

18.783 Elliptic Curves Spring 2019

Problem Set #4

Description

These problems are related to the material covered in Lectures 7-9.

Instructions: Pick any two of Problems 1-6 to solve. Then complete Problem 7, which
is a short survey. Your solutions are to be written up in latex and submitted as a pdf-file
with a filename of the form SurnamePset4.pdf.
Collaboration is permitted/encouraged, but you must identify your collaborators, and

any references not listed in the course syllabus. The first to spot each non-trivial typo/
error in the problem sets or lecture notes will receive 1-5 points of extra credit.
In cases where your solution involves writing code, please either include your code

in your writeup (as part of the pdf), or the name of a sage worksheet in your 18.783
CoCalc project containing you code (please use a separate worksheet for each problem).

Problem 1. The Hasse invariant (49 points)
2 Let E : y = f(x) be an elliptic curve over Fp, where p is an odd prime and f is a monic

cubic. The Hasse invariant Hp(E) is the coefficient of xp−1 in f(x)(p−1)/2 ∈ Fp[x].

P

(a) Prove that #E(Fp) = 1 + f(a)(p−1)/2 holds as an identity in Fp. a∈Fp

(b) Prove that for any integer k ≥ 0 we have (X −1 if k is a nonzero multiple of p − 1 k a =
0 otherwise

a∈Fp

(c) Use (b) to show that #E(Fp) = 1 − Hp(E) holds as an identity in Fp, and that
Hp(E) is therefore an element of Fp that is equal to the trace of Frobenius tr πE

modulo p. Conclude that Hp(E) uniquely determines #E(Fp) for all p > 13.

(d) Show that for p = 13 there exist elliptic curves E1 and E2 over Fp for which we have
Hp(E1) = Hp(E2) but #E1(Fp) 6= #E2(Fp).

2 (e) Suppose E is a Legendre curve Eλ : y = x(x − 1)(x − λ) with λ ∈ Fp −{0, 1}. Prove
that Hp(E) = (−1)nSp(λ), where n = (p − 1)/2 and Sp ∈ Fp[x] is the polynomial

n � �2 X n i Sp(x) = x .
i

i=0

Let us now generalize to the case where E : y2 = f(x) is an elliptic curve over a finite
field Fq of odd characteristic p, with f a monic cubic. For any positive integer r, define

pr−1 r −1)/2 Hpr (E) to be the coefficient of x in f(x)(p (for r = 1 this generalizes our
definition of Hp(E) to elliptic curves defined over any finite extension Fp).

1

(f) Show that #E(Fq) = 1 − Hq(E) (as an identity in Fq). Conclude that in fact
Hq(E) ∈ Fp ⊆ Fq and that tr πE ≡ 0 mod p if and only if Hq(E) = 0.

(g) Prove that the identity Hpr+1 (E) = Hpr (E)Hp(E)
pr
holds for all integers r > 0.

Conclude that Hq(E) = 0 if and only if Hp(E) = 0.

(h) Show that, up to isomorphism, every elliptic curve E over Fp is a Legendre curve
2 Eλ : y = x(x − 1)(x − λ), for some λ ∈ Fp − {0, 1}.

(i) Show that for all λ ∈ Fp − {0, 1} we have Hp(Eλ) = 0 if and only if Sp(λ) = 0.
Conclude that (up to isomorphism), among the infinitely many elliptic curves E
defined over finite fields Fq ⊆ Fp, only a finite number have tr πE ≡ 0 mod p.

In a later lecture we will show that an elliptic E curve over a finite field of char-
acteristic p > 0 is supersingular if and only if tr πE ≡ 0 mod p. You have thus proved
that there are only finitely many supersingular elliptic curves defined over finite fields of
characteristic p (in fact this holds for all fields of characteristic p, not just finite fields).

