
18.783 Elliptic Curves
Lecture #10

Spring 2019
03/11/2019

10 Generic algorithms for the discrete logarithm problem

We now consider generic algorithms for the discrete logarithm problem in the standard
setting of a cyclic group 〈α〉. We shall assume throughout that N := |α| is known. This
is a reasonable assumption for three reasons: (1) in cryptographic applications it is quite
important to know N (or at least to know that N is prime), (2) the lower bound we shall
prove applies even when the algorithm is given N , (3) for a generic algorithm, computing
|α| is strictly easier than solving the discrete logarithm problem [11], and in most cases of
practical interest (the group of rational points on an elliptic curve over a finite field, for
example), there are (non-generic) polynomial time algorithms to compute N .

The cyclic group 〈α〉 is isomorphic to the additive group Z/NZ. For generic group
algorithms we may as well assume 〈α〉 is Z/NZ, generated by α = 1, since every cyclic
group of order N looks the same when it is hidden inside a black box. Of course with the
black box picking arbitrary group identifiers in {0, 1}m, we cannot actually tell which integer
x in Z/NZ corresponds to a particular group element β; indeed, x is precisely the discrete
logarithm of β that we wish to compute! Thus computing discrete logarithms amounts to
explicitly computing the isomorphism from 〈α〉 to Z/NZ that sends α to 1. Computing the
isomorphism in the reverse direction is easy: this is just exponentiation. Thus we have (in
multiplicative notation):

〈α〉 ' Z/NZ
β → logα β

αx ← x

Cryptographic applications of the discrete logarithm problem rely on the fact that it is
easy to compute β = αx but hard (in general) to compute x = logα β. In order to simplify
our notation we will write the group operation additively, so that β = xα.

10.1 Linear search

Starting from α, compute
α, 2α, 3α, . . . , xα = β,

and then output x (or if we reach Nα with out finding β, report that β 6∈ 〈α〉). This uses
at most N group operations, and the average over all inputs is N/2 group operations.

We mention this algorithm only for the sake of comparison. Its time complexity is not
attractive, but we note that its space complexity is O(1) group elements.

10.2 Baby-steps giant-steps

Pick positive integers r and s such that rs > N , and then compute:

baby steps: 0, α, 2α, 3α, . . . , (r − 1)α,
giant steps: β, β − rα, β − 2rα, . . . , β − (s− 1)rα,

A collision occurs when we find a baby step that is equal to a giant step. We then have

iα = β − jrα,

Lecture by Andrew Sutherland

for some nonnegative integers i < r and j < s. If i = j = 0, then β is the identity and
logα β = N . Otherwise,

logα β = i+ jr.

Typically the baby steps are stored in a lookup table, allowing us to check for a collision
as each giant step is computed, so we don’t necessarily need to compute all the giant steps.
We can easily detect β 6∈ 〈α〉, since every integer in [1, N] can be written in the form i+ jr
with 0 ≤ i < r and 0 ≤ j < s. If we do not find a collision, then β 6∈ 〈α〉.

The baby-steps giant-steps algorithm uses r+ s group operations, which is O(
√
N) if we

choose r ≈ s ≈
√
N . It requires space for r group elements (the baby steps), which is also

O(
√
N) but can be made smaller if we are willing to increase the running time by making s

larger; there is thus a time-space trade-off we can make, but the product of the time and
space complexity is always Ω(N).

The two algorithms above are insensitive to any special properties of N , their complexi-
ties depend only on its approximate size. In fact, if we assume that β ∈ 〈α〉 then we do not
even need to know N : this is clear for the linear search, and for the baby-steps giant-steps
method we could simply start by assuming N = 2 and if/when that fails, keep doubling N
and rerunning the algorithm until we succeed. This still yields an O(

√
N) complexity.1

For the next algorithm we consider it is quite important to know N exactly, in fact we
will assume that we know its prime factorization; factoring N does not require any group
operations, so in our complexity model which counts group operations, a generic algorithm
can factor any integer N “for free”. In practical terms, there are algorithms to factor N that
are much faster than the generic lower bound we will prove below; as we will see in the next
lecture, the elliptic curve factorization method is one such algorithm.

10.3 The Pohlig-Hellman algorithm

We now introduce the Pohlig-Hellman2 algorithm, a recursive method to reduce the discrete
logarithm problem in cyclic groups of composite order to discrete logarithm problems in
cyclic groups of prime order.

We first reduce to the prime power case. Suppose N = N1N2 with N1 ⊥ N2. Then
Z/NZ ' Z/N1Z ⊕ Z/N2Z, by the Chinese remainder theorem, and we can make this iso-
morphism completely explicit via

x → (x mod N1, x mod N2),

(M1x1 +M2x2) mod N ← (x1, x2),

where

M1 = N2(N
−1
2 mod N1) ≡

{
1 mod N1,

0 mod N2,
(1)

M2 = N1(N
−1
1 mod N2) ≡

{
0 mod N1,

1 mod N2.
(2)

Note that computing Mi and Ni does not involve group operations and is independent of β;
with the fast Euclidean algorithm the time to compute M1 and M2 is O(M(n) log n) bit
operations, where n = logN .

1There are more efficient ways to do an unbounded baby-steps giant-steps search, see [11, 13].
2The article by Pohlig and Hellman [6] notes that essentially equivalent versions of the algorithm were

independently found by R. Silver, and by R. Schroeppel and H. Block, none of whom published the result.

