
  18.783 Elliptic Curves Spring 2019 
Problem Set #10 

Description 

These problems are related to the material covered in Lectures 18-20. 

Instructions: Solve one of Problems 1–3, then complete the survey, Problem 4. For 
this problem set you are not allowed to consult outside sources other than your 
favorite (introductory) algebra textbook. You may refer to lecture notes and references 
in the syllabus, and you may discuss the problems with fellow students. 

The first to spot each non-trivial typo/error will receive 1-5 points of extra credit. 

Problem 1. Congruence subgroups (98 points) 

Let Γ(1) := SL2(Z) denote the modular group and H∗ := {τ : im τ > 0} ∪ Q ∪ {∞} 
the extended upper half plane. The diagram below depicts a fundamental region F for 
H∗/Γ(1) in H∗ , along with nine of its translates. Each translate γF is labeled by γ, � � � � 

0 −1 1 1 where γ is expressed in terms of the generators S = and T = for Γ(1). The 1 0 0 1 
colored labels ρ, i, ∞ within the region labeled by γ indicate the points γρ, γi, and γ∞, 
respectively (where ρ = e2πi/3). Note that the red, black, and blue colored ∞ along the 
top of the diagram are all the same point, but there are three distinct translates of ∞ on 
the real axis (at −1, 0, 1), each of which lies in two translates of F (this illustrates a key 
point: translates of F may overlap at points whose stabilizers act non-trivially, namely, 
the points i, ρ, ∞). The region F includes the arc from i to ρ along the unit circle and 
the line from ρ to ∞ along the imaginary axis, but no other points on its boundary other 
than ∞; the translates of these have been colored and oriented accordingly. 
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We recall the following subgroups of SL2(Z), defined for each integer N ≥ 1: 

Γ(N) := {γ ∈ SL2(Z) : γ ≡ ( 1 0 ) mod N}, 0 1 

Γ1(N) := {γ ∈ SL2(Z) : γ ≡ ( 1 ∗ ) mod N}, 0 1 

Γ0(N) := {γ ∈ SL2(Z) : γ ≡ ( ∗ 
0 
∗
∗ ) mod N}, 

and corresponding modular curves 

X(N) := H∗ /Γ(N), X1(N) := H∗ /Γ1(N), X0(N) := H∗ /Γ0(N). 

For any congruence subgroup Γ we call the Γ(1)-translates of ∞ in H∗ or H∗/Γ cusps. 

(a) Determine the index of Γ(2) in Γ(1), and the number of Γ(2) cusp orbits. Then give 
a connected fundamental region for H∗/Γ(2) by listing a subset of the translates of 
F in the diagram above and identify the cusps that lie in your region. Compute 
the genus of X(2) by triangulating your fundamental region and applying Euler’s 
formula V − E + F = 2 − 2g. Be careful to count vertices and edges correctly — 
initially specify vertices and edges as H∗-points in the diagram (e.g. ST ρ), then 
determine which vertices and edges are Γ(2)-equivalent (note that edges whose end 
points are equivalent need not be equivalent). Do the same for Γ0(2) and X0(2). 

(b) For each of the following congruence subgroups, determine its index in Γ(1), the 
number of cusp orbits, and a set of cusp representatives: Γ0(3), Γ1(3), Γ(3). 

(c) Prove that for each integer N ≥ 1 we have an exact sequence 

1 −→ Γ(N) −→ SL2(Z) −→ SL2(Z/NZ) −→ 1. 

Show that in general one cannot replace SL2 with GL2 in the sequence above (so 
your proof for SL2 needs to use more than the fact that Z → Z/NZ is surjective). 

(d) Derive formulas for the index [Γ(1) : Γ] for Γ = Γ(N), Γ1(N), Γ0(N) and any N ≥ 1. 
Use the Euler function φ(N) := #(Z/NZ)× where appropriate. 

