
18.783 Elliptic Curves Spring 2019
Lecture #11 03/13/2019

11 Index calculus, smooth numbers, and factoring integers

Having explored generic algorithms for the discrete logarithm problem in some detail, we
now consider a non-generic algorithm based on index calculus. 1 This algorithm depends
critically on the distribution of smooth numbers (integers with small prime factors), which
naturally leads to a discussion of two algorithms for factoring integers that also depend on
smooth numbers: the Pollard p − 1 method and the elliptic curve method (ECM).

11.1 Index calculus

Index calculus is a method for computing discrete logarithms in the multiplicative group of
a finite field. This might not seem directly relevant to the elliptic curve discrete logarithm
problem, but as we shall see when we discuss pairing-based cryptography, these two problems
are not completely unrelated. Moreover, index calculus based methods can be applied to the
discrete logarithm problem on elliptic curves over non-prime finite fields, as well as abelian
varieties of higher dimension (even over prime fields); see [7, 8, 9].2

We will restrict our attention to the simplest case, a finite field of prime order Fp ' Z/pZ,
and let us fix the set of integers in [0, N] with N = p − 1 as a set of coset representatives for
Z/pZ. Index calculus exploits the fact that we “lift” elements of Z/pZ to their representatives
in [0, N] ∩ Z.

Z Z/pZ ' Fq

←→
← →

The map Z → Z/pZ is the canonical quotient map given by reduction modulo p, and it is
a ring homomorphism. The “lifting” map from Z/pZ to Z is a section of the quotient map,
which is an injective map of sets but is not a ring homomorphism.3 Nevertheless, if we
lift elements from Z/pZ to Z, perform a sequence of ring operations in Z, and then reduce
modulo p, we will get the same result as if we had performed the entire sequence of ring
operations in Z/pZ ' Fp. A key feature of working in Z is that we can uniquely factor
integers in [1, N] into prime powers, something that makes no sense in the field Z/pZ where
every nonzero element is a unit and there are no nontrivial prime ideals.

Let us fix a generator α for (Z/pZ)× , and let β ∈ hαi be the element whose discrete
logarithm we wish to compute. For any integer e, we may consider the prime factorization
of the integer αeβ−1 ∈ [1, N] ⊆ Z; here we are implicitly lifting αeβ−1 ∈ Z/pZ to its unique
coset representative in [1, N], as we will continue to do without further comment. When
e = logα β this prime factorization will be trivial, but in general we will have Y

ei p = αeβ−1 , i

where the pi vary over primes and the exponents ei are nonnegative integers. Multiplying
both sides by β and taking discrete logarithms with respect to α yields X

ei logα pi + logα β = e,

1If α is a generator for F×
p p then the discrete logarithm of β ∈ F× with respect to α is also called the index

of β (with respect to α), whence the term index calculus.
2The two are related: if E is an elliptic curve over a finite field Fqn for some prime-power q, there is an

associated abelian variety of dimension n over Fq known as the Weil restriction of E.
3Indeed, there are no homomorphisms from rings of positive characteristic to rings of characteristic zero

(note that the zero ring has positive characteristic).

Lecture by Andrew Sutherland

which determines logα β as a linear expression in the discrete logarithms logα pi, where
logα pi denotes the discrete logarithm of the image of pi under the quotient map Z → Z/pZ.
This doesn’t immediately help us, since we don’t know the values of logα pi. However, if
we repeat this procedure using many di˙erent values of e, we may obtain a system of linear
equations that we can try to solve for logα β.

In order to make this feasible, we need to restrict the primes pi to lie in a reasonably
small set. We thus fix a smoothness bound, say B, and define the factor base

PB = {p : p ≤ B is prime} = {p1, p2, . . . , pb},

where b = π(B) is the number of primes up to B (of which there are approximately B/ log B).
Not all choices of e will yield an integer αeβ−1 ∈ [1, N] ⊆ Z that we can factor over our
factor base PB, in fact most will not. But some choices will work, and for those that do we
obtain a linear equation of the form

e1 logα p1 + e2 logα p2 + · · · + eb logα pb + logα β = e,

in which at most blg Nc of the ei are nonzero. We may not know any of the discrete
logarithms that appear in this relation, but we can view

e1x1 + e2x2 + · · = e · + ebxb + xb+1

as a linear equation in b + 1 variables x1, x2, . . . , xb+1 over the ring Z/NZ. This equation
has a solution, namely, xi = logα pi, for 1 ≤ i ≤ b, and xb+1 = logα β. If we collect b + 1
such equations by choosing random values of e and discarding those for which αeβ−1 is
not B-smooth, the resulting linear system may determine a unique value xb+1, the discrete
logarithm we wish to compute.