18.783 Spring 2019, Lecture #10, Page 2

Let us now consider the computation of x = logα β. Define

x1 := x mod N1 and x2 := x mod N2,

so that x = M1x1 +M2x2, and

β = (M1x1 +M2x2)α.

Multiplying both sides by N2 and distributing the scalar multiplication yields

N2β = M1x1N2α+M2x2N2α. (3)

As you proved in Problem Set 1, the order of N2α is N1 (since N1 ⊥ N2). From (1) and (2)
we have M1 ≡ 1 mod N1 and M2 ≡ 0 mod N1, so the second term in (3) vanishes and the
first term can be simplified, yielding

N2β = x1N2α.

We similarly find that N1β = x2N1α. Therefore

x1 = logN2αN2β,

x2 = logN1αN1β.

If we know x1 and x2 then we can compute x = (M1x1 + M2x2) mod N . Thus the
computation of x = logα β can be reduced to the computation of x1 = logN2αN2β and
x2 = logN1αN1β. If N is a prime power this doesn’t help (either N1 = N or N2 = N), but
otherwise these two discrete logarithms involve groups of smaller order. In the best case
N1 ≈ N2, and we reduce our original problem to two subproblems of half the size, and this
reduction involves only O(n) groups operations (the time to compute N1α,N1β,N2α,N2β
using double-and-add scalar multiplication).

By applying the reduction above recursively, we can reduce to the case where N is a
prime power pe, which we now assume. Let e0 = de/2e and e1 = be/2c. We may write
x = logα β in the form x = x0 + pe0x1, with 0 ≤ x0 < pe0 and 0 ≤ x1 < pe1 . We then have

β = (x0 + pe0x1)α,

pe1β = x0p
e1α+ x1p

eα.

The second term in the last equation is zero, since α has order N = pe, so

x0 = logpe1α p
e1β.

We also have β − x0α = pe0x1α, therefore

x1 = logpe0α(β − x0α).

If N is not prime, this again reduces the computation of logα β to the computation of two
smaller discrete logarithms (of roughly equal size) using O(n) group operations.

The Pohlig-Hellman method [6] recursively applies the two reductions above to reduce
the problem to a set of discrete logarithm computations in groups of prime order.3 For
these computations we must revert to some other method, such as baby-steps giant-steps
(or Pollard-rho, which we will see shortly). When N is a prime p, the complexity is then
O(
√
p) group operations.

3The original algorithm of Pohlig and Hellman actually used an iterative approach that is not as fast as
the recursive approach suggested here. The recursive approach for the prime-power case that we use here
appears in [9, §11.2.3]. When N = pe is a power of a prime p = O(1), the complexity of the original Pohlig-
Hellman algorithm is O(n2), versus the O(n logn) bound we obtain here (this can be further improved to
O(n logn/ log logn) via [12]).

18.783 Spring 2019, Lecture #10, Page 3

10.4 Complexity analysis

Let N = pe11 · · · perr be the prime factorization of N . Reducing to the prime-power case
involves at most lg r = O(log n) levels of recursion, where n = logN (in fact the prime
number theorem implies lg r = O(log n/ log log n), but we won’t use this). The exponents ei
are all bounded by lgN = O(n), thus reducing prime powers to the prime case involves at
most an additional O(log n) levels of recursion, since the exponents are reduced by roughly
a factor of 2 at each level.

The total depth of the recursion tree is thus O(log n). Note that we do not need to assume
anything about the prime factorization of N in order to obtain this bound; in particular,
even if the prime powers peii vary widely in size, this bound still holds.

The product of the orders of the bases used at any given layer of the recursion tree never
exceeds N . The number of group operations required at each internal node of the recursion
tree is linear in the bit-size of the order of the base, since only O(1) scalar multiplications are
used in each recursive step. Thus if we exclude the primes order cases at the leaves, every
layer of the recursion tree uses O(n) group operations. If we use the baby-steps giant-steps
algorithm to handle the prime order cases, each leaf uses O(

√
pi) group operations and the

total running time is
O
(
n log n+

∑
ei
√
pi

)
group operations, where the sum is over the distinct prime divisors pi of N . We can also
bound this by

O (n log n+ n
√
p) ,

where p is the largest prime dividing N . The space complexity is O(
√
p) group elements,

assuming we use a baby-steps giant-steps search for the prime cases; this can be reduced
to O(1) using the Pollard-rho method (which is the next algorithm we will consider), but
this results in a probabilistic (Las Vegas) algorithm, whereas the standard Pohlig-Hellman
approach is deterministic.

The Pohlig-Hellman algorithm can be extremely efficient when N is composite; if N is
sufficiently smooth its running time is quasi-linear in n = logN , comparable to the cost of
exponentiation. Thus it is quite important to use groups of prime (or near-prime) order in
cryptographic applications of the discrete logarithm problem. This is one of the motivations
for efficient point-counting algorithms for elliptic curves: we really need to know the exact
group order before we can consider a group suitable for cryptographic use.

10.5 Randomized algorithms for the discrete logarithm problem

So far we have only considered deterministic algorithms for the discrete logarithm problem.
We now consider a probabilistic approach. Randomization will not allow us to achieve a
better time complexity (a fact we will prove shortly), but we can achieve a much better space
complexity. This also makes it much easier to parallelize the algorithm, which is crucial for
large-scale computations (one can construct a parallel version of the baby-steps giant-steps
algorithm, but detecting collisions is more complicated and requires a lot of communication).