For any congruence subgroup Γ, let ν2(Γ) and ν3(Γ) count the number of SL2(Z) 
translates of i and ρ, respectively, that lie in a fundamental region of H∗ for Γ and are 
fixed by some γ ∈ Γ other than ±I. Let ν∞(Γ) be the number of cusp-orbits for Γ. 

(e) For Γ = Γ(p), Γ1(p), Γ0(p) derive formulas for ν2(Γ), ν3(Γ), ν∞(Γ), where p is a prime 
(hint: show that for any δ ∈ SL2(Z), if γ ∈ SL2(Z) − {±I} stabilizes δi then it has 
trace 0, and if it stabilizes δρ then it has trace ±1). 

Let Γ(N), Γ1(N), Γ0(N) denote the images of the groups Γ(N), Γ1(N), Γ0(N) in 
PSL2(Z) := SL2(Z)/{±I} respectively, and for any congruence subgroup Γ with im-
age Γ in PSL2(Z) define ( 

[Γ(1) : Γ] if − I ∈ Γ 
µ(Γ) := [Γ(1) : Γ] = 

[Γ(1) : Γ]/2 if − I 6∈ Γ 

Using the Riemann-Hurwitz genus formula one can prove that for any congruence sub-
group Γ the genus of the modular curve XΓ := H∗/Γ is given by the formula 

µ(Γ) ν2(Γ) ν3(Γ) ν∞(Γ) 
g(XΓ) = 1 + − − − . 

12 4 3 2 

For convenience we may write g(Γ) for g(XΓ). 
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(f) Use your answers to (d) and (e) to give asymptotic approximations for g(Γ) for 
Γ = Γ(p), Γ1(p), Γ0(p) and increasing primes p that have an exact leading term (so 
of the form f(p) + O(g(p)) for some functions f and g with g = o(f)). Conclude 
that the set of primes p for which g(Γ) takes any fixed value is finite. 

Modular curves of genus 0 and 1 are of particular interest because we can use these 
curves to obtain infinite families of elliptic curves over Q (or a number field) that have 
particular properties, for example, a torsion point of order p. By Faltings’ Theorem, 
over a number field a curve of genus g ≥ 2 has only a finite number of rational points. 

(g) For Γ = Γ(p), Γ1(p), Γ0(p) determine the primes p for which g(Γ) = 0, and the 
primes p for which g(Γ) = 1. 

You may use Sage to check your answers (and gain intuition), but your proofs must 
stand on their own. To create the congruence subgroups Γ(N), Γ1(N), Γ0(N) in Sage 
use Gamma(N), Gamma1(N), Gamma0(N), respectively. The returned objects support 
index(), nu2(), nu3(), cusps(), and genus() methods that you may find useful. 

Problem 2. Non-congruence subgroups of finite index (98 points) 

Recall that a congruence subgroup is a subgroup of Γ(1) = SL2(Z) that contains Γ(N) 
for some N ≥ 1. Every congruence subgroup is a finite index subgroup of SL2(Z). In 
this problem you will prove that the converse does not hold; there exist finite index 
subgroups of SL2(Z) that are not congruence subgroups. � � 

0 −1 Let PSL2(Z) := SL2(Z)/{±I}, let α be the image of S = in PSL2(Z), and � � 1 0 
0 −1 let β be the image of ST = in PSL2(Z). 1 1 

(a) Let Z2,3 be the finitely presented group with generators x, y satisfying the relations 
2 3 x = y = 1 (and no others). Prove that the map Z2,3 → PSL2(Z) defined by x 7→ α 
and y 7→ β is an isomorphism. You may find the diagram from Problem 1 helpful. 