This system will typically be under-determined; indeed, many of the variables xi may
not appear in any of our relations. But it is quite likely that the value of xb+1, which is
present in every equation, will be uniquely determined. We will not attempt to prove this
(to give a rigorous proof one really needs more than b + 1 equations, say, b log b), but it is
empirically true.4 This suggests the following algorithm to compute logα β.

Algorithm 11.1 (Index calculus). Given β ∈ hαi = (Z/pZ)× , compute logα β as follows:

1. Pick a smoothness bound B, factor compute the factor base PB := {p1, . . . , pb} with
b := π(B), and let N := p − 1.

2. Generate b + 1 random relations Ri = (ei,1, ei,2, . . . , ei,b, 1, ei) by picking e ∈ [1, N] at
random and and attempting to factor αeβ−1 ∈ [1, N] over the factor base PB . Each Q ei,j successful factorization yields a relation Ri with ei = e and αei β−1 = pj .

3. Attempt to solve the system defined by the relations R1, . . . , Rb+1 for xb+1 ∈ Z/NZ
using linear algebra (row reduce the corresponding matrix).

4. If xb+1 = logα β is uniquely determined, return this value, otherwise go to step 2.

It remains to determine the choice of B in step 1, but let us first make the following remarks.

Remark 11.2. It is not actually necessary to start over from scratch when xb+1 is not
uniquely determined, typically adding just a few more relations will be enough.

4When considering potential attacks on a cryptographic system, one should always be willing to make
any reasonable heuristic assumption that helps the attacker.

18.783 Spring 2019, Lecture #11, Page 2

Remark 11.3. As noted above, the relations R1, . . . , Rb+1 will very sparse (at most blg Nc+
1 nonzero coeÿcients in each), which can speed up the linear algebra step significantly.

Remark 11.4. While solving the system R1, . . . , Rb+1 we are likely to encounter non-
invertible elements of Z/NZ (for example, 2 is never invertible, since N = p − 1 is even).
Whenever this happens we can use a GCD computation to obtain a non-trivial factorization
N = N1N2 with N1 and N2 relatively prime. We then proceed to work in Z/N1Z × Z/N2Z,
using the CRT to recover the value of xb+1 in Z/NZ (recurse as necessary).

Remark 11.5. Solving the system of relations will determine not only xb+1 = logα β, but
also many xi = logα pi for pi ∈ PB, which do note depend on β. If we are computing discrete
logarithms for many di˙erent β with respect to the same base α, after the first computation
the number of relations we need is just one more than the number of xi = logα pi that
have yet to be determined. If we are computing discrete logarithms for Ω(b) values of β, we
expect to compute just O(1) relations per discrete logarithm, on average.

An integer whose prime factors are all bounded by B is said to be B-smooth. A large
value of B will make it more likely that αeβ−1 is B-smooth, but it also makes it more diÿcult
to determine whether this is in fact the case, since we need to determine all he prime factors
of αeβ−1 up to B. We want to balance the cost of smoothness testing against the number
of smoothness tests we expect to need in order to get b + 1 relations (note that b depends
on B). Let us suppose for the moment that the cost of the linear algebra step is negligible
by comparison (which turns out to be the case, at least in terms of time complexity). If
we choose e ∈ [1, N] uniformly at random then αe , and therefore αeβ−1 , will be uniformly
distributed over (Z/pZ)× , uniquely represented by the set of integers in [1, N]. To determine
the optimal value of B, we need to know the probability that a random integer in [1, N] is
B-smooth.

11.2 The Canfield-Erdös-Pomerance Theorem

For positive real numbers x and y, let ψ(x, y) count the y-smooth integers in [1, x]. The
1 probability that a random integer m ∈ [1, x] is y-smooth is then approximately ψ(x, y). x

We want our smoothness bound y to vary as a function of x, so it is standard to define

log x
u :=

log y

and replace y by x1/u.

