarty, [F]). (i) Hilbn(C2) is a smooth quasiprojective variety. 
(ii) The Hilbert-Chow map Hilbn(C2) S(n)C2 is projective. It is a resolution of singu­→

larities. 

Proof. Proof can be found in [Na]. � 

Now consider the Calogero-Moser space Cn defined in Section 9.2. 

Theorem 9.18 (see [Na]). The Hilbert Scheme Hilbn(C2) is C∞-diffeomorphic to Cn. 

Remark 9.19. More precisely there exists a family of algebraic varieties over A1, say Xt, 
t ∈ A1, such that Xt is isomorphic to Cn if t = 0 and � X0 is the Hilbert scheme; and also if we 
denote by Xt the deformation of C2n/Sn into the Calogero-Moser space, then there exists 
a map ft : Xt � Xt, such that for t =� 0, ft is an isomorphism and f0 is the Hilbert-Chow 
map. 

Remark 9.20. Consider the action of G = PGLn on T ∗Matn. As we have discussed, the 
corresponding moment map is µ(X, Y ) = [X, Y ], so µ−1(0) = {(X, Y )|[X, Y ] = 0} is the 
commuting variety. We can consider two kinds of quotient µ−1(0)/G (i.e., of Hamiltonian 
reduction): 

(1) The categorical quotient, i.e., 

= (CnSpec(C[xij , yij]/�[X, Y ] = 0�)G ∼ × Cn)/Sn. 

It is a reduced (by Gan-Ginzburg Theorem 9.14), affine but singular variety. 
(2) The GIT quotient, in which the stability condition is that there exists a cyclic vector 

for X, Y . This quotient is Hilbn(C2), which is smooth but not affine. 
Both of these reductions are degenerations of the reduction along the orbit of matrices T 

such that T + 1 has rank 1, which yields the space Cn. This explains why Theorem 9.18 and 
the results mentioned in Remark 9.19 are natural to expect. 

9.8. The cohomology of Cn. We also have the following result describing the cohomology 
of Cn (and hence, by Theorem 9.18, of Hilbn(C2)). Define the age filtration for the symmetric 
group Sn by setting 

age(transposition) = 1. 

Then one can show that for any σ ∈ Sn, age(σ) = rank (1 − σ)|reflection representation. It is easy 
to see that 0 ≤ age ≤ n−1. Notice also that the age filtration can be defined for any Coxeter 
group. 

Theorem 9.21 (Lehn-Sorger, Vasserot). The cohomology ring H∗(Cn, C) lives in even degrees 
only and is isomorphic to gr(Center(C[Sn])) under the age filtration (with doubled degrees). 

Proof. Let us sketch a noncommutative-algebraic proof of this theorem, given in [EG]. This 
proof is based on the following result. 
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Theorem 9.22 (Nest-Tsygan, [NT]). If M is an affine symplectic variety and A is a quan­
tization of M , then 

HH∗(A[�−1], A[�−1]) ∼= H∗(M, C((�))) 
as an algebra over C((�)). 

Now, we know that the algebra Bt,c is a quantization of Cn. Therefore by above theorem, 
the cohomology algebra of Cn is the cohomology of Bt,c (for generic t). But Bt,c is Morita 
equivalent to Ht,c, so this cohomology is the same as the Hochschild cohomology of Ht,c. 
However, the latter can be computed by using that Ht,c is given by generators and relations 
(by producing explicit representatives of cohomology classes and computing their product), 
which gives the result. � 

9.9. Notes. Sections 9.1–9.6 follow Section 1, 2, 4 of [E4]; the parts about the Hilbert 
scheme and its relation to Calogero-Moser spaces follow the book [Na] (see also [GS]); the 
other parts follow the paper [EG]. 
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10. Quantization of Claogero-Moser spaces


10.1. Quantum moment maps and quantum Hamiltonian reduction. Now we would 
like to quantize the notion of a moment map. Let g be a Lie algebra, and A be an associative 
algebra equipped with a g-action, i.e. a Lie algebra map φ : g DerA. A quantum moment →
map for (A, φ) is an associative algebra homomorphism µ : U(g) A such that for any → 
a ∈ g, b ∈ A one has [µ(a), b] = φ(a)b. 

The space of g-invariants Ag, i.e. elements b ∈ A such that [µ(a), b] = 0 for all a ∈ g, is 
a subalgebra of A. Let J ⊂ A be the left ideal generated by µ(a), a ∈ g. Then J is not 
a 2-sided ideal, but Jg := J ∩ Ag is a 2-sided ideal in Ag. Indeed, let c ∈ Ag, and b ∈ Jg, 
b = biµ(ai), bi ∈ A, ai ∈ g. Then bc = biµ(ai)c = bicµ(ai) ∈ Jg.i 

Thus, the algebra A//g := Ag/Jg is an associative algebra, which is called the quantum 
Hamiltonian reduction of A with respect to the quantum moment map µ. 