Problem 2. Computing the L-function of an elliptic curve (49 points)
2 3 Let E : y = x + Ax + B be an elliptic curve over Q; without loss of generality, we may

assume A, B ∈ Z with B =6 0. As you may recall from Lecture 1, the L-function of an
elliptic curve can defined as an Euler product of the form Y Y

)−1 −s 1−2s)−1 L(E, s) = (· · · (1 − app + p ,
p|Δ(E) p-Δ(p)

where Δ(E) = −16(4A3 +27B2) is the discriminant of E and ap := p+1−#Ep(Fp) is the
trace of Frobenius of the elliptic curve Ep/Fp obtained by reducing A and B modulo p.
Ignoring the finite set of bad primes p that divide Δ(E) (which are easy to address
and will be discussed in a later lecture), computing the L-function of an elliptic curve
amounts to computing the sequence of Frobenius traces ap over good primes p.
Of course we cannot compute all of the infinitely many ap, but if we compute them

for all good primes p up to some bound N , we can approximate L(E, s) or any of its
derivatives to high precision (assuming we also know the Euler factors at bad primes).
Such computations are critical to testing the Birch and Swinnerton-Dyer conjecture, for
example, which relates the order of vanishing of L(E, s) at s = 1 to the rank of E(Q).
By applying Schoof’s algorithm to each of Ep/Fp we can compute ap for all good

primes p ≤ N in time quasi-linear in N (you can use the results of Problem 6 to get a
precise estimate). Alternatively, we could use the baby-steps giant-steps algorithm from
Problem 4 to obtain a running time that is quasi-linear in N5/4; in practice this turns
out to be faster than using Schoof’s algorithm unless N is extremely large.
Neither of these approaches takes advantage of the fact that we are working with

reductions Ep of a fixed elliptic curve E/Q. In this problem you will use this fact to
develop an algorithm with a complexity is both practically and asymptotically faster
than using Schoof’s algorithm. It also efficiently generalizes to higher genus curves,
which is not true of either Schoof’s algorithm or the baby-steps giant-steps approach.
Our basic strategy is to compute the Hasse Invariant Hp(Ep) defined in Problem 1

as the coefficient of xp−1 in f(x)(p−1)/2 , where f(x) = x3 + Ax + B is the cubic defining
2 our elliptic curve E : y = f(x), except now f ∈ Z[x] is an integer polynomial. If we

2

iteratively compute f(x), f(x)2, f(x)3 , · · · , f(x)bN/2c as integer polynomials and for each
2n prime p = 2n + 1 extract the coefficient of x from the polynomial f(x)n and reduce

its value modulo p = 2n + 1, then we will have determined ap ≡ Hp(Ep) mod p for all
primes p ≤ N where E has good reduction. As shown in part (c) of Problem 1, this
will determine the trace of Frobenius ap ∈ Z for all p > 13 (and for p ≤ 13 we can just
compute ap = p + 1 − #Ep(Fp) using brute force).

(a) Show that at first glance this is a terrible idea by analyzing its complexity as a
function of N , assuming the coefficients A and B each have O(log N) bits. Keep in
mind that we are working in Z, so the coefficient sizes in f(x)n increase with n.

Even using fast multiplication (M(n) = O(n log n log log n)) your answer to (a) will
be far from our quasi-linear goal. There are two keys to obtaining an efficient algorithm;
the first is to avoid computing all the coefficients of f(x)n . P
(b) Let f = fix

i ∈ Z[x] be a polynomial of degree d, and for each m ∈ Z and n ∈ Z≥0
m let fn ∈ Z denote the coefficient of x in f(x)n (so fn = 0 for m < 0). Derive the m m

identity
dX

mf0f
n = ((n + 1)i − m)fifm

n
−i, m

i=1
m which expresses the coefficient fn of x in f(x)n as a linear combination of d m

coefficients fm
n
−1, fm

n
−2, . . . , f

n of lower order terms. m−d

n (c) For each m ∈ Z define the row vector v := [fn , fm
n
−d+2, . . . , f

n] ∈ Zd . The m m−d+1 m

linear recurrence in (b) determines integer matrices Mn ∈ Zd×d , with coefficients m
depending on m, n, f0, . . . , fd ∈ Z, that satisfy

n n mf0v = vm−1M
n

m m

for all m, n ≥ 1. Write down the matrix Mn explicitly for the case d = 3. m

(d) Show that provided f0 6= 0, for all m, n ≥ 1 we have

1 n v = V0M
n · · · Mn , m 1 m

fm−n m! 0

where V0 := [0, . . . , 0, 1] ∈ Zd .