Theorem 11.6 (Canfield-Erd®s-Pomerance). The asymptotic bound

1 1/u) = u −u+o(u) ψ(x, x
x

holds uniformly as u, x →∞, provided that u < (1 − �) log x/ log log x for some � > 0.

For a proof on this result along with many other interesting facts about smooth numbers,
we recommend the survey article by Granville [12].

18.783 Spring 2019, Lecture #11, Page 3

11.3 Optimizing the smoothness bound

Let us assume that generating relations in step 2 dominates the overall complexity of Al-
gorithm 11.1, and for the moment suppose that we simply use trial-division to attempt to
factor αeβ−1 over PB (we will see a more eÿcient method for smoothness testing shortly).
The expected running time of Algorithm 11.1 is then approximately

u (b + 1) · u · b · M(log N), (1)

where u = log N/ log B. The four factors in (1) are:

• b + 1: the number of relations Ri that we need;

• uu: the expected number of random exponents e we need to try in order to obtain a
B-smooth integer m := αeβ−1 ∈ [1, N];

• b: the number of trial divisions to test whether m is B-smooth (and factor it if it is);

• M(log N): the time for each trial division.

We have b = π(B) ∼ B/ log B, and if we ignore logarithmic factors we can replace both b+1
and b by B and drop the M(log N) factor. We wish to choose u to minimize the quantity

u = N2/u u B2 u u , (2)

where we have used Bu = N to eliminate B. Taking logarithms, it suÿces to minimize

f(u) = log(N2/uu u) =
2
log N + u log u,

u

so we want to consider solutions to

f 0(u) = −
2 2
2 log N + + log u + 1 = 0.
u uN

2 Ignoring the asymptotically negligible terms 1 and uN , we would like to pick u so that

u 2 log u ≈ 2 log N.

For p
u = 2 log N/ log log N, (3)

we have � �
4 log N 1

u 2 log u = · log 2 + (log log N − log log log N) = 2 log N + o(log N),
log log N 2

as desired. The choice of u in (3) implies that we should use the smoothness bound � �
1

= N1/u B = exp log N �
u � p 1

= exp log N log log N
2

= LN [1/2, 1/2].

18.783 Spring 2019, Lecture #11, Page 4

Here we have used the asymptotic notation

LN [α, c] := exp((c + o(1))(log N)α(log log N)1−α),

which is commonly used to denote complexity bounds of this form. Note that

LN [0, c] = exp((c + o(1) log log N) = (log N)c+o(1)

is polynomial in log N , whereas

LN [1, c] = exp((c + o(1)) log N) = N c+o(1)

is exponential in log N . For 0 < α < 1 the bound LN [α, c] is subexponential (in log N).
u We also have u = exp(u log u) = LN [1/2, 1], thus the total expected running time is

u B2 u = LN [1/2, 1/2]
2 · LN [1/2, 1] = LN [1/2, 2].

The cost of the linear algebra step is certainly no worse than Oe(b3), which is Oe(B3), In our
subexponential notation this is LN [1/2, 3/2], which is dominated by the bound above, so our
assumption that the cost of generating relations dominates the running time is justified. In
fact, if we take advantage of the sparseness of the system noted in Remark 11.3, the cost of
the linear algebra step can be bounded by Oe(b2). However, in large computations the linear
algebra step is often a limiting factor in practice because it is memory intensive and not as
easy to parallelize as relation finding.

√
Remark 11.7. As noted earlier, if we are computing many (say at least LN [1/2, 2/2])
discrete logarithms with respect to the same base α, we just need O(1) relations per β, on

u average. In this case we should choose B = N1/u to√minimize Buu rather than B2u . This
yields an average expected running time of LN [1/2, 2] per discrete logarithm.

A simple version of Algorithm 11.1 using trial-division for smoothness testing is imple-
mented in this Sage worksheet.

11.4 Improvements

Using the elliptic curve factorization method (ECM) described in the next section, the cost
of testing and factoring B-smooth integers can be made subexponential in B and polynomial

u in log N . This e˙ectively changes B2u in (2) to Buu , and the optimal smoothness bound
√ becomes B = LN [1/2, 1/ 2], yielding a heuristic expected running time of

√
LN [1/2, 2].