10.5.1 The birthday paradox

Recall what the so-called birthday paradox tells us about collision frequency: if we drop
Ω(
√
N) balls randomly into O(N) bins then the probability that some bin contains more

than one ball is bounded below by some nonzero constant that we can make arbitrarily

18.783 Spring 2019, Lecture #10, Page 4

close to 1 by increasing the number of balls by a constant factor. Given β ∈ 〈α〉, the
baby-steps giant-steps method for computing logα β can be viewed as dropping

√
2N balls

corresponding to linear combinations of α and β into N bins corresponding to the elements
of 〈α〉. Of course these balls are not dropped randomly, they are dropped in a pattern that
guarantees a collision.

But if we instead computed
√

2N random linear combinations of α and β, we would still
have a good chance of finding a collision (better than 50/50, in fact). The main problem
with this approach is that in order to find the collision we would need to keep a record of all
the linear combinations we have computed, which takes space. In order to take advantage
of the birthday paradox in a way that uses less space we need to be a bit more clever.

10.5.2 Random walks on a graph

We now want to view the group G = 〈α〉 as the vertex set V of a connected graph Γ whose
edges eij = (γi, γj) are labeled with the group element δij = γj − γi satisfying γi + δij = γj
(a Cayley graph, for example). If we know how to express each δij as a linear combination
of α and β ∈ 〈α〉, then any cycle in Γ yields a linear relation involving α and β. Provided
the coefficient of β is invertible modulo N := |α|, we can use this relation to compute logα β.

Suppose we use a random function f : V → V to construct a walk from a random starting
point v0 ∈ V as follows:

v1 = f(v0)

v2 = f(v1)

v3 = f(v2)

...

Since f is a function, if we ever repeat a vertex, say vρ = vλ for some ρ > λ, we will be
permanently stuck in a cycle, since we then have f(vρ+i) = f(vλ+i) for all i ≥ 0. Note
that V is finite, so this must happen eventually.

Our random walk consists of two parts, a path from v0 to the vertex vλ, the first vertex
that is visited more than once, and a cycle consisting of the vertices vλ, vλ+1, . . . , vρ−1. This
can be visualized as a path in the shape of the Greek letter ρ, which explains the name of
the ρ-method we wish to consider.

In order to extract information from this cycle we need to augment the function f so
that we can associate linear combinations aα+ bβ to each edge in the cycle. But let us first
compute the expected number of steps a random walk takes to reach its first collision.

Theorem 10.1. Let V be a finite set. For any v0 ∈ V , the expected value of ρ for a walk
from v0 defined by a random function f : V → V is

E[ρ] ∼
√
πN/2,

as the cardinality N of V tends to infinity.

This theorem was stated in lecture without proof; here give an elementary proof.

Proof. Let Pn = Pr[ρ > n]. We have P0 = 1 and P1 = (1− 1/N), and in general

Pn =

(
1− 1

N

)(
1− 2

N

)
· · ·
(

1− n

N

)
=

n∏
i=1

(
1− i

N

)

18.783 Spring 2019, Lecture #10, Page 5

for any n < N (and Pn = 0 for n ≥ N). We compute the expectation of ρ as

E[ρ] =
N−1∑
n=1

n · Pr[ρ = n]

=
N−1∑
n=1

n · (Pn−1 − Pn),

= 1(P0 − P1) + 2(P1 − P2) + . . .+ n(Pn−1 − Pn)

=

N−1∑
n=0

Pn − nPn. (4)

In order to determine the asymptotic behavior of E[ρ] we need tight bounds on Pn. Using
the fact that log(1− x) < −x for 0 < x < 1, we obtain an upper bound on Pn:

Pn = exp

(
n∑
i=1

log

(
1− i

N

))

< exp

(
− 1

N

n∑
i=1

i

)

< exp

(
−n2

2N

)
.

To establish a lower bound, we use the fact that log(1− x) > −x− x2 for 0 < x < 1
2 , which

can be verified using the Taylor series expansion for log(1− x).

Pn = exp

(
n∑
i=1

log

(
1− i

N

))

> exp

(
−

n∑
i=1

(
i

N
+

i2

N2

))
.

We now let M = N3/5 and assume n < M . In this range we have
n∑
i=1

(
i

N
+

i2

N2

)
<

n∑
i=1

(
i

N
+N−

4
5

)
<
n2 + n

2N
+N−

1
5

<
n2

2N
+

1

2
N−

2
5 +N−

1
5

<
n2

2N
+ 2N−

1
5 ,

which implies

Pn > exp

(
−n2

2N

)
exp

(
−2N−

1
5

)
=
(
1 + o(1)

)
exp

(
−n2

2N

)
.