(e) Now suppose p = 2n + 1 is an odd prime not dividing f0. For convenience let us
specialize to the case d = 3 of interest and define ⎡ ⎤

0 0 (3 − 2m)f3

Mm := ⎣2mf0 0 (2 − 2m)f2⎦ .
0 2mf0 (1 − 2m)f1

Notice that the matrices Mm do not depend on n. Prove that if p - f0 is prime and
n = (p − 1)/2 then

−1 n v ≡ V0M1 · · · M2n mod (2n + 1). 2n fn
0

n Now v = [f2
n
n−2, f2

n
n−1, f

n], so we can use this to compute Hp(Ep) ≡ fn mod p for 2n 2n 2n
all good primes p = 2n + 1 that do not divide f0 using the cubic f(x) = x3 + Ax + B
defining E (so f0 = B, f1 = A, f2 = 0, f3 = 1).

3

Note that we regard A and B as fixed relative to N , so like the primes p ≤ 13 we
could use brute force (or Schoof’s algorithm) to handle primes p|B.
Now comes the second key to obtaining a quasi-linear running time, which is to use

a recursive strategy for computing the matrix products M1 · · · M2n mod (2n + 1). At
first glance this seems hard, since the modulus is changing with n. But we will take a

∈ Zd×d recursive approach that allows for more general moduli. Let M1, . . . ,MN be a
sequence of integer matrices and let m1, . . . ,mN ∈ Z≥1 be a sequence of integer moduli.
For k = 1, . . . , N define the reduced partial products

Ck := M1 · · · Mk−1 mod mk

(the matrix MN is never used and could be omitted).

(f) Assume N is a power of 2. Show how to reduce the problem of computing C1, . . . , CN

to a problem involving N/2 integer matrices and N/2 integer moduli where the total
number of bits involved is essentially the same (you can view d as a constant).

(g) Analyze the complexity of the recursive algorithm given by (f) under the assumption
that the integers appearing in the matrices Mk and the moduli mk all have bit-sizes
bounded by O(log N). Your bound should be quasi-linear in N . What is the average
running time of your algorithm per prime p ≤ N as a function of log p? In other P
words, determine a function f(n) such that f(log p) is within a constant factor p≤N
of your complexity estimate for the entire algorithm.

(h) Let A = 42 and let B be the least integer greater than or equal to the last 4 digits
of your student ID such that Δ(E) = 4A3 + 27B2 6= 0. Using the matrices defined
in (e) and the moduli mk defined by (

k if k > 13 is a prime not dividing B or Δ(E),
mk =

1 otherwise,

use the recursive algorithm in (f) to compute the Frobenius traces ap for primes p in
the interval (13, N] not dividing B or Δ(E), where N = 2k with k = 10, 11, . . . , 15.
For each value of N , report the sum of the traces, along with the running time of
your algorithm.

Problem 3. The probability of `-torsion (49 points)

Let ` be a prime. In this problem you will determine the probability that a random1

elliptic curve E/Fp has an Fp-point of order `, where p is either a fixed prime much
larger than `, or a prime varying over some large interval. Let π = πE be the Frobenius
endomorphism of E, and let π` ∈ GL2(F`) denote the matrix corresponding to the action
of the Frobenius endomorphism of E on the `-torsion subgroup E[`] with respect to some
chosen basis (here we have identified F` with Z/`Z). The matrix π` is only defined up
to conjugacy, since it depends on the choice of basis, but its trace tr π` = tr π mod `
and det π` = deg π = p mod ` are uniquely determined. We will make the heuristic
assumption that π` is uniformly distributed over GL2(F`) as E varies over elliptic curves
defined over Fp and p varies over integers in some large interval (one can prove that the
distribution of π` converges to the uniform distribution on GL2(F`) as p →∞).