There is a batch smoothness testing algorithm due to Bernstein [3] that for a suÿciently
large set of integers yields an average time per integer that is actually polynomial in log N ,
but this does not change the complexity in a way that is visible in our LN [α, c] notation.

Using more advanced techniques, analogous to those used in the number field sieve for
factoring integers, one can achieve a heuristic expected running time of the form

LN [1/3, c]

for computing discrete logarithms in F× (again using an index calculus approach); see [11]. p

18.783 Spring 2019, Lecture #11, Page 5

https://cocalc.com/share/6c380724-2efb-4b0c-9b19-3a7f107ce7e7/18.783%20Lecture%2011%20Index%20calculus.sagews?viewer=share

In finite fields of small characteristic Fpn ' Fp[x]/(f(x)), one uses the function field
sieve, where now the factor base consists of low degree polynomials in Fp[x] that represent
elements of Fn when reduced modulo f(x). This also yields an LN [1/3, c] bound (with a p
smaller value of c). Under heuristic assumptions, such a bound holds for all finite fields [16].

But this is far from the end of the story. In 2013 Antoine Joux announced an index
calculus approach for finite fields of the form F k with q ≈ k that heuristically achieves q
an LN [1/4 + o(1), c] time complexity [13]. Shortly thereafter a recursive variant of Joux’s
approach was used to obtain a heuristically quasi-polynomial-time complexity of kO(log k),
which in terms of N = qk is bounded by LN [�, c] for every �, c > 0. At first glance the
assumption q ≈ k might seem restrictive, but even for finite fields of the form F2k with k
prime it suÿces to compute discrete logarithms in the extension field F2kr with r = dlg ke,
which for q = 2r ≈ k has the desired form Fqk . Even though we are now working in a larger
field, the kO(log k) bound is still quasi-polynomial in the input size k, and as a function of
N = 2k it is dominated by LN [�, c] for all �, c > 0, hence quasi-polynomial-time.

The current record for computing discrete logarithms in finite fields of characteristic 2
was set in the field F29234 in 2014 (not long after Joux’s result was announced), using about
45 core-years of computation time [10]. The record for prime degree finite fields was set
the same year in the field F21279 , using less than 4 core years [14]. By contrast the largest
discrete logarithm computation over a “safe” prime field Fp (one in which (p−1)/2 is prime),
was set in 2016 using a 768-bit prime p and took approximately 6600 core years [15].

The recent dramatic improvements in computing discrete logarithms in finite fields of
small characteristic has e˙ectively eliminated interest in pairing-based elliptic curve cryp-
tography over such fields. As discussed in Lecture 1, in pairing-based cryptography one
needs to consider the diÿculty of the discrete logarithm problem both in the group of ra-
tional points on an elliptic curve over a finite field Fq and in the multiplicative group of a
low degree extension of Fq. None of these results have had any impact on the prospects of
pairing-based cryptography over prime fields.5

11.5 The Pollard p − 1 method

In 1974, Pollard introduced a Monte Carlo algorithm for factoring integers [19] that works
astonishingly well when the integer p − 1 is extremely smooth (but in the worst case is no
better than trial division). The algorithm takes as input an integer N to be factored and a
smoothness bound B.

Algorithm 11.8 (Pollard p − 1 factorization).
Input: An integer N to be factored and a smoothness bound B.
Output: A proper divisor of N or failure.

1. Pick a random integer a ∈ [1, N − 1].

2. If d = gcd(a, N) is not 1 then return d.

3. Set b = a and for each prime ̀ ≤ B:

a. Set b = b ̀
e
mod N , where ̀ e−1 < N ≤ `e .

b. If d = gcd(b − 1, N) is not 1 then return d if d < N or failure if d = N .

4. Return failure
5Quantum computers are a potential threat, but this is a separate issue; the attacks based on Joux’s

breakthrough all use classical models of computation.

18.783 Spring 2019, Lecture #11, Page 6

Rather than using a fixed bound B, we could simply let the algorithm keep running
through primes ̀ until it either succeeds or fails in step 3b. But in practice one typically
uses a very small smoothness bound B and switches to a di˙erent algorithm if the p − 1
method fails. In any case, it is convenient to have B fixed for the purposes of analysis.