10.2. The Levasseur-Stafford theorem. In general, similarly to the classical case, it is 
rather difficult to compute the quantum reduction A//g. For example, in this subsection 
we will describe A//g in the case when A = D(g) is the algebra of differential operators 
on a reductive Lie algebra g, and g acts on A through the adjoint action on itself. This 
description is a very nontrivial result of Levasseur and Stafford. 

Let h be a Cartan subalgebra of g, and W the Weyl group of (g, h). Let hreg denote the set 
of regular points in h, i.e. the complement of the reflection hyperplanes. To describe D(g)//g, 
we will construct a homomorphism HC : D(g)g → D(h)W , called the Harish-Chandra homo­
morphism (as it was first constructed by Harish-Chandra). Recall that we have the classical 
Harish-Chandra isomorphism ζ : C[g]g C[h]W , defined simply by restricting g-invariant →
functions on g to the Cartan subalgebra h. Using this isomorphism, we can define an action 
of D(g)g on C[h]W , which is clearly given by W -invariant differential operators. However, 
these operators will, in general, have poles on the reflection hyperplanes. Thus we get a 
homomorphism HC� : D(g)g → D(hreg)W . 
The homomorphism HC� is called the radial part homomorphism, as for example for 

g = su(2) it computes the radial parts of rotationally invariant differential operators on R3 

in spherical coordinates. This homomorphism is not yet what we want, since it does not 
actually land in D(h)W (the radial parts have poles). 
Thus we define the Harish-Chandra homomorphism by twisting HC� by the discriminant 

δ(x) = (α, x) (x ∈ h, and α runs over positive roots of g):α>0

HC(D) := δ ◦ HC�(D) ◦ δ−1 ∈ D(hreg)W . 

Theorem 10.1. (i) (Harish-Chandra, [HC]) For any reductive g, HC lands in D(h)W ⊂ 
D(hreg)W . 

(ii) (Levasseur-Stafford [LS]) The homomorphism HC defines an isomorphism D(g)//g = 
D(h)W . 

Remark 10.2. (1) Part (i) of the theorem says that the poles magically disappear after 
conjugation by δ. 

(2) Both parts of this theorem are quite nontrivial. The first part was proved by Harish-
Chandra using analytic methods, and the second part by Levasseur and Stafford 
using the theory of D-modules. 

85 



� � 

� � 

| � 

� 

In the case g = gln, Theorem 10.1 is a quantum analog of Theorem 9.14. The remaining 
part of this subsection is devoted to the proof of Theorem 10.1 in this special case, using 
Theorem 9.14. 

We start the proof with the following proposition, valid for any reductive Lie algebra. 

Proposition 10.3. If D ∈ (Sg)g is a differential operator with constant coefficients, then 
HC(D) is the W -invariant differential operator with constant coefficients on h, obtained from 
D via the classical Harish-Chandra isomorphism η : (Sg)g (Sh)W .→ 

Proof. Without loss of generality, we may assume that g is simple. 

Lemma 10.4. Let D be the Laplacian Δg of g, corresponding to an invariant form. Then 
HC(D) is the Laplacian Δh. 

Proof. Let us calculate HC�(D). We have 
r

D = ∂x
2 
i 
+ 2 ∂fα ∂eα , 

i=1 α>0 

where xi is an orthonormal basis of h, and eα, fα are root elements such that (eα, fα) = 1. 
Thus if F (x) is a g-invariant function on g, then we get 

r

(DF ) h = ∂x
2 
i 
(F h) + 2 (∂fα ∂eα F ) h.|

i=1 

|
α>0 

|

Now let x ∈ h, and consider (∂fα ∂eα F )(x). We have 

(∂fα ∂eα F )(x) = ∂s∂t|s=t=0F (x + tfα + seα). 

On the other hand, we have 

Ad(e sα(x)
−1eα )(x + tfα + seα) = x + tfα + tsα(x)−1hα + · · · , 

where hα = [eα, fα]. Hence, ∂s∂t s=t=0F (x + tfα +seα) = α(x)−1(∂hα F )(x). This implies that 

HC�(D)F (x) = ΔhF (x) + 2 α(x)−1∂hα F (x). 
α>0 

Now the statement of the Lemma reduces to the identity δ−1 ◦Δh◦δ = Δh+2 α>0 α(x)
−1∂hα . 

