
  

          

            
               

         
              

               
 

                
                  
                
               

     

       

        

18.783 Elliptic Curves Spring 2019 

Problem Set #2 

Description 

These problems are related to the material covered in Lectures 3-4. 

Instructions: Solve any combination of problems summing to 100 points (this will nec-
essarily include the survey problem). Your solutions are to be written up in latex and sub-
mitted as a pdf-file named SurnamePset2.pdf. Collaboration is permitted/encouraged, 
but you must identify your collaborators, and any references not listed in the course 
syllabus. If there are none, you should write “Sources consulted: none” at the top of 
your solution. 

Note: Several problems require a portion of your MIT ID as input. If you would prefer 
not to use your MIT ID, let me know and I will choose a random 9-digit number that 
you can use in place of your MIT ID for the purpose of solving 18.783 problem sets. 

The first to spot each non-trivial typo/error in the problem set or lecture notes will 
receive 1-5 points of extra credit. 

Problem 1. Eight ways to Fibonacci (19 points) 

Let Fk denote the kth Fibonacci number, defined by: 

F1 := 1, F2 := 1, Fk := Fk−2 + Fk−1 (k ≥ 2). (1) 

Analyze the time complexity of computing Fk modulo an n-bit prime p using each of the 
algorithms listed below. You may assume that k > n. Your answers should be in the 
form O(f(k, n)) and as tight as you can make them. Use M(n) to denote the complexity 
of multiplying two n-bit integers. 

(a) Compute the integers F1, F2, . . . , Fk via (1), and then reduce Fk mod p. 

(b) Same as (a), except compute in Fp rather than Z throughout. 

(c) Assume p = ±1 mod 5. Compute the roots φ and ψ of x2 − x − 1 in Fp (using a 
φk−ψk 

probabilistic root-finding algorithm), and then compute Fk = in Fp. φ−ψ 

(d) Assume p =6 ±1 mod 5 and p =6 5. Represent Fp2 as Fp[φ]/(φ2 −φ−1), let ψ = 1−φ, 
φk−ψk 

and then compute Fk = as an element of F 2 that actually lies in Fp. p φ−ψ � � 

(e) Compute the kth power of 
0 1 

in GL2(Fp) and output its upper right entry. 
1 1 

(f) Assume k is a power of 2. Use the identities 

= F 2 + F 2 F2i−1 i i−1 

F2i = (2Fi−1 + Fi)Fi 

to compute (F1, F2), (F3, F4), (F7, F8),. . . (Fk−1, Fk), working modulo p throughout.1 

1This approach can be generalized to arbitrary k. 

1 



             
                  
                

           

(g) Notably absent from the above list is the standard recursive algorithm: 

def fibonacci(k): 
if k <= 2: return 1 
return fibonacci(k-1) + fibonacci(k-2) 

What is the time complexity of computing fibonacci(k) and reducing it mod p? 
What is the time complexity of computing fibonacci(GF(p)(k))? 

n (h) Let n := 106 + N , where N is the last five digits of your student ID, and let k = n . 
Compute Fk mod 10007. 

Problem 2. Cornacchia’s algorithm (19 points) 

Cornacchia’s algorithm computes primitive solutions (x, y) to the Diophantine equation 

2 x + dy2 = m, (2) 

where d and m are positive integers. A primitive solution has x and y relatively prime. 
Typically m = p or m = 4p, where p is a prime, but the algorithm works for any m, 
provided we are given an appropriate square root r of −d mod m (if there are only two 
square roots, as when m is prime p or 4p with p odd, it does not matter which we use, 
but in general one needs to check one of ±r for each square root r of −d modulo m).2 

The algorithm uses a partial Euclidean algorithm that terminates as soon as the 
sequence of remainders ri drops below the square root of r0 = m. 

1. Let r0 = m and r1 = r, where r2 ≡ −d mod m and 0 ≤ r ≤ m/2. 

2 2. Compute ri+2 = ri mod ri+1 until rk < m is reached. 

2 3. If (m − r )/d is the square of an integer s, return the solution (rk, s). k 
Otherwise, return null. 