Example 11.9. Let N = 899 and suppose we pick a = 2 in step 1. Then d = 1 in step 2,
and the table below illustrates the situation at the end of each iteration of step 3.

` e b d
2 10 605 1
3 7 690 1
5 5 683 31

The algorithm finds the factor 31 of N = 29 ·31 when ̀ = 5 because #(Z/31)× = 30 = 2 ·3 ·5
is 5-smooth but #(Z/29)× = 28 = 22 ·7 is not: if we put m = 210 ·37 ·55 then m is divisible by
#(Z/31Z)× but not by #(Z/29Z)× , and it follows that we always have am ≡ 1 mod 31, but
for most choices of a we will have am 6≡ 1 mod 29, leading to d = gcd(am − 1, 29 · 31) = 31.

If we had instead used N = 31 · 41 we would have found d = N when ̀ = 5 and failed
because #(Z/41Z)× = 40 = 23 · 5 has the same largest prime factor as #(Z/31Z)× .

Theorem 11.10. Let p and q be prime divisors of N , and let ̀ p and ̀ q be the largest prime
divisors of p − 1 and q − 1, respectively. If ̀ p ≤ B and ̀ p < ` q then Algorithm 11.8 succeeds

1 with probability at least 1 − ` q
.

Proof. If a ≡ 0 mod p then the algorithm succeeds in step 2, so we may assume a ⊥ p. When Q
m `e the algorithm reaches ̀ = ` p in step 3 we have b = a , where m = is a multiple of `≤` p

m p − 1. By Fermat’s little theorem, b = a ≡ 1 mod p and therefore p divides b − 1. But ̀ q
1 does not divide m, so with probability at least 1 − ` q

we have b 6≡ 1 mod q, in which case
1 < gcd(b − 1, N) < N in step 3b and the algorithm succeeds.

For almost all values of N , Algorithm 11.8 will succeed with very high probability given √
the smoothness bound B = N . But if N is a prime power, or if the largest prime dividing
p − 1 is the same for every prime factor p of N it will still fail, no matter what value of a is
chosen. In the best case, the algorithm can succeed very quickly. As demonstrated in this
Sage worksheet, if N = p1p2 where p1 and p2 are 512-bit primes, if p1 − 1 happens to be
very smooth then Alogorithm 11.8 can factor N within a few seconds; no other algorithm
currently known can factor this integer N in a reasonable amount of time. However, in the √
worst-case the running time is O(π(B) M(log N) log N), and with B = N the complexity is √
O(N M(log N)), the same as trial division (and as noted above, success is not guaranteed).

But rather than focusing on factoring a single integer N , let us consider a slightly di˙erent
problem. Suppose we have a large set of composite integers (for example, a list of RSA
moduli6), and our goal is to factor any one of them. How long would this take if we simply
applied the p − 1 method to each integer one-by-one?

For a given value of B, the expected time for the algorithm to achieve a success is

O(π(B) M(log N) log N)
. (4)

Pr[success]

6In fact, many RSA key generation algorithms incorporate specific measures to prevent the type of attack
we consider here. In any case, current RSA keys are necessarily large enough (2048 bits) to be quite safe √
from the LN [1/2, 2] algorithm considered here.

18.783 Spring 2019, Lecture #11, Page 7

https://cocalc.com/share/6c380724-2efb-4b0c-9b19-3a7f107ce7e7/18.783%20Lecture%2011%20Pollard%20p-1.sagews?viewer=share

Let p be a prime factor of N . The algorithm is very likely to succeed if p − 1 is B-smooth,
since it is very unlikely that all the other prime factors q of N have q − 1 with exactly the
same largest prime factor as p − 1. Let us heuristically assume that integers of the form
p − 1 are at least as likely to be smooth as a random integer of similar size.