1There are several ways to vary the random elliptic curve E/Fp. We will just pick curve coefficients
A and B at random and ignore the negligible number of cases where the discriminant is 0.

4

(a) Determine the probability that E(Fp)[`] = E[`], both for a fixed p (in which case the
answer will depend on p mod `), and for p varying over some large interval (assume
every possible value of p mod ` occurs equally often).

Use your answer to derive a heuristic estimate for the probability that E(Fp) is cyclic,
for large p, by estimating the probability that E(Fp)[`] =6 E[`] for all `, assuming
that these probabilities are independent.2 Use Sage to compute the product of these
probabilities for primes ` bounded by 50, 100, 200, 500, and then given an estimate
that you believe is accurate to at least 4 decimal places for all sufficiently large p.

Now test your heuristic estimate using the following Sage script

cnt=0
for i in range(0,1000):

p=random_prime(2ˆ20,2ˆ19); F=GF(p)
A=F.random_element(); B=F.random_element()

if EllipticCurve([A,B]).abelian_group().is_cyclic():
cnt += 1

print cnt/1000.0

In the unlikely event that you stumble upon a singular curve, simply rerun the test.
Run this script three times (be patient, it may take a few minutes), and compare
the results to your estimate.

(b) Show that a necessary and sufficient condition for E(Fp)[`] =6 {0} is

tr π` ≡ det π` + 1 (mod `).

(c) Under our heuristic assumption, to determine the probability that E(Fp) contains
a point of order `, we just need to count the matrices π` in GL2(F`) that satisfy
this condition. Your task is to derive a combinatorial formula for this probability as
a rational function in `. Do this by summing over the possible values of det π`, so
that you can also compute the probability for any fixed value of p, which determines
det π` ≡ p mod `. For each nonzero value of d = det π` ∈ F`, you want to count the
number of matrices in GL2(F`) that have determinant d and trace d + 1.

As a warm-up, for ` = 3 use Sage to count the number of matrices π` ∈ GL2(F3)
with trace d + 1 for d = 1 and d = 2. You can then compute the probability of
`-torsion for a fixed p ≡ 1 mod 3 or p ≡ 2 mod 3, and also the average probability
for varying p by averaging over the 2 possible values of d = det π` ≡ p mod `.

You can solve this problem with purely elementary methods, but if you know a
little representation theory you may find it helpful to consult the character table
for GL2(F`) (be sure to list your sources). Assume initially that ` is odd, and after
obtaining your formula, verify that it also works when ` = 2.

(d) For ` = 3, 5, 7 do the following: Pick two random primes p1, p2 ∈ [229 , 230], with
p1 ≡ 1 mod ` and p2 6≡ 1 mod `, and for each prime generate 1000 random elliptic
curves E/Fp. Count how often #E(Fp) is divisible by `, and compare this with the
value predicted by the formulas you derived in part (c).

2This assumption is false, but the extent to which it is false becomes negligible as p → ∞.

5

Problem 4. Fast order algorithms (49 points)

Let α be an element of a generic group G, written additively. Let N be a positive integer
e1 er for which Nα = 0, and let p1 · · · pr be the prime factorization of N . An algorithm

that computes the order of α given N and its prime factorization is known as a fast
order algorithm. It’s fast because the knowledge of N and its factorization allows the
algorithm to run in polynomial time (polynomial in n = log N); determining the order
of α without being given N provably takes exponential time.
The näıve fast order algorithm given in class is rather inefficient. This is irrelevant in

the context of computing the order of a point in #E(Fq) with the baby-steps giant-steps
method; the complexity is dominated by the time to determine N . But this is not the
case in every application. In this problem you will analyze two more efficient approaches.
When giving time complexity bounds for generic group algorithms, we simply count

group operations, since these are assumed to dominate the computation (so integer
arithmetic costs nothing). Space complexity is measured by counting the maximum
number of group elements that the algorithm must store simultaneously, but for this
problem we will just be concerned with time complexity. All your complexity bounds
should be specified in terms of n.