18.783 Spring 2019, Lecture #10, Page 6

We now return to the computation of E[ρ]. From (4) we have

E[ρ] =

bMc∑
n=0

Pn +
N−1∑
n=dMe

Pn + o(1) (5)

where the error term comes from nPn < n exp (−n
2

2N) = o(1) (we use o(1) to denote any term
whose absolute value tends to 0 as N →∞). The second sum is negligible, since

N−1∑
n=dMe

Pn < N exp
(
− M2

2N

)
= N exp

(
− 1

2
N−

1
5
)

= o(1). (6)

For the first sum we have

dMe∑
n=0

Pn =

dMe∑
n=0

(
1 + o(1)

)
exp

(
− n2

2N

)
=
(
1 + o(1)

) ∫ ∞
0

e−
x2

2N dx+O(1)

=
(
1 + o(1)

)√
2N

∫ ∞
0

eu
2
du+O(1)

=
(
1 + o(1)

)√
2N(
√
π/2)

=
(
1 + o(1)

)√
πN/2. (7)

Plugging (6) and (7) in to (5) yields the desired result.

Remark 10.2. One can similarly show E[λ] = E[σ] = 1
2E[ρ] =

√
πN/8, where σ = ρ−λ is

the length of the cycle.

In the baby-steps giant-steps algorithm (BSGS), if we assume that the discrete logarithm
is uniformly distributed over [1, N], then we should use

√
N/2 baby steps and expect to

find the discrete logarithm after
√
N/2 giant steps, on average, using a total of

√
2N group

operations. But note that
√
π/2 ≈ 1.25 is less than

√
2 ≈ 1.41, so we may hope to compute

discrete logarithms slightly faster than BSGS (on average) by simulating a random walk. Of
course the worst-case running time for BSGS is better, since we will never need more than√

2N giant steps, but with a random walk the (very unlikely) worst case is N steps.

10.6 Pollard-ρ Algorithm

We now present the Pollard-ρ algorithm for computing logα β, given β ∈ 〈α〉; we should
note that the assumption β ∈ 〈α〉 which was not necessary in the baby-steps giant-steps
algorithm is crucial here. As noted earlier, finding a collision in a random walk is useful
to us only if we know how to express the colliding group elements as independent linear
combinations of α and β. We thus extend the function f : G→ G used to define our random
walk to a function

f : Z/NZ× Z/NZ×G→ Z/NZ× Z/NZ×G,

18.783 Spring 2019, Lecture #10, Page 7

which we require to have the property that if the input (a, b, γ) satisfies aα+ bβ = γ, then
(a′, b′, γ′) = f(a, b, γ) should satisfy a′α+ b′β = γ′.

There are several ways to define such a function f , one of which is the following. We
first fix r distinct group elements δi = ciα+diβ for some randomly chosen ci, di ∈ Z/NZ. In
order to simulate a random walk, we don’t want r to be too small: empirically r ≈ 20 works
well [14]. We then define f(a, b, γ) = (a+ ci, b+ di, γ+ δi), where i = h(γ) is determined by
a randomly chosen hash function

h : G→ {1, . . . , r}.

In practice we don’t choose h randomly, we just need the preimages h−1(i) to partition G
into r subsets of roughly equal size; for example, we might take the integer whose base-2
representation corresponds to the identifier id(γ) ∈ {0, 1}m and reduce it modulo r.4

To start our random walk, we pick random a0, b0 ∈ Z/NZ and let γ0 = a0α + b0β.
The walk defined by the iteration function f is known as an r-adding walk. Note that if
(aj+1, bj+1, γj+1) = f(aj , bj , γj), the value of γj+1 depends only on γj , not on aj or bj , so
the function f does define a walk in the same sense as before. We now give the algorithm.

Algorithm 10.3 (Pollard-ρ). Given α, N = |α|, β ∈ 〈α〉 , compute logα β as follows:

1. Compute δi = ciα+ diβ for r ≈ 20 randomly chosen pairs ci, di ∈ Z/NZ.
2. Compute γ0 = a0α+ boβ for randomly chosen a0, b0 ∈ Z/NZ.
3. Compute (aj , bj , γj) = f(aj−1, bj−1, γj−1) for j = 1, 2, 3, . . ., until γk = γj with k > j.

4. The collision γk = γj implies ajα+bjβ = akα+bkβ. Provided that bk−bj is invertible
in Z/NZ, we return logα β =

aj−ak
bk−bj ∈ Z/NZ; otherwise start over at step 1.

Note that if N = |α| is a large prime, it is extremely likely that bk− bj will be invertible. In
any case, by restarting we ensure that the algorithm terminates with probability 1, since it
is certainly possible to have γ0 = xα and γ1 = β, where x = logα β, for example. With this
implementation the Pollard rho algorithm is a Las Vegas algorithm, even though it is often
referred to in the literature as a Monte Carlo algorithm, due to the title of [8].

The description above does not specify how we should detect collisions. A simple method
is to store all the γj as they are computed and look for a collision during each iteration.
However, this implies a space complexity of ρ, which we expect to be on the order of

√
N .

But we can use dramatically less space than this.
The key point is that once the walk enters a cycle, it will remain inside this cycle

forever, and every step inside the cycle produces a collision. It is thus not necessary to
detect a collision at the exact moment we enter the cycle, we can afford a slight delay. We
now consider two space-efficient methods for doing this.

10.7 Floyd’s cycle detection method

Floyd’s cycle detection method [5, p. 4] minimizes the space required: it keeps track of just
two triples (aj , bjγj) and (ak, bk, γk) that correspond to vertices of the walk (of course it
also needs to store ci, di, γi for 0 ≤ i < r). The method is typically described in terms of a
tortoise and a hare that are both traveling along the ρ-shaped walk. They start with the

4Note the importance of unique identifiers. We must be sure that γ is always hashed to to the same
value. Using a non-unique representation such as projective points on an elliptic curve will not achieve this.