By the Canfield-Pomerance-Erd®s Theorem, the probability that a random integer less
−u+o(u) than N is B-smooth is u , where u = log N/ log B. If we ignore the o(u) error term

and factors that are polynomial in log N (which will be bounded by o(u) in any case), we
may simplify (4) to

N1/u u u . (5) p
This is minimized (up to asymptotically negligible factors) for u = 2 log N/ log log N , thus
we should use the smoothness bound � √ p �

= N1/u √
B = exp (1/ 2 + o(1)) log N log log N = LN [1/2, 1/ 2],

where the o(1) term incorporates the o(u) error term and the factors polynomial in log N
√ u that we have ignored. We also have u = exp(u log u) = LN [1/2, 1/ 2], and the total expected

running time is therefore

N1/u u √ √ √
u = LN [1/2, 1/ 2]LN [1/2, 1/ 2] = LN [1/2, 2].

Thus even though the p − 1 method has an exponential worst-case running time, if we apply
it to a sequence of random integers we achieve a (heuristically) subexponential running time.
But this isn’t much help if there is a particular integer N that we want to factor.

11.6 The elliptic curve method for factoring integers (ECM)

Using elliptic curves we can e˙ectively achieve the randomized scenario envisioned above
while keeping N fixed. The Pollard p − 1 algorithm works in the group (Z/NZ)× , but
we can also think of it as perfoming simultaneous computations in the groups (Z/pZ)× for
primes p|N ; it succeeds when one of these groups has smooth order. If we instead take an

2 3 elliptic curve E/Q defined by an integral equation y = x + Ax + B that we can reduce
modulo N , we have an opportunity to factor N whenever E(Fp) has smooth order, for some
prime p|N . The key di˙erence is that we can vary the curve E while keeping N fixed; we
get a new group E(Fp) each time we change E. This is the basis of the elliptic curve method
(ECM), introduced by Hendrik Lenstra [17] in the mid 1980s.

The algorithm is essentially the same as Pollard’s p − 1 method. Rather than exponen-
tiating a random element of (Z/NZ)× to a large smooth power and hoping that it becomes
the identity modulo some prime p dividing N , we instead multiply a random point on an
elliptic curve by a large smooth scalar and hope that it becomes the identity modulo some
prime p dividing N . If this doesn’t happen we switch to a di˙erent curve and try again.

As in Pollard’s p − 1 algorithm, we don’t know the primes p dividing N a priori, so
we work modulo N and use GCD’s to find a factor of N . If P is a point on E/Q and
mP = (Qx : Qy : Qz) is a multiple of P that reduces to 0 modulo a prime p dividing N ,
then p divides gcd(Qz, N). Notice that even though we are working with points on an elliptic
curve over Q, we only care about their reductions modulo primes dividing N , so we can keep
the coordinates reduced modulo N throughout the algorithm.

In order to get a proper divisor of N we also need gcd(Qz, N) =6 N . This is very
likely to be the case, so long as P is not a torsion point of E(Q); if P is a torsion point

18.783 Spring 2019, Lecture #11, Page 8

it will have the same order modulo every prime divisor of N and we will always have
gcd(Qz, N) = N whenever the gcd is non-trivial. Given an elliptic curve E/Q, it is generally
hard to find non-torsion points in E(Q), in fact there may not be any.7 Instead we pick

2 3 integers x0, y0, a ∈ [1, N − 1] and let b = y0 − x0 − ax0. This guarantees that P = (x0, y0)
2 3 is a rational point on the elliptic curve E/Q defined by y = x + ax + b. The probability

that P is a torsion point is negligible.8 We now give the algorithm, which takes not only an
integer N and a smoothness bound B, but also a bound M on the largest prime factor of
N that we seek to find (as discussed below, this is useful for smoothness testing).

Algorithm 11.11 (ECM).
Input: An integer N to be factored, a smoothness bound B, and a prime bound M .
Output: A proper divisor of N or failure.

2 3 1. Pick random integers a, x0, y0 ∈ [0, N − 1] and set b = y − x − ax0. 0 0

2. If d = gcd(4a3 + 27b2, N) is not 1 then return d if d < N or failure if d = N .

3. Let Q = P = (x0 : y0 : 1).

4. For all primes ̀ < B:
√

a. Set Q = `eQ mod N , where ̀ e−1 ≤ (M + 1)2 < `e .
b. If d = gcd(Qz, N) is not 1 then return d if d < N or failure if d = N .

5. Return failure.

The scalar multiplication in step 4a is performed using projective coordinates, and while
it is defined in terms of the group operation in E(Q), we only keep track of the coordinates
of Q modulo N ; the projective coordinates are integers and there are no inversions involved,
so all of the arithmetic can be performed in Z/NZ.