It is clear that if the algorithm returns (rk, s), then it is a solution to (2). It is not so 
clear that the algorithm always finds a primitive solution if one exists, but this is true; 
see [1] for a short elementary proof.3 If m is square-free (as when m is prime), every 
solution to (2) is primitive, but this is not true in general (this is relevant to part (e)). 

In this problem let N := n · 10100 , where n is the last 4 digits of your student ID. 

(a) Implement this algorithm in Sage. Use mod(-d,m).is square() to test if −d 
has a square root mod m, and use int(mod(-d,m).sqrt()) to get a square root. 

(b) You may recall Fermat’s “Christmas theorem”, which states that an odd prime p is 
the sum of two squares if and only if p ≡ 1 mod 4. You may also recall that −1 is a 
square modulo an odd prime p if and only if p ≡ 1 mod 4. 

Let n be the integer corresponding to the last 4 digits of your student ID. For the 
least prime p > N congruent to 1 mod 4, write p as the sum of two squares. 

2Using the probabilistic root-finding algorithm described in Lecture 4 one can efficiently compute 
square roots modulo p, and with this one can also determine square roots modulo 4p, and more generally, 
modulo any integer whose prime factorization is known. But in general the problem of computing square 
roots modulo m is believed to be as hard as factoring m. 

3There is an obvious typo in step 3 of the algorithm given in [1] which is corrected above. 

2 

https://mod(-d,m).is


2 (c) Fermat also proved that a prime p can be written in the form p = x2 + 3y if and 
only if p ≡ 1 mod 3, which is equivalent to the condition that −3 is a square mod p. 

2 For the least prime p > N congruent to 1 mod 3, write p in the form p = x2 + 3y . 

(d) Show that this does not work for d = 5 by finding a prime p for which −5 is a square 
modulo p but p cannot be written in the form x2 + 5y2 . Empirically determine a 
stronger congruence condition on p that guarantees not only that is −5 a square 

2 mod p, but also that p can be written in the form x2 + 5y . Then find the least 
2 prime p > N that satisfies your condition and write p in the form p = x2 + 5y . 

(e) Let E be the elliptic curve y2 = x3 − 35x − 98 and let p =6 2, 7 be a prime. Like the 
elliptic curves considered in Problem 5 of Problem Set 1, the elliptic curve E has 
complex multiplication, and the integer ap = p + 1 − #E(Fp) is zero if and only if 
−7 is not a square modulo p. When −7 is a square modulo p, the integer ap satisfies 

2 2 the equation 4p = a +7y , for some y ∈ Z. Prove that this equation has a solution p 
(ap, y) if and only if the equation p = u2 + 7v2 has a solution (u, v). 

Use your algorithm to find a solution to p = u2 + 7v2 for the least prime p > N 
for which −7 is a square modulo p, and use this to deduce the absolute value of ap. 
Determine the sign of ap, by finding a random point P ∈ E(Fp) for which only one 
of (p + 1 − ap)P and (p + 1 + ap)P is zero. 

Problem 3. Computing rth roots in cyclic groups (38 points) 

In Lecture 4 we saw how to compute rth roots in a finite field Fq using a probabilistic 
root-finding algorithm. In this problem you will implement an entirely different approach 
for computing rth roots that works in any finite cyclic group G, including G = Fq × . In 
addition to being more general, this method is typically faster than using probabilistic 
root-finding to compute rth roots in F× (but this depends on the values of r and q). q 

We assume without loss of generality that r is prime (to compute nth roots, suc-
cessively compute rth roots for the primes r dividing n, with multiplicity). To simplify 
notation we write G additively, so an rth root of γ ∈ G is an element ρ ∈ G for which 
rρ = γ. Let |γ| denote the order of γ, the least positive integer m for which mγ = 0. 

Prove the following statements: 

(a) For all γ ∈ G and n ∈ Z we have |nγ| = |γ|/ gcd(n, |γ|). 

(b) If r does not divide |G|, then there is an integer s such that for all γ ∈ G the element 
ρ = sγ is the unique rth root of γ. 