This identity follows immediately from the identity Δhδ = 0. To prove the latter, it suffices 
to note that δ is the lowest degree nonzero polynomial on h, which is antisymmetric under 
the action of W . The lemma is proved. � 

Now let D be any element of (Sg)g ⊂ D(g)g of degree d (operator with constant coeffi­
cients). It is obvious that the leading order part of the operator HC(D) is the operator η(D) 
with constant coefficients, whose symbol is just the restriction of the symbol of D from g∗ 

to h∗. Our job is to show that in fact HC(D) = η(D). To do so, denote by Y the difference 
HC(D) − η(D). Assume Y = 0. By Lemma 10.4, the operator HC(� D) commutes with Δh. 
Therefore, so does Y . Also Y has homogeneity degree d but order m ≤ d − 1. Let S(x, p) be 
the symbol of Y (x ∈ h, p ∈ h∗). Then S is a homogeneous function of homogeneity degree 
d under the transformations x t−1x, p tp, polynomial in p of degree m. From these → →
properties of S it is clear that S is not a polynomial (its degree in x is m − d < 0). On 
the other hand, since Y commutes with Δh, the Poisson bracket of S with p2 is zero. Thus 
Proposition 10.3 follows from Lemma 2.22. � 
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Now we continue the proof of Theorem 10.1. Consider the filtration on D(g) in which 
deg(g) = 1 deg(g∗) = 0 (the order filtration), and the associated graded map grHC : C[g × 
g∗]g → C[hreg × h∗]W , which attaches to every differential operator the symbol of its radial 
part. It is easy to see that this map is just the restriction map to h ⊕ h∗ ⊂ g ⊕ g∗, so it 
actually lands in C[h ⊕ h∗]W . 
Moreover, grHC is a map onto C[h ⊕ h∗]W . Indeed, grHC is a Poisson map, so the 

surjectivity follows from the following Lemma. 

Lemma 10.5. C[h ⊕ h∗]W is generated as a Poisson algebra by C[h]W and C[h∗]W , i.e. by 
functions fm = xm and f ∗ = pm 

i m i , m ≥ 1. 

r−1 m−1Proof. We have {fm∗ , fr} = mr x pi . Thus the result follows from Corollary 9.13. �i 

Let K0 be the kernel of grHC. Then by Theorem 9.14, K0 is the ideal of the commuting 
scheme Comm(g)/G. 
Now consider the kernel K of the homomorphism HC. It is easy to see that K ⊃ Jg, 

so gr(K) ⊃ gr(J)g. On the other hand, since K0 is the ideal of the commuting scheme, 
we clearly have gr(J)g ⊃ K0, and K0 ⊃ grK. This implies that K0 = grK = gr(J)g, and 
K = Jg. 

It remains to show that Im HC = D(h)W . Since grK = K0, we have grIm HC = C[h⊕h∗]W . 
Therefore, to finish the proof of the Harish-Chandra and Levasseur-Stafford theorems, it 
suffices to prove the following proposition. 

Proposition 10.6. Im HC ⊃ D(h)W . 

Proof. We will use the following Lemma. 

Lemma 10.7 (N. Wallach, [Wa]). D(h)W is generated as an algebra by W -invariant func­
tions and W -invariant differential operators with constant coefficients. 

Proof. The lemma follows by taking associated graded algebras from Lemma 10.5. � 

Remark 10.8. Levasseur and Stafford showed [LS] that this lemma is valid for any finite 
group W acting on a finite dimensional vector space h. However, the above proof does not 
apply, since, as explained in [Wa], Lemma 10.5 fails for many groups W , including Weyl 
groups of exceptional Lie algebras E6, E7, E8 (in fact it even fails for the cyclic group of 
order > 2 acting on a 1-dimensional space!). The general proof is more complicated and uses 
some results in noncommutative algebra. 

Lemma 10.7 and Proposition 10.3 imply Proposition 10.6. � 

Thus, Theorem 10.1 is proved. 

10.3. Corollaries of Theorem 10.1. Let gR be the compact form of g, and O a regular 
coadjoint orbit in g∗ Consider the map R. 

ψO : h → C, ψO(x) = 
O 
e(b,x)db, x ∈ h, 

where db is the measure on the orbit coming from the Kirillov-Kostant symplectic structure. 
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Theorem 10.9 (Harish-Chandra formula). For a regular element x ∈ h, we have 

ψO(x) = δ−1(x) (−1)�(w)e(wλ,x), 
w∈W 

where λ is the intersection of O with the dominant chamber in the dual Cartan subalgebra 
h∗ 

R, and �(w) is the length of an element w ∈ W .R ⊂ g∗ 

Proof. Take D ∈ (Sg)g. Then δ(x)ψO is an eigenfunction of HC(D) = η(D) ∈ (Sh)W with 
eigenvalue χO(D), where χO(D) is the value of the invariant polynomial D at the orbit O. 