Part (a) implies that for any finite group H = ha, bi with |a| = 2 and |b| = 3 we have 
a surjective group homomorphism 

SL2(Z) � PSL2(Z) � H, 

where the first map is quotient map SL2(Z) → PSL2(Z) and the second is the composition 
∼ 

of the isomorphism PSL2(Z) −→ Z2,3 and the surjective homomorphism Z2,3 → H 
defined by x 7→ a, y 7→ b. The kernel ΓH of such a homomorphism is a finite index 
subgroup of SL2(Z). Our strategy is to show that for many finite groups H = ha, bi, 
this kernel cannot contain Γ(N) for any integer N , and is therefore not a congruence 
subgroup. To simplify matters, we will focus on cases where H is a simple group, meaning 
that H is a non-trivial group that contains no normal subgroups other than the trivial 
group and itself. Every non-trivial finite group G has a composition series 

1 = G0 / G1 / · · · / Gk−1 / Gk = G 

in which each Gi is a normal subgroup of Gi+1 and each quotient Gi+1/Gi is simple. 
The quotients Gi+1/Gi are called the simple factors of G (analogous to prime factors of 
an integer). This composition series is not unique, but the Jordan-Hölder theorem states 
that the simple factors Gi+1/Gi that appear in any composition series for G are unique 
up to isomorphism (and occur with the same multiplicity). 
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(b) Prove that if a finite simple group S is a quotient of G (meaning S = G/K for some 
K /G) then S is a simple factor of G but that the converse does not hold in general. 

(c) Prove that if a finite group G is the direct product of non-trivial groups H1, . . . ,Hn 

then the factors of G are precisely the factors of the Hi (counted with multiplicity). 
Conclude that if S is a simple quotient of G then it is a quotient of one of the Hi. 

(d) Prove part (c) of Problem 1. 

e1 er (e) Let N = p1 · · · pr > 1 by with p1, . . . , pr distinct primes. Prove that every simple 
quotient of SL2(Z/NZ) is a simple quotient of SL2(Z/pei Z) for some i. i 

(f) Using the fact that PSL2(Z/pZ) is a non-abelian simple group for primes p ≥ 5, show 
that the simple factors of SL2(Z/peZ) are: a cyclic group of order 2, PSL2(Z/pZ), 
and 3e−3 cyclic groups of order p, and that in particular, PSL2(Z/pZ) is the unique 
non-abelian simple factor of SL2(Z/peZ), for all primes p ≥ 5. 

(g) Using the fact that the alternating group An is a non-abelian simple group for all 
n ≥ 5, prove that An is not a quotient of SL2(Z/NZ) for any N and any n > 5. 

(h) Using Sage, find elements a of order 2 and b of order 3 that generate A9 and list 
them in cycle notation. You don’t need to write down a proof that they generate A9 

but you should verify this in Sage. To create A9 use A9=AlternatingGroup(9), 
and to check whether a and b generate A9 use A9.subgroup([a,b]) == A9. 

In fact, An is generated by an element of order 2 and an element of order 3 for all n ≥ 9 
(see [1]), but you are not asked to prove this. It follows from the discussion after (a) 
that there is a surjective homomorphism SL2(Z) � A9 that sends ±α to a and ±β to b. 
The kernel Γ of this homomorphism is a finite index subgroup of SL2(Z). 

(i) Prove that Γ is not a congruence subgroup. 

We now want to construct a short list of generators for Γ. The first step is to convert the 
representation of A9 with generators a and b of orders 2 and 3 into a finitely presented 
group that is a finite quotient of Z2,3 specified by relations. To do this use the Sage 
command: 

H=A9.subgroup([a,b]).as_finitely_presented_group().simplified() 

This may take a few seconds. The second step is to plug S and ST into all the relations 
in the finite presentation of H you created above. Important: Sage may swap the roles 
of a and b when it constructs the finite presentation – check the relations to see if this 

3 2 happened (if you see a and b2 in the list of relations rather than a and b3 then you 
know they were swapped). Assuming a2 and b3 are the first two relations, you can use 

G=SL(2,Integers()); S=G([0,-1,1,0]); T=G([1,1,0,1]) 
for i in range(2,len(H.relations())): 

print H.relations()[i].subs(a=S,b=S*T) 

to get a list of matrices in SL2(Z) that, together with S and T generate Γ. Note that 
the length of the list you get will depend on your choice of a and b, but shouldn’t be 
more than 10 or 20 matrices (in fact one can do it with 4). 