(c) If r does divide |G|, then the number of rth roots of each γ ∈ G is either 0 or r. In 
the latter case, the rth roots of γ do not necessarily lie in hγi (give an example). 

k (d) Suppose r divides |G|. Let |G| = ar , where r - a. Let δ ∈ G be an element of 
k order r , let γ be any element of G, and α = aγ and β = rkγ. The following hold: 

(i) α = xδ for some integer x ∈ [1, rk]. 

(ii) If r does not divide x then there is no ρ ∈ G for which rρ = γ. 

(iii) If r divides x, and s and t are integers satisfying sa + trk+1 = 1, then the 
element ρ = s(x/r)δ + tβ satisfies rρ = γ. 

3 



The element δ is a generator for the r-Sylow subgroup of G. If G = hσi, we can use 
δ = aσ. The integer x is the discrete logarithm of α with respect to δ. 

Implement the following algorithm for computing an rth root of γ in a cyclic 
k k group G of order ar , where r is a prime that does not divide a, given δ ∈ G of order r : 

1. If k = 0 then compute s = 1/r mod a and return ρ = sγ. 

2. Compute α = aγ and β = rkγ. 

3. Compute the discrete logarithm x of α with respect to δ by brute force: check 
whether α = xδ for each x from 1 to rk (this holds for some x, by part (a) of 4).4 

4. If r does not divide x then return null. 

5. Compute s and t such that sa+ trk+1 = 1 using the extended Euclidean algorithm. 

6. Return ρ = s(x/r)δ + tβ. 

The return value null is used to indicate that γ does not have any rth roots in G. To 
compute s = 1/r mod a in Sage, use: s=1/mod(r,a). To compute s and t such that 
sa + trk+1 = 1, use: d,s,t=xgcd(a,r**(k+1)) (here d = gcd(a, rk+1) is 1). 

The Python language used by Sage is untyped, so your algorithm can be used to 
compute rth roots in any cyclic group that Sage knows how to represent; it will auto-
matically perform operations in whatever group the inputs δ and γ happen to lie in. To 
test your algorithm, you may find it useful to work in the additive group of the ring 

k Z/nZ, where n = ar , which you can create in Sage using Zn=Integers(n). You can 
k then use delta=Zn(a) to create an element of Z/nZ with additive order r . 

2 Let E be the elliptic curve y = x3 +31415926x+27182818 over Fp with p = 2255 −19. 
The group E(Fp) is cyclic, of order n = 2 · 3 · 31 · m, where 

m = 311269057089559665117126303786795451217418463436862985689835777395934466489, 

and the point P = (x0 : y0 : 1), where x0 = 99 and 

y0 = 3646051633135286488902046129458077014725501801396015176760137375427748642285, 

is a generator for E(Fp). Thus for r = 2, 3, 31 you can use δ = (n/r)P as a generator of 
the r-Sylow subgroup (which in each case has order r). 

Let c be the least prime greater than the integer formed by the last four digits of 
your student ID. Let Q = (x1 : y1 : 1), where 

x1 = 34722703750880505815434374544869041359996489173241044467959508038096706366422, 

y1 = 25072419147453488906041513221950620302806364316060743330046486728191586245064 

(e) Use your algorithm to find an rth root R of γ = cQ, for r = 2, 3, 31. Note that you 
can easily check your result by testing whether r*R==c*Q holds using Sage (please 
be sure to do this). In your answer you only need to list the point R for each value 
of r, you don’t need to include your code. Be sure to format your answer so that 
the coordinates of R all fit on the page. 

4We will learn much better ways to compute this discrete logarithm later in the course. For the 
moment, assume r k is small (for finite fields Fq , this is usually the case, even when q is very large). 