18.783 Spring 2019, Lecture #10, Page 8

same γ0, but in each iteration the hare takes two steps, while the tortoise takes just one.
We thus modify step 3 of Algorithm 10.3 to compute

(aj , bj , γj) = f(aj−1, bj−1, γj−1)

(ak, bk, γk) = f(f(ak−1, bk−1, γk−1)).

The triple (aj , bjγj) corresponds to the tortoise, and the triple (ak, bk, γk) corresponds to
the hare. Once the tortoise enters the cycle, the hare (which must already be in the cycle)
is guaranteed to collide with the tortoise within σ/2 iterations, where σ is the length of the
cycle (to see this, note that the hare cannot pass the tortoise without landing on it). On
average, we expect it to take σ/4 iterations for the hare to catch the tortoise and produce
a collision, which we detect by testing whether γj = γk after each iteration.

The expected number of iterations is thus E[λ+σ/4] = 5/8 E[ρ]. But each iteration now
requires three group operations, so the algorithm is actually slower by a factor of 15/8. Still,
this achieves a time complexity of O(

√
N) group operations while storing just O(1) group

elements, which is a dramatic improvement.

10.8 The method of distinguished points

The “distinguished points” method (commonly attributed to Ron Rivest) uses slightly more
space, say O(logcN) group elements, for some constant c, but it detects cycles in essentially
optimal time (within a factor of 1 + o(1) of the best possible), and uses just one group
operation for each iteration, rather then the three required by Floyd’s method.

The idea is to “distinguish” a certain subset of G by fixing a random boolean function
B : G → {0, 1} and calling the elements of B−1(1) distinguished points. We don’t want
the set of distinguished points to be too large, since we will store all the distinguished we
encounter during our walk, but we want our walk to contain many distinguished points; say
(logN)c, on average, for some constant c > 0. This means we should choose B so that

#B−1(1) ≈
√
N(logN)c.

One way to define such a function B is to hash group elements to bit-strings of length k
via a hash function h̃ : G → {0, 1}k, and then let B(γ) = 1 if and only if h̃(γ) is the zero
vector. If we set k = 1

2 log2N−c log2 logN then B−1(1) will have the desired cardinality. An
easy and very efficient way to construct the hash function h̃ is to use the k least significant
bits of the bit-string that uniquely represents the group element. For points on elliptic
curves, we should use bits from the x-coordinate, since this will allow us to detect collisions
of the form γj = ±γk (we can determine the sign by checking y-coordinates).

Algorithm 10.4 (Pollard-ρ using distinguished points).

1. Pick random ci, di, a0, b0 ∈ Z/NZ, compute δi = ciα + diβ and γ0 = a0α + b0β, and
initialize D ← ∅.

2. For j = 1, 2, 3, ...:
a. Compute (aj , bj , γj) = f(aj−1, bj−1, γj−1).
b. If B(γj) = 1 then

i. If there exists (ak, bk, γk) ∈ D with γj = γk then return logα β =
aj−ak
bk−bj if

gcd(bk − bj , N) = 1 and restart at step 1 otherwise.
ii. If not, replace D by D ∪ {(aj , bj , γj)} and continue.

18.783 Spring 2019, Lecture #10, Page 9

A key feature of the distinguished points method is that it is well-suited to a massively
parallel implementation, which is critical for any large-scale discrete logarithm computation.
Suppose we have many processors all running the same algorithm independently. If we have,
say,
√
N processors, then after just one step there is a good chance of a collision, and in

general if we have m processors we expect to get a collision within O(
√
N/m) steps. We can

detect this collision as soon as the processors involved in the collision reach a distinguished
point. However, the individual processors cannot realize this themselves, since they only
know the distinguished points they have seen, not those seen by other processors. Whenever
a processor encounters a distinguished point, it sends the corresponding triple to a central
server that is responsible for detecting collisions. This scenario is also called a λ-search,
since the collision typically occurs between paths with different starting points that then
follow the same trajectory (forming the shape of the letter λ, rather than the letter ρ).

There is one important detail that must be addressed: if there are no distinguished
points in the cycle then Algorithm 10.4 will never terminate!

The solution is to let the distinguished set S grow with time. We begin with S = h̃−1(0),
where h̃ : G → {0, 1}k with k = 1

2 log2N − c log2 logN . Every
√
πN/2 iterations, we

decrease k by 1. This effectively doubles the number of distinguished points, and when k
reaches zero we consider every point to be distinguished. This guarantees termination, and
the expected space is still just O(logcN) group elements.