(j) Record the number of matrices in your list above (not including S and T ), and a 
smallest and largest matrix in your list according to the L∞-norm (maximum of 
absolute values of matrix entries). 
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Problem 3. Polycyclic presentations (98 points) 

Let α~ = (α1, . . . , αk) be a sequence of generators for a finite abelian group G, and let 
Gi = hα1, . . . , αii be the subgroup generated by α1, . . . , αi. The subnormal series 

1 = G0 / G1 / · · · / Gk−1 / Gk = G, 

is a polycyclic series: each Gi−1 is a normal subgroup of Gi and each of the quotients 
Gi/Gi−1 = hαiGi−1i is a cyclic group (which we don’t require to have prime order, 
but one can always further decompose the series so that they are). Every finite solvable 
group admits a polycyclic series, but we restrict ourselves here to abelian groups (written 
multiplicatively). 

∼ When G is the internal direct product of the cyclic groups hαii, we have Gi/Gi−1 = 
hαii and call α~ a basis for G, but this is a special case. For abelian groups, Gi/Gi−1 

is isomorphic to a subgroup of hαii, but it may be a proper subgroup, even when G is 
cyclic. 
The sequence r(α~ ) = (r1, . . . , rk) of relative orders for α~ is defined by 

ri = |Gi : Gi−1|, 

and satisfies ri = min{r : αr ∈ Gi−1}. We necessarily have ri ≤ |αi|, but equality i 
typically does not hold (α~ is a basis precisely when ri = |αi| for all i). In any case, we Q 
always have i ri = |G|, thus computing the ri determines the order of G. 

(a) Let α~ = (α1, . . . , αk) be a sequence of generators for a finite abelian group G, 
with relative orders r(α~ ) = (r1, . . . , rk). Prove that every β ∈ G can be uniquely 
represented in the form 

αxk β = ~x · α~ = αx1 · · · , 1 k 

where each xi ∈ Z satisfies 0 ≤ xi < ri. Show that if β = αri , then xj = 0 for j ≥ i. i 

By analogy with the case r = 1, we call ~x the discrete logarithm of β with respect to α~ 
(but note that the discrete logarithm of the identity element is now the zero vector). 
The vector ~x can be conveniently encoded as an integer x in the interval [0, |G| − 1] via X Y 

x = xiNi, Ni = rj , 
1≤i≤k 1≤j<i 

and we may simply write x = logα β to indicate that x is the integer encoding the vector ~ 
~x = logα β. Note that xi = bx/Nic mod ri, so it is easy to recover ~x from its encoding x. ~ 

(b) Design a generic group algorithm that, given a sequence of generators α~ = (α1, . . . , αk) 
for a finite abelian group G, constructs a table T with entries T [0], ..., T [|G|−1] with 
the property that if T [n] = β, then n = logα β. Your algorithm should also output ~ 
the relative orders ri, and the integers si for which T [si] = αri . i 

This allows us to compute a polycyclic presentation for G, which consists of the 
sequence α~ , the relative orders r(α~ ) = (r1, . . . , rk), and the vector of integers s(α~ ) = 
(s1, . . . , sk). With this presentation in hand, we can effectively simulate any computation 
in G without actually performing any group operations (i.e. calls to the black box). This 
can be very useful when the group operation is expensive. 
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(c) Let α~ , r(α~ ), and s(α~ ) be a polycyclic presentation for a finite abelian group G. Given 
integers x = logα β and y = logα γ, explain how to compute the integer z = logα βγ ~ ~ ~ 
using r(α~ ) and s(α~ ), without performing any group operations. Also explain how 
to compute the integer w = logα β

−1 . ~ 

As a side benefit, the algorithm you designed in part (b) gives a more efficient way to 
enumerate the class group cl(D) than we used in Problem Set 9, since the class number 
h(D) is asymptotically on the order of 

p
|D| (this is a theorem of Siegel). 