4 



Problem 4. Exponentiating with addition chains (38 points) 

An addition chain for a positive integer n is an increasing sequence of integers (c0, . . . , cm) 
with c0 = 1 and cm = n such that each entry other than c0 is the sum of two (not 
necessarily distinct) preceding entries. The length of an addition chain is the index m of 
the last entry. When computing an with a generic algorithm, the exponents of the powers 
of ak computed by the algorithm define an addition chain whose length is the number 
of multiplications performed. For example, using left-to-right binary exponentiation 
to compute a47 yields the addition chain (1, 2, 4, 5, 10, 11, 22, 23, 46, 47), and right-to-
left binary exponentiation yields the addition chain (1, 2, 3, 4, 7, 8, 15, 16, 32, 47), both of 
which have length 9. 

(a) For n = 715, determine the addition chains given by: (i) left-to-right binary, (ii) 
right-to-left binary, (iii) fixed-window, and (iv) sliding-window exponentiation, using 
a window of size 2 for (iii) and (iv). 

(b) Find an addition chain for n = 715 that is shorter than any you found in part (a). 

(c) Repeat part (a) for the integer N obtained by adding 990,000 to the last 4 digits of 
your student ID, using a window of size 3 for the fixed and sliding window cases. 

(d) Find the shortest addition chain for N that you can. There is a good chance you 
can do better than any of the chains you found in part (c). 

In groups where inversions are cheap (such as the group of points on an elliptic 
curve), it is advantageous to use signed binary representations of exponents, where we P 
write the exponent n in the form n = ni2

i with ni ∈ {−1, 0, 1}. Such a representation 
is generally not unique, but there is a unique signed representation with the property 
that no pair of adjacent digits are both nonzero. This is known as non-adjacent form 
(NAF). The NAF representation of 47, for example, is 101̄0001,¯ where 1̄ denotes −1. 

To construct the NAF representation one begins by writing n in binary with a lead-
ing 0, and then successively replaces the least significant block of the form 01 · · · 1 with 
10 · · · 01̄ until there are no adjacent nonzero digits. For example, the computation for 47 
proceeds as 0101111, 110001̄, 10¯ 1, which reduces the number of nonzero digits from 1000¯ 

5 to 3. Even though the length is increased by 1, the total cost of exponentiation may 
be reduced. 

An addition-subtraction chain extends the definition of an addition chain by allow-
ing ck = ci ± cj . Exponentiation using the NAF representation defines an addition-
subtraction chain. For example, using left-to-right binary exponentiation, the NAF 
representation of 47 yields the chain (1, 2, 4, 3, 6, 12, 24, 48, 47), which is shorter than 
the addition chain (1, 2, 4, 5, 10, 11, 22, 23, 46, 47) given by standard left-to-right binary 
exponentiation. 

(e) Compute addition-subtraction chains for n = 715 and the integer N defined in part 
(c) using left-to-right binary exponentiation with the NAF representation. 

(f) Find the shortest addition-subtraction chains for n and N that you can. 

5 



Problem 5. Root-finding over Z (76 points) 

In this problem you will develop an algorithm to find integer roots of polynomials in 
Z[x] using a p-adic version of Newton’s method (also known as Hensel lifting). As an 
application, this gives us an efficient way to factor perfect powers (a special case that 
we will need to handle when we come to the elliptic curve factorization method), and it 
will be used as a black box in Problem 2 to find integer roots of division polynomials. 

In the questions below, p can be any integer greater than 1, but you may assume it 
is a prime power if you wish. 

(a) Let x0 ∈ Z and f ∈ Z[x]. Prove that the following equivalence holds in Z[x]: 

f(x) ≡ f(x0) + f 0(x0)(x − x0) mod (x − x0)
2 . 

(b) Let x0, z0 ∈ Z and f ∈ Z[x] satisfy f(x0) ≡ 0 mod p and f 0(x0)z0 ≡ 1 mod p. Let 

2 x1 ≡ x0 − f(x0)z0 mod p , 
2 2 z1 ≡ 2z0 − f 0(x1)z0 mod p . 

Prove that that the following three equivalences hold: 

x1 ≡ x0 mod p, (i) 
2 f(x1) ≡ 0 mod p , (ii) 
2 f 0(x1)z1 ≡ 1 mod p . (iii) 

2 Show that (i) and (ii) characterize x1 mod p uniquely by proving that if x2 ∈ Z 
2 2 also satisfies x2 ≡ x0 mod p and f(x2) ≡ 0 mod p , then x1 ≡ x2 mod p . 