10.9 Current ECDLP records

The current record for computing discrete logarithms on elliptic curves over finite fields
involves a cyclic group with 117-bit prime order on an elliptic curve E/Fq with q = 2127

and was set in 2016. The computation was run on 576 XC6SLX150 FPGAs and took about
200 days [1]. The current record for elliptic curves over prime fields was set in 2017 using
the curve E : y2 = x3 + 3 over the 114-bit prime field F11957518425389075254535992784167879 with
#E(Fp) prime. This computation took advantage of the extra automorphisms of this curve
and took the equivalent of 81 days running on 2000 Intel cores [4]. The record for elliptic
curves over prime fields without extra automorphisms was set in 2009 using a 112-bit prime
order group on an elliptic curve E/Fp with p = (2128− 3)/(11 · 6949); this computation was
run on a cluster of 200 PlayStation 3 consoles and took 180 days [3]. All of these records
were set using a parallel Pollard-rho search and the method of distinguished points.1

10.10 A generic lower bound for the discrete logarithm problem

We will now prove an essentially tight lower bound for solving the discrete logarithm problem
with a generic group algorithm. We will show that if p is the largest prime divisor of N ,
then any generic group algorithm for the discrete logarithm problem must use Ω(

√
p) group

operations. In the case that the group order N = p is prime this bound is tight, since we
have already seen that the problem can be solved with O(

√
N) group operations using the

baby-steps giant-steps method, and the Pohlig-Hellman complexity bound O(n log n+n
√
p)

shows that it is tight in general, up to logarithmic factors.
This lower bound applies not only to deterministic algorithms, but also to randomized

algorithms: a generic Monte Carlo algorithm for the discrete logarithm problem must use
Ω(
√
p) group operations in order to be correct with probability bounded above 1/2, and the

expected running time of any generic Las Vegas algorithm is Ω(
√
p) group operations.

The following theorem due to Shoup [10] generalizes an earlier result of Nechaev [7]. Our

18.783 Spring 2019, Lecture #10, Page 10

presentation here differs slightly from Shoup’s and gives a sharper bound, but the proof is
essentially the same. Recall that in our generic group model, each group element is uniquely
represented as a bit-string via an injective map id : G ↪→ {0, 1}m, where m = O(log |G|).

Theorem 10.5 (Shoup). Let G = 〈α〉 be group of order N . Let B be a black box for G sup-
porting the operations identity, inverse, and compose, using a random identification
map id : G ↪→ {0, 1}m. Let A : {0, 1}m × {0, 1}m → Z/NZ be a randomized generic group
algorithm that makes at most s− 4dlgNe calls to B, for some integer s, and let x denote a
random element of Z/NZ. Then

Pr
x,id,τ

[A(id(α), id(xα)) = x] <
s2

2p
,

where τ denotes the random coin-flips made by A and p is the largest prime factor of N .

Note that A can generate random elements of G by computing zα for random z ∈ Z/NZ
(using at most 2 lgN group operations). We assume that A is given the group order N
(this only makes the theorem stronger). The theorem includes deterministic algorithms as
a special case where A does not use any of the random bits in τ . Bounding the number of
calls A makes to B might appear to make the theorem inapplicable to Las Vegas algorithms,
but we can convert a Las Vegas algorithm to a Monte Carlo algorithm by forcing it halt and
generate a random output if it exceeds its expected running time by some constant factor.

Proof. To simplify the proof, we will replace A by an algorithm A′ that does the following:

1. Use B to compute id(Nα) = id(0).
2. Simulate A, using id(0) to replace identity operations, to get y = A(id(α), id(xα)).
3. Use B to compute id(yα).

In the description above we assume that the inputs to A are id(α) and id(xα); the behavior
of A′ when this is not the case is irrelevant. Note that steps 1 and 3 each require at most
2dlog2Ne − 1 calls to B using double-and-add, so A′ makes at most s− 2 calls to B.

Let γ1 = id(α) and γ2 = id(xα). Without loss of generality we may assume that every
interaction between A′ and B is of the form γk = γi± γj , with 1 ≤ i, j < k, where γi and γj
are identifiers of group elements that are either inputs or values previously returned by B
(here the notation γi ± γj means that A′ is using B to add or subtract the group elements
identified by γi and γj). Note that A′ can invert γj by computing id(0)− γj .

The number of such interactions is clearly a lower bound on the number of calls made
by A′ to B. To further simplify matters, we will assume that the execution of A′ is padded
with operations of the form γk = γ1 + γ1 as required until k reaches s.

Let N = peM with p ⊥M . For k = 1, . . . , s define Fk = akX + bk ∈ Z/peZ[X] via:

F1 := 1, F2 := X, Fk := Fi ± Fj (2 < k ≤ s),

where γk = γi ± γj (with the same sign), and similarly define zk ∈ Z/MZ via

z1 := 1, z2 := x mod M, zk := zi ± zj (2 < k ≤ s).

Each Fk is a linear polynomial in X that satisfies

Fk(x) ≡ logγ1 γk mod pe,

18.783 Spring 2019, Lecture #10, Page 11

and zk = logγ1 γk mod M (we abuse notation by writing γk = id(gk) in place of gk ∈ G).
Let us now consider the following game, which models the execution of A′. At the start

of the game we set F1 = 1, F2 = X, z1 = 1, and set z2 to a random element of Z/MZ.
We also set γ1 and γ2 to distinct random values in {0, 1}m. For rounds k = 2, 3, . . . , s, the
algorithm A′ and the black box B play the game as follows:

1. A′ chooses a pair of integers i and j, with 1 ≤ i, j < k, and a sign ± that determines
Fk = Fi ± Fj and zk = zi ± zj , and then asks B for the value of γk = γi ± γj .

2. B sets γk = γ` if Fk = F` and zk = z` for some ` < k, and otherwise B sets γk to a
random bit-string in {0, 1}m that is distinct from γ` for all ` < k.