(a) Prove that the number of distinct prime divisors of an integer N is bounded by
O(n/ log n), where n = log N (you can use the bounds proved in Problem Set 1).

(b) The fast order algorithm given in class begins by initializing m = N and then for
each prime pi|N it repeatedly replaces m by m/pi so long as pi|m and (m/pi)α = 0.
Analyze the time complexity of this algorithm in the worst case, and give separate
asymptotic bounds for inputs of the form 2k and p1 · · · pk.

(c) Consider an alternative algorithm that first computes αi = (N/pei)α for 1 ≤ i ≤ r, i

and then for each i determines the least di ≥ 0 for which p di αi = 0 by computing i
the sequence

p 2 . . . , p di = 0, αi, piαi, i αi, i αi

where each term is obtained from the previous via a scalar multiplication by pi. Q di Show that the order of α is i p . Analyze the time complexity of this algorithm i
in the worst case, and give separate asymptotic bounds for inputs of the form 2k

and p1 · · · pk.

(d) Consider a third algorithm that uses a recursive divide-and-conquer strategy. In
the base case r = 1, so N = pk is a prime power and it computes the sequence

d α, pα, p2α, . . . , pdα = 0 as above and returns p . For r > 1 it sets s = br/2c and
e1 es es+1 er puts N = N1N2 with N1 = p · · · p and N2 = p · · · p . It then recursively 1 s s+1 r

computes m1 = |N1α| and m2 = |N2α| and outputs m1m2.

(i) Prove that this algorithm is correct.

(ii) Analyze the time complexity of this algorithm in the worst case, and give
separate asymptotic bounds for inputs of the form 2k and p1 · · · pk.

(e) Assume that for any integer m you can compute mα using dlog me group operations
(the truth is (1 + o(1)) log(m), so this is asymptotically accurate). For the integer
N = 100!, estimate the group operations needed to compute |α| given Nα = 0 for
each of the three algorithms above in the worst case.

6

Problem 5. A Las Vegas algorithm to compute #E(Fp) (49 points)

Implement a Las Vegas algorithm to compute #E(Fp), as described in class. Use Sage’s
built-in functions for generating random points on an elliptic curve, for adding points
on an elliptic curve, and for performing scalar multiplication, but write your own code
for performing the baby-steps giant-steps search and the fast order computation. When
implementing the search, you will want to use a python dictionary to store the baby steps;
python will automatically create a hash table to facilitate fast lookups (alternatively you
can do a sort and match yourself, just be sure to avoid a linear search). √ √
In the code below, H(p) = [p +1 − 2 p, p +1+2 p] denotes the Hasse interval. The

following algorithm to compute #E(Fp) was given in class:

Input: An elliptic curve E/Fp, where p > 229 is prime.
Output: The cardinality of E(Fp).

1. Find a random non-square element d ∈ Fp and use it to compute the equation of
a quadratic twist E1 of E0 = E over Fp.

2. Set N0 = N1 = 1 and i = 0 (the index i is used to alternate between E0 and E1).

3. While neither N0 nor N1 has a unique multiple in H(p):

(a) Pick a random point P on Ei.

(b) Use a baby-steps giant-steps search to find a multiple M of |P | in H(p).
(c) Compute the prime factorization of M using Sage’s factor function.

(d) Compute m = |P | using any of the fast order algorithms from Problem 4.

(e) Set Ni = lcm(m, Ni) and set i = 1 − i.

4. If N0 has a unique multiple M in H(p) then return M , otherwise return 2p+2−M ,
where M is the unique multiple of N1 in H(p).

(a) By modifying part (b) of step 3, give an alternative method for determining m = |P |
that eliminates the need for steps (c) and (d) without increasing the complexity.

2 (b) Let E be the elliptic curve y = x3 − 35x − 98 over Fp with p = 4657. Run your
algorithm on E/Fp and record the values of Ni, M , and m that are obtained as the
algorithm progresses.

