
18.782 Introduction to Arithmetic Geometry Fall 2013

Problem Set #10 Due: 12/3/2013

These problems are related to the material covered in Lectures 21-22. I have made every
effort to proof-read them, but some errors may remain. The first person to spot each error
will receive 1-5 points of extra credit.

The problem set is due by the start of class on 12/3/2013 and should be submitted
electronically as a pdf-file e-mailed to the instructor . You can use the latex source
for this problem set as a template for writing up your solutions; be sure to include your name
in your solutions and to identify collaborators and any sources not listed in the syllabus.

Recall that we have defined a curve as a smooth projective variety of dimension one
(and varieties are defined to be irreducible algebraic sets).

Problem 1. Bezout’s theorem (50 points)

In this problem k is an algebraically closed field.
A curve in P2 is called a plane curve.1

(a) Prove that every plane curve X/k is a hypersurface, meaning that its ideal I(X) is
of the form (f), where f is a homogeneous polynomial in k[x, y, z]. Then show that
every generator for I(X) has the same degree.

The degree of X (denoted degX) is the degree of any generator for its homogeneous ideal.

(b) Let F/k be a function field, let P be a place of F , and let f ∈ OP . Prove that the
ring OP /(f) is a k-vector space of dimension ordP (f).

Given a nonconstant homogeneous polynomial g ∈ k[x, y, z] that is relatively prime to f ,
we can represent g as an element of the local ring OX,P of functions in X that are regular
at P by picking a homogeneous polynomial h that does not vanish at P and representing g
as g/h reduced modulo I(X), an element of k(X). Note that in terms of computing ordP (g)
it makes no difference which h we pick, ordP (g) will always be equal to the order of vanishing
of g at P , a nonnegative integer. We then define the divisor of g in DivkX to be

divX g = ordP (g)P.

Note that div g is not a principal divisor.2

∑
X Indeed, deg divX g is never zero.

(c) Prove that deg divX g depends only on deg g (i.e. deg divX g = deg divX h whenever
g and h have the same degree and are both relatively prime to f). Then prove that
deg divX g is a linear function of deg g.

Now suppose that g is irreducible and nonsingular, so it defines a plane curve Y/k.

(d) Prove that deg divY f = deg divX g.

1Plane curves are not usually required to be smooth or irreducible, but ours are.
2By varying h locally we eliminate the poles that would be present if we fixed a global choice for h.
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Definition 1. Let f and g be two nonconstant homogeneous polynomials in k[x, y, z] with
no common factor, and let P be a point in P2. The intersection number of f and g at P is

IP (f, g) := dimkOP2,P /(f, g)

Here O 2,P denotes the ring of functions in k(P P2) that are regular at P , and f and g are
represented as elements of this ring by choosing homogeneous denominators of appropriate
degree that do not vanish at P , exactly as described above.

As above, let X/k and Y/k denote plane∑ curves defined by relatively prime homogeneous
polynomials f and g, and let I(f, g) = P IP (f, g).

(e) Prove that I(f, g) is equal to deg divX g = deg divY f .

(f) Prove Bezout’s Theorem for plane curves:

I(f, g) = deg f deg g.

In fact Bezout’s theorem holds even when f and g are not necessarily irreducible and
nonsingular, but you need not prove this. It should be clear that f and g do not need to
be irreducible; just factor them and apply the theorem to all pairs of factors. You proof
should also handle cases where just one of f or g is singular; it takes a bit more work to
handle the case where both f and g are singular and intersect at a common singularity.
The assumption that k = k is necessary, in general, but the inequality I(f, g) ≤ deg f deg g
always holds.

Problem 2. Derivations and differentials (50 points)

A derivation on a function field F/k is a k-linear map δ : F → F such that

δ(fg) = δ(f)g + fδ(g).

for all f, g ∈ F .

(a) Prove that the following hold for any derivation δ on F/k:

(i) δ(c) = 0 for all c ∈ k.

(ii) δ(fn) = nfn−1δ(f) for all f ∈ F× and n ∈ Z.

(iii) If k has positive characteristic p then δ(fp) = 0 for all f ∈ F .

(iv) δ(f/g) = (δ(f)g − fδ(g))/g2 for all f, g ∈ F with g = 0.

To simplify matters, we henceforth assume that k has characteristic zero.3

The simplest example of a derivation is in the case where F = k(x) is the rational
function field and δ : F → F is the map defined by δ(f) = ∂f/∂x. We want to generalize
this example to arbitrary function fields.

3For those who are interested, the key thing that changes in characteristic p > 0 is that everywhere we
require an element x to be transcendental we need to additionally require it to be a separating element,
which means that F/k(x) is a separable extension.
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Let x be a transcendental element of F/k. Any y ∈ F is then algebraic over k(x) and
has a minimal polynomial λ ∈ k(x)[T ]. After clearing denominators we can assume that
λ ∈ k[x, T ]. We now formally define

∂y ∂λ/∂x
:= − (y)

∂x ∂λ/∂T
∈ k(x, y) ⊆ F

and let the map δx : F → F send y to ∂y/∂x.
One can show (but you are not asked to do this) that δx is a derivation on F/k. Note

that we get a derivation δx for each transcendental x in F . Now let DF be the set of all
deriviations on F/k.