After the sth round we pick t ∈ Z/peZ at random and say that A′ wins if Fi(t) = Fj(t) for
any Fi 6= Fj ; otherwise B wins. Notice that the group G also plays no role in the game, it
just involves bit-strings, but the constraints on B’s choice of γk ensure that the bit strings
γ1, . . . , γs can be assigned to group elements in a consistent way. We now claim that

Pr
x,id,τ

[A(id(α), id(xα)) = x] ≤ Pr
t,id,τ

[A′ wins the game], (8)

where the id function on the right represents an injective map G ↪→ {0, 1}m that is compat-
ible with the choices made by B during the game, in other words, there exists a sequence of
group elements α = α1, α2, α3, . . . , αs such that id(αi) = γi and αk = αi ± αj , where i, j,
and the sign ± correspond to the values chosen by A′ in the kth round.

For every value of x, id, and τ for which A(id(α), id(xα)) = x, there is a value of t,
namely t = x mod pe, for which A′ wins the game (here we use the fact that A′ always
computes yα, where y = A(id(α), id(xα)), so A′ forces a collision to occur whenever the
discrete logarithm is computed correctly, even if A does not). The number of possible values
of t ∈ Z/peZ is no greater than the number of possible values of x ∈ Z/NZ, hence (8) holds.

We now bound the probability that A′ wins the game. Consider any particular execution
of the game, and let Fij = Fi − Fj . We claim that for all i and j such that Fij 6= 0,

Pr
t

[Fij(t) = 0] ≤ 1

p
. (9)

We have Fij(X) = aX + b for some a, b ∈ Z/peZ with a and b not both zero. If a is zero
then Fij(t) = b 6= 0 for all t ∈ Z/peZ and (9) holds. Otherwise the map [a] : t 7→ at is a
nonzero endomorphism of the abelian group Z/peZ, so ker[a] has order at most pe−1. The
set {t ∈ Z/peZ : at = −b} is either empty or has cardinality # ker[a], thus

Pr
t

[Fij(t) = 0] = p−e#{t ∈ Z/peZ : at = −b} ≤ p−epe−1 =
1

p

holds for all nonzero Fij , which proves (9).
If A′ wins the game then there must exist an Fij 6= 0 for which Fij(t) = 0. Furthermore,

since Fij(t) = 0 if and only if Fji(t) = 0, we may assume i < j. Thus

Pr
t,id,τ

[A′ wins the game] ≤ Pr
t,id,τ

[Fij(t) = 0 for some Fij 6= 0 with i < j]

≤
∑

i<j,Fij 6=0

Pr
t

[Fij(t) = 0]

≤
(
s

2

)
1

p
<
s2

2p
,

where we have used the union bound (Pr[A ∪B] ≤ Pr(A) + Pr(B)) to obtain the sum.

18.783 Spring 2019, Lecture #10, Page 12

Corollary 10.6. Let G be a cyclic group of prime order N . Every deterministic generic
algorithm for the discrete logarithm problem in G uses at least (

√
2 + o(1))

√
N group oper-

ations.

The baby-steps giant-steps algorithm uses (2 + o(1))
√
N group operations in the worst

case, so this lower bound is tight up to a constant factor, but there is a slight gap. In fact,
the baby-steps giant-steps method is not quite optimal; the constant factor 2 in the upper
bound (2 + o(1))

√
N can be improved via [2] (but this still leaves a small gap).

Let us now extend Theorem 10.5 to the case where the black box also supports the
generation of random group elements for a cost of one group operation. We first note
that having the algorithm generate random elements itself by computing zα for random
z ∈ Z/NZ does not change the lower bound significantly if only a small number of random
elements are used; this applies to all of the algorithms we have considered.

Corollary 10.7. Let G = 〈α〉 be a cyclic group of prime order N . Every generic Monte
Carlo algorithm for the discrete logarithm problem in G that uses o(

√
N/ logN) random

group elements uses at least (1 + o(1))
√
N group operations.

This follows immediately from Theorem 10.5, since a Monte Carlo algorithm is required
to succeed with probability bounded above 1/2. In the Pollard-ρ algorithm, assuming it
behaves like a truly random walk, the number of steps required before the probability of a
collision exceeds 1/2 is

√
2 log 2 ≈ 1.1774, so there is again only a small gap in the constant

factor between the lower bound and the upper bound.
In the case of a Las Vegas algorithm, we can obtain a lower bound by supposing that the

algorithm terminates as soon as it finds a non-trivial collision (in the proof, this corresponds
to a nonzero Fij with Fij(t) = 0). Ignoring the O(logN) additive term, this occurs within m
steps with probability at most m2/(2p). Summing over m from 1 to

√
2p and supposing

that the algorithm terminates in exactly m steps with probability (m2− (m−1)2)/(2p), the
expected number of steps is 2

√
2p/3 + o(

√
p).

Corollary 10.8. Let G = 〈α〉 be a cyclic group of prime order N . Every generic Las Vegas
algorithm for the discrete logarithm problem in G that generates an expected o(

√
N/ logN)

random group elements uses at least (2
√

2/3 + o(1))
√
N expected group operations.