But first we need to figure out how to construct a set of generators for G. We 
will do this using prime forms. These are forms f = (a, b, c) for which a is prime and 
−a < b ≤ a (but we do not require a ≤ c, so prime forms need not be reduced). Prime 
forms correspond to prime ideals whose norm is prime (degree-1 primes). Recall that 
imaginary quadratic orders O are determined by their discriminant D, which can always 
be written in the form D = u2DK , where DK is the discriminant of the maximal order 
OK and u = [OK : O] is the conductor of O. 

(d) Let a be a prime. Prove that if a divides the conductor then there are no prime 
forms of norm a, and that otherwise there are exactly 1+(D ) prime forms of norm a, a 
where (D ) is the Kronecker symbol.1 Write a program that either outputs a prime a 
form (a, b, c) with b ≥ 0 or determines that none exists. 

When D is fundamental, we can generate cl(D) using prime forms of norm at most p
|D|/3; this follows from the bound proved in Problem Set 9 and the fact that the 

maximal order OK is a Dedekind domain (so ideals can be uniquely factored into prime 
ideals). We can still generate cl(D) with prime forms when D is non-fundamental, but 
bounding the primes involved is slightly more complicated, so we will restrict ourselves 
to fundamental discriminants for now. 

(e) Implement the algorithm you designed in part (b), using the program from part (d) 
to enumerate the prime forms of norm a ≤ 

p
|D|/3 in increasing order by a. Use 

the prime forms as generators, but use a table lookup to discard prime forms that 
are already present in your table so that your αi all have relative orders ri > 1 
(warning: prime forms need not be reduced: be sure to reduce them before making 
any comparisons). For the group operation, you can create binary quadratic forms in 
Sage using BinaryQF([a,b,c]), and then compose forms f and g using h=f*g. 
Use h.reduced form() to get the reduced form. You will only be using this code 
on small examples, so don’t worry about the efficiency of your implementation. 

(f) Run your algorithm on D = −5291, and then run it on the first fundamental dis-
criminant D < −N , where N is the first five digits of your student ID. Don’t 
list all the elements of cl(D), just give the reduced forms for the elements of α~ 
and the integer vectors r(α~ ) and s(α~ ). Sanity check your results by verifying that 
you at least get the right class number for D (you can check this in Sage using 
NumberField(x**2-D,’t’).class number()). 

(g) Recall that every finite abelian group is isomorphic to a unique product of non-
trivial cyclic groups Z/n1Z × Z/n2Z × · · · × Z/nrZ for which n1|n2| · · · |nr. The 

1Thus ( D 
2 ) is 0 if D is even, 1 if D ≡ 1 mod 8, and −1 if D ≡ 5 mod 8. Note that we refer to a as the 

”norm” of the form (a, b, c), since the corresponding ideal has norm a. 
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sequence of integers (n1, . . . , nr) are the invariant factors of G and uniquely identify 
its isomorphism class. Design an algorithm that takes a polycyclic presentation for 
a finite abelian group G as input and outputs its invariant factors along with a 
corresponding basis α1, . . . , αr for G with |αi| = ni. 

(h) Use your algorithm from part (g) to compute the invariant factors of the two class 
groups you computed in part (f), along with corresponding generators. Express 
each generator as a reduced form and give its discrete logarithm with respect to the 
generators for the polycyclic presentations you computed in part (f). 

Problem 4. Survey (2 points) 

Complete the following survey by rating each of the problems you attempted on a scale 
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 
= “mind-blowing”), and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also 
estimate the amount of time you spent on each problem to the nearest half hour. 

Interest Difficulty Time Spent 
Problem 1 
Problem 2 
Problem 3 

Also, please rate each of the following lectures that you attended, according to the quality 
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic 
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”) 
and the novelty of the material (1=“old hat”, 10=“all new”). 

Date Lecture Topic Material Presentation Pace Novelty 
4/22 Riemann surfaces and modular curves 
4/24 The modular equation 

Please feel free to record any additional comments you have on the problem sets or 
lectures, in particular, ways in which they might be improved. 
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