(b) Let x be a transcendental element of F/k. Prove that for any δ1, δ2 ∈ DF we have
δ1(x) = δ2(x)⇒ δ1 = δ2. Conclude that δx is the unique δ ∈ DF for which δ(x) = 1.

(c) Prove the following:

(i) For all δ1, δ2 ∈ DF the map (δ1 + δ2) : F → F defined by f 7→ δ1(f) + δ2(f) is a
derivation (hence an element of DF ).

(ii) For all f ∈ F and δ ∈ DF the map (fδ) : F → F defined by g 7→ fδ(g) is a
derivation (hence an element of DF ).

(iii) Every δ ∈ DF satisfies δ = δ(x)δx (in particular, the chain rule δy = δy(x)δx
holds for any transcendental x, y ∈ F/k).

It follows that we may view DF as one-dimensional F -vector space with any δx as a basis
vector. But rather than fixing a particular basis vector; instead, let us define a relation on
the set S of pairs (u, x) with u, x ∈ F and x transcendental over k:

(u, x) ∼ (v, y)⇐⇒ v = uδy(x). (1)

(d) Prove that ∼ is an equivalence relation on S.

For each transcendental element x ∈ F/k, let the symbol dx denote the equivalence
class of (1, x), and for u ∈ F define udx to be the equivalence class of (u, x); we call dx a
differential. It follows from part (iii) of (d) that every derivation δ can be uniquely repre-
sented as δ = udx for some u ∈ F , but now we have the freedom to change representations;
we may also write δ = vdy for any transcendental element y, where v = uδy(x) = u∂x/∂y.

(e) Prove that d(x+y) = dx+dy and d(xy) = xdy+ydx for all transcendental x, y ∈ F/k.

Let us now extend our differential notation to elements of F that are not transcendental
over k. Recall that k is algebraically closed in F , so we only need to consider elements of k.

(f) Prove that defining da = 0 for all a ∈ k ensures that (e) holds for all x, y ∈ F , and
that no other choice does.

Now momentarily forget everything above and just define ∆F to the F -vector space
generated by the set of formal symbols {dx : x ∈ F}, subject to the relations

(1) d(x+ y) = dx+ dy, (2) d(xy) = xdy + ydx, (3) da = 0 for a ∈ k.

Note that x and y denote elements of F (functions), not free variables, so ∆F reflects the
structure of F and will be different for different function fields.
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(g) Prove that dimF ∆F = 1, and that any dx with x 6∈ k is a basis.

The set ∆ = ∆F is often used as an alternative to the set of Weil differentials Ω. They
are both one-dimensional F -vector spaces, hence isomorphic (as F -vector spaces). But in
order to be useful, we need to associate divisors to differentials in ∆, as we did for Ω.

For any differential ω ∈ ∆ and any place P , we may pick a uniformizer t for P and write
ω = wdt for some function w ∈ F that depends on our choice of t; note that t is necessarily
transcendental over k, since it is a uniformizer. We then define ordP (ω) := ordP (w), and
the divisor of ω is then given by

divω :=
∑

ordP (ω)P.
P

As in Problem 1, the value ordP (ω) does not depend on the choice of the uniformizer t.

(h) Prove that div udv = div u+div dv for any u, v ∈ F . Conclude that the set of nonzero
differentials in ∆ constitutes a linear equivalence class of divisors.

(i) Let F = k(t) be the rational function field. Compute div dt and prove that it is a
canonical divisor. Conclude that a divisor D ∈ Divk C is canonical if and only if
D = div df for some transcendental f ∈ F .

Part (i) holds for arbitrary curves, but you are not asked to prove this. It follows that the
space of differentials ∆ plays the same role as the space of Weil differentials Ω, and it has
the virtue of making explicit computations much easier.

(j) Prove that the curve x2 +y2 +z2 over Q has genus 0 (even though it is not isomorphic
to P1 because it has no rational points) by explicitly computing a canonical divisor.

Problem 3. Survey

Complete the following survey by rating each problem on a scale of 1 to 10 according to how
interesting you found the problem (1 = “mind-numbing,” 10 = “mind-blowing”), and how
difficult you found the problem (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem.

Interest Difficulty Time Spent

Problem 1

Problem 2

Please rate each of the following lectures that you attended, according to the quality of the
material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic fail”,
10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”), and the novelty of the
material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

11/19 Riemann’s inequality

11/21 The Riemann-Roch theorem

Feel free to record any additional comments you have on the problem sets or lectures; in
particular, how you think they might be improved.
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