Here the constant factor 2
√

2/3 ≈ 0.9428 in the lower bound is once again only slightly
smaller than the constant factor

√
π/2 ≈ 1.2533 in the upper bound given by the Pollard-ρ

algorithm (under a random walk assumption).
Now let us consider a generic algorithm that generates a large number of random ele-

ments, say R = N1/3+δ for some δ > 0. The cost of computing zα for R random values
of z can be bounded by 2R + O(N1/3). If we let e = dlgN/3e and precompute cα, c2eα,
and c22eα for c ∈ [1, 2e], we can then compute zα for any z ∈ [1, N] using just 2 group
operations. We thus obtain the following corollary, which applies to every generic group
algorithm for the discrete logarithm problem.

Corollary 10.9. Let G = 〈α〉 be a cyclic group of prime order N . Every generic Las Vegas
algorithm for the discrete logarithm problem in G uses an expected Ω(

√
N) group operations.

In fact, we can be more precise: the implied constant factor is at least
√

2/2.

18.783 Spring 2019, Lecture #10, Page 13

References

[1] D.J. Bernstein, S. Engles, T. Lange, R. Niederhagen, C. Paar, P. Schwabe, and R. Zim-
merman, Faster elliptic curve discrete logarithms on FPGAs, Cryptology eprint Archive,
Report 2016/382, 2016.

[2] D.J. Bernstein and T. Lange,1 Two giants and a grumpy baby , in Proceedings of the
Tenth Algorithmic Number Theory Symposium (ANTS X), Open Book Series 1, Math-
ematical Sciences Publishers, 2013, 87–111.

[3] J.W. Bos, M.E. Kaihara, T. Kleinjung, A.K. Lenstra, and P.L. Montgomery, PlaySta-
tion 3 computing breaks 260 barrier, 112-bit ECDLP solved , EPFL Laboratory for Cryp-
tologic Algorithms, 2009.

[4] T. Kusaka, S. Joichi, K. Ikuta, Md. A. Khandaker, Y. Nogami, S. Uehara N. Yamai, Solv-
ing 114-bit ECDLP for a Barreto–Naehrig curve, Information Security and Cryptology
– ICISC 2017, LNCS 10779 (2018), 231–244.

[5] D.E. Knuth, The Art of Computer Programming, vol. II: Semi-numerical Algorithms,
third edition, Addison-Wesley, 1998.

[6] S.C. Pohlig and M.E. Hellman, An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance, IEEE Transactions on Information Theory 24
(1978), 106–110.

[7] V. I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm, Math-
ematical Notes 55 (1994), 165–172.

[8] J.M. Pollard, Monte Carlo methods for index computation (mod p), Mathematics of
Computation 143 (1978), 918–924.

[9] V. Shoup, A Computational Introduction to Number Theory and Algebra, Cambridge
University Press, 2005.

[10] V. Shoup, Lower bounds for discrete logarithms and related problems, Proceedings of
Eurocrypt ’97, LNCS 1233 (1997), 256-266, revised version available at http://www.
shoup.net/papers/dlbounds1.pdf.

[11] A.V. Sutherland, Order computations in generic groups, PhD thesis, Massachusetts
Institute of Technology, 2007.

[12] A.V. Sutherland, Structure computation and discrete logarithms in finite abelian p-
groups, Mathematics of Computation 80 (2011), 501–538.

[13] D.C. Terr, A modification of Shanks baby-step giant-step method , Math. Comp. 69
(2000), 767–773.

[14] E. Teske, On random walks for Pollard’s rho method , Mathematics of Computation 70
(2001), 809–825.

18.783 Spring 2019, Lecture #10, Page 14

http://eprint.iacr.org/2016/382
http://msp.org/obs/2013/1-1/obs-v1-n1-p05-s.pdf
http://lacal.epfl.ch/112bit_prime
http://lacal.epfl.ch/112bit_prime
https://link.springer.com/chapter/10.1007/978-3-319-78556-1_13
https://link.springer.com/chapter/10.1007/978-3-319-78556-1_13
https://www.pearson.com/us/higher-education/program/Knuth-Art-of-Computer-Programming-Volume-2-Seminumerical-Algorithms-3rd-Edition/PGM131376.html
http://www-ee.stanford.edu/~hellman/publications/28.pdf
http://www-ee.stanford.edu/~hellman/publications/28.pdf
https://link.springer.com/article/10.1007/BF02113297
http://www.ams.org/leavingmsn?url=http://dx.doi.org/10.2307/2006496
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139165464
http://link.springer.com/chapter/10.1007/3-540-69053-0_18
http://www.shoup.net/papers/dlbounds1.pdf
http://www.shoup.net/papers/dlbounds1.pdf
http://dspace.mit.edu/handle/1721.1/38881
http://www.ams.org/journals/mcom/2011-80-273/S0025-5718-10-02356-2/
http://www.ams.org/journals/mcom/2011-80-273/S0025-5718-10-02356-2/
https://dx.doi.org/10.1090/S0025-5718-99-01141-2
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/home.html

MIT OpenCourseWare
https://ocw.mit.edu

18.783 Elliptic Curves
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

	
	Generic algorithms for the discrete logarithm problem
	Linear search
	Baby-steps giant-steps
	The Pohlig-Hellman algorithm
	Complexity analysis
	Randomized algorithms for the discrete logarithm problem
	The birthday paradox
	Random walks on a graph

	Pollard-rho Algorithm
	Floyd's cycle detection method
	The method of distinguished points
	Current ECDLP records
	A generic lower bound for the discrete logarithm problem