Iteratively applying (b) yields an algorithm that, given an integer k and x0, z0, and f 
2k 

satisfying the hypothesis (a), outputs an integer xk that satisfies f(xk) ≡ 0 mod p . 

(c) Prove that if f has an integer root r for which f 0(r) is invertible modulo p, then 
2k 

given x0 ≡ r mod p, z0 ≡ 1/f 0(x0) mod p, and k such that |r| < p /2, this algorithm 
2k 2k 

outputs xk such that r is the unique integer r ≡ xk mod p satisfying |r| < p /2. 

To apply the result in (c), we need to know a suitable starting value (or values) for x0. 
For the two applications we have in mind, this is will be straightforward, so let us proceed 
on the assumption that we are given a suitable x0 and z0 such that f 0(x0)z0 ≡ 1 mod p. 

Let B be the maximum of the absolute values of the coefficients of f , and let B0 be 
an upper bound on the absolute value of its largest integer root. It suffices to choose 

2k 
the least k such that p > 2B0, and since any integer root of f must divide its constant 
coefficient, we can assume that B0 ≤ B. We can also assume p < 2B0, since otherwise 
the problem is trivial (k = 0 and xk = x0). 

(d) Prove that with this choice of k the algorithm can be implemented to run in time 
O(d M(log B)), where d is the degree of f (be careful here, the most obvious imple-
mentation will not achieve this time bound). Prove that if f has O(1) terms, then 
the algorithm can be implemented to run in time O(M(log B) + M(log B0) log d). 

6 



                
   

(e) Using the primes p = 2 and p = 3, describe an efficient algorithm that, given an 
integer N relatively prime to 6, either outputs an integer a and a prime q such that 
aq = N , or proves that N is not a perfect power. Prove that your algorithm runs in 
quasi-quadratic time (meaning O(n2(log n)c) for some constant c, where n = log N). 

(f) Implement your algorithm and report the result and running time on the each of 
the following inputs: 21000 +297, 5503 , (2500 + 55)2 , (2333 +285)3 , (232 + 15)31 , 500!. 
To time your code in sage, use the timeit function (e.g. timeit("1+1")). 

(g) Prove that the algorithm you gave in (e) can be implemented to run in sub-quadratic 
time (meaning o(n2) where n = log N). You may need to modify your algorithm in 
order to achieve this.5 

Problem 6. Survey (5 points) 

Complete the following survey by rating each of the problems you attempted on a scale 
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 
= “mind-blowing”), and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also 
estimate the amount of time you spent on each problem to the nearest half hour. 

Interest Difficulty Time Spent 
Problem 1 
Problem 2 
Problem 3 
Problem 4 
Problem 5 

Also, please rate each of the following lectures that you attended, according to the 
quality of the material (1=“useless”, 10=“fascinating”), the presentation (1=“epic fail”, 
10=“perfection”), the pace (1=“way too slow”, 10=“way to fast”), and the novelty of 
the material (1=“old hat”, 10=“all new”). 

Date Lecture Topic Material Presentation Pace Novelty 
2/19 Finite field arithmetic 
2/20 Isogenies 

Feel free to record any additional comments you have on the problem sets or lectures. 

References 

2 [1] Julius Magalona Basilla, On the solution of x + dy2 = m, Proc. Japan Acad. Ser. A 
Math Sci. 80 (2004), 40–41. 

[2] D. J. Bernstein, Detecting perfect powers in essentially linear time, Math. Comp. 67 
(1998), 1252–1283. 

5In fact, this problem can be solved in quasi-linear time [2]. 

7 

http://projecteuclid.org/euclid.pja/1116442240
http://www.ams.org/journals/mcom/1998-67-223/S0025-5718-98-00952-1/


  
 

 
  

            

 
 

 
  

         

MIT OpenCourseWare 
https://ocw.mit.edu 

18.783 Elliptic Curves 
Spring 2019 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu
https://ocw.mit.edu/terms