(c) For k = 20, 40, 60, 80, pick a random prime p in the interval [2k−1 , 2k] (using Sage’s
random prime function with the lbound parameter). Record the time it takes for

2 you program to compute #E(Fp) for the elliptic curve y = x3 + 314159x + 271828
for each of these primes and list these timings in a table.

The timings will vary depending on your exact implementation and the machine you
are running on, but you should be able to see an O(p1/4) growth rate for large p; the
k = 20 and k = 40 cases will be too quick too see this, but you should see the times go
up by a factor of roughly 220/4 = 32 as you move from a 40-bit to a 60-bit and then an
80-bit prime. As ball park figures to shoot for, the cases k = 20, 40 should both take
less than a second, the k = 60 case should take a few tens of seconds (under ten if your

7

1/4) code is tight); the k = 80 case may take several minutes. If you are not seeing O(p
growth it likely means that you are inadvertently doing a linear search of the baby steps
rather than a table lookup; use a python dictionary to store baby steps and make sure
you access it correctly (use “giant in babys” not “giant in babys.keys()”;
the latter will do a linear search). You can use the sage function cputime() to time
specific sections of your code.

Problem 6. Schoof’s algorithm (49 points)

In this problem you will analyze the complexity of Schoof’s algorithm, as described in
Lecture 9 (Algorithms 9.1 and 9.3) and implemented in this Sage worksheet. In your
complexity bounds, use M(m) to denote the complexity of multiplying two m-bit integers.

You may wish to recall that the complexity of multiplying polynomials in Fp[x] of degree d
is O(M(d log p)), provided that log d = O(log p) (in Schoof’s algorithm, ` = O(log p),
so this certainly applies). Under the same assumption, the complexity of inverting a
polynomial of degree O(d) modulo a polynomial of degree d is O(M(d log p) log d).

(a) Analyze the time complexity of computing t` as described in Algorithm 9.3 of the
lecture notes and implemented in the trace mod function in the worksheet. Give
separate bounds for each of the four non-trivial steps in Algorithm 9.3 as well as
overall bounds for the entire algorithm. Express your bounds in terms of ` and
n = log p, using M(m) to denote the cost of multiplying two m-bit integers.

(b) Analyze the total time complexity of Schoof’s algorithm, as described in Algo-
rithm 9.1 of the lectures notes and implemented in the Schoof function of this
Sage worksheet, as a function of n = log p. Give your answer in three forms, first
using M(m) to express the cost of multiplying m-bit integers, then after plugging in
the näıve bound M(m) = O(m2) or the Schönhage-Strassen bound for FFT-based
multiplication M(m) = O(m log m log log m).

(c) In your answer to part (a), you should have found that the time complexity bound
for one particular step is strictly worse than any of the other steps of Algorithm 9.3.
Explain how to modify Algorithm 9.3 so that this step no longer strictly dominates
the asymptotic running time.

(d) Revise your time complexity estimates in part (b) to reflect part (c).

(e) Analyze the space complexity of Schoof’s algorithm as a function of n, both before
and after your optimization in part (c).

Problem 7. Survey (2 points)

Complete the following survey by rating each of the problems you attempted on a scale
of 1 to 10 according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-
blowing”), and how difficult you found it (1 = “trivial,” 10 = “brutal”). Estimate the
amount of time you spent on each problem to the nearest half hour.

8

https://share.cocalc.com/share/6c380724-2efb-4b0c-9b19-3a7f107ce7e7/18.783%20Lecture%209%20Schoof's%20algorithm.sagews?viewer=share
https://share.cocalc.com/share/6c380724-2efb-4b0c-9b19-3a7f107ce7e7/18.783%20Lecture%209%20Schoof's%20algorithm.sagews?viewer=share

Interest Difficulty Time Spent
Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6

Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty
3/4 Point counting
3/6 Schoof’s algorithm

Please record any additional comments you have on the problem sets or lectures, in
particular, ways in which they might be improved.

9

MIT OpenCourseWare
https://ocw.mit.edu

18.783 Elliptic Curves
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