Since the solutions of the equation η(D)ϕ = χO(D)ϕ have a basis e(wλ,x) where w ∈ W , 
we have � 

δ(x)ψO(x) = cw · e(wλ,x). 
w∈W 

Since it is antisymmetric, we have cw = c (−1)�(w), where c is a constant. The fact that · 
c = 1 can be shown by comparing the asymptotics of both sides as x → ∞ in the regular 
chamber (using the stationary phase approximation for the integral). � 

From Theorem 10.9 and the Weyl Character formula, we have the following corollary. 

Corollary 10.10 (Kirillov character formula for finite dimensional representations, [Ki]). If 
λ is a dominant integral weight, and Lλ is the corresponding representation of G, then 

Tr Lλ (e x) = 
δ(x) 

e(b,x)db,
δTr (x) Oλ+ρ 

where δTr (x) is the trigonometric version of δ(x), i.e. the Weyl denominator 
(eα(x)/2 − e−α(x)/2), and Oµ denotes the coadjoint orbit passing through µ.α>0

10.4. The deformed Harish-Chandra homomorphism. Finally, we would like to ex­
plain how to quantize the Calogero-Moser space Cn, using the procedure of quantum Hamil­
tonian reduction. 
Let g = gln, A = D(g) as above. Let k be a complex number, and Wk be the representation 

of sln on the space of functions of the form (x1 · · · xn)kf(x1, . . . , xn), where f is a Laurent 
polynomial of degree 0. We regard Wk as a g-module by pulling it back to g under the 
natural projection g sln. Let Ik be the annihilator of Wk in U(g). The ideal Ik is the →
quantum counterpart of the coadjoint orbit of matrices T such that T + 1 has rank 1. 
Let Bk = D(g)g/(D(g)µ(Ik))g where µ : U(g) A is the quantum momentum map (the →

quantum Hamiltonian reduction with respect to the ideal Ik). Then Bk has a filtration 
induced from the order filtration of D(g)g. 
Let HCk : D(g)g → Bk be the natural homomorphism, and K(k) be the kernel of HCk. 

Theorem 10.11 (Etingof-Ginzburg, [EG]). (i) K(0) = K, B0 = D(h)W , HC0 = HC. 
(ii) grK(k) = Ker (grHCk) = K0 for all complex k. Thus, HCk is a flat family of 

homomorphisms. 
(iii) The algebra grBk is commutative and isomorphic to C[h ⊕ h∗]W as a Poisson algebra. 

Because of this theorem, the homomorphism HCk is called the deformed Harish-Chandra 
homomorphism. 
Theorem 10.11 implies that Bk is a quantization of the Calogero-Moser space Cn (with 

deformation parameter 1/k). But we already know one such quantization - the spherical 
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Cherednik algebra B1,k for the symmetric group. Therefore, the following theorem comes as 
no surprize. 

Theorem 10.12 ([EG]). The algebra Bk is isomorphic to the spherical rational Cherednik 
algebra B1,k(Sn, Cn). 

Thus, quantum Hamiltonian reduction provides a Lie-theoretic construction of the spher­
ical rational Cherednik algebra for the symmetric group. A similar (but more complicated) 
Lie theoretic construction exists for symplectic reflection algebras for wreath product groups 
defined in Example 8.5 (see [EGGO]). 

10.5. Notes. Our exposition in this section follows Section 4, Section 5 of [E4]. 
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Weyl sous l’action d’un groupe fini. J. of Algebra 232 (2000), 564–577. 

[Ar]	 M. Artin: On Azumaya algebras and finite dimensional representations of rings. J. Algebra 11 (1969), 
pp. 532563. 

[B] N. Bourbaki: Chapitres IV, V, VI of Groupes et algebres de Lie, Hermann, Paris, 1968. 
[BB] A. Beilinson, J. Bernstein: Proof of Jantzen’s conjecture. Advances in Soviet Mathematics 16 (1993), 

1–50. 
[BE] R. Bezrukavnikov, P. Etingof: Parabolic induction and restriction functors for rational Cherednik 

algebras. Selecta Math. (N.S.) 14 (2009), no. 3-4, 397–425. 
[BEG] Y. Berest, P. Etingof, V. Ginzburg: Finite-dimensional representations of rational Cherednik algebras. 

Int. Math. Res. Not. 2003, no. 19, 1053–1088. 
[BGS] A. Beilinson, V. Ginzburg, W. Soergel: Koszul duality patterns in Representation Theory, J. Amer. 

Math. Soc. 9 (1996), 473–527. 
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