Theorem 11.12. Assume 4a3+27b2 is not divisible by N , and let P1 and P2 be the reductions
of P modulo distinct primes p1 and p2 dividing N , with p1 ≤ M . Suppose |P1| is ̀ 1-smooth
and |P2| is not, for some prime ̀ 1 ≤ B. Then Algorithm 11.11 succeeds.

Proof. When the algorithm reaches step 4b with ` = ` 1 we must have Q = mP , where Q √ √
m = `e is a multiple of |P1|, since |P1| is ̀ 1-smooth and |P1| ≤ (p1+1)2 ≤ (M +1)2 . `≤` 1

So Q ≡ 0 mod p1, but Q 6≡ 0 mod p2, since |P2| is not ̀ 1-smooth. Therefore Qz is divisible
by p1 but not p2 and a proper factor d = gcd(Qz, N) of N will be found in step 4b.

If the algorithm fails, we can simply try again. Heuristically, provided N is not a
perfect power and has a prime factor p ≤ M , we will eventually succeed. Factoring perfect
powers can be eÿciently handled by the algorithm developed in Problem 1 of Problem Set 3.
Provided N is not a prime power and has a prime factor p < M , Algorithm 11.11 is very
likely to succeed whenever it picks a triple (x0, y0, a) that yields an elliptic curve whose
reduction modulo p has B-smooth order. So the number of times we expect to run the
algorithm before we succeed depends on the probability that #E(Fp) is B-smooth.

The integer #E(Fp) must lie in the Hasse interval [p + 1 − 2
√
p, p + 1 + 2

√
p], which is

unfortunately too narrow for us to apply any theorems on the density of B-smooth integers
7There are standard parameterizations that are guaranteed to produce a curve E/Q with a known point

P ∈ E(Q) of infinite order; see [1], for example. Here we just generate random E and P at random.
8This follows (for example) from the Lutz–Nagell theorem [20, Theorem 8.7], which implies that if y0 is

2 3 3 3 nonzero then y0 must divide 4a + 27b2 = 4a + 27(x0 + ax0)
2 , which is extremely unlikely.

18.783 Spring 2019, Lecture #11, Page 9

(we cannot even prove that this interval contains any primes, and smooth numbers are much
rarer than primes). So to analyze the complexity of Algorithm 11.11 (and to optimize the
choice of B), we resort to the heuristic assumption that, at least when #E(Fp) lies in the
narrower interval [p + 1 −√

p + 1, p + 1 +
√
p], the probability the #E(Fp) is B-smooth is

comparable to the probability that a random integer in the interval [p, 2p] is B-smooth.9

One can prove that the probability that #E(Fp) lies in [p + 1 − √
p, p + 1 +

√
p] is

at least 1/2 (this is implied, asymptotically, by the Sato–Tate theorem), and further that
probability that #E(Fp) takes on any particular value in this interval is Ω(1/(

√
p log p)).

These facts are both proved in Lenstra’s paper [17], and we will be able to prove them
ourselves once we have covered the theory of complex multiplication. This means that we
can make our heuristic assumption independent of any facts about elliptic curves, we simply
need to assume that a random integer in the interval [p + 1 −√

p, p + 1 +
√
p] has roughly

the same probability of being B-smooth as a random integer in the interval [p, 2p].
Under our heuristic assumption, the analysis of the algorithm follows the analysis of

the Pollard p − 1 method. This algorithm takes O(π(B)(log M) M(log N)) time per elliptic
curve, and if N has a prime factor p ≤ M , it will need to try an average of O(uu) curves

√ before it finds a factor. As in §11.5, this implies that the optimal value of B is LM [1/2, 1/ 2], √
and with this value of B the expected time to factor N is LM [1/2, 2] M(log N). In general,
we may not know a bound M on the smallest prime factor p of N a priori, but if we simply
start with a small choice of M and periodically double it, we can achieve a running time of

√
Lp[1/2, 2] M(log N),

where p is the smallest prime factor of N .
A crucial point is that this running time depends almost entirely on p rather than N , a

property that distinguishes ECM from all other factorization algorithms with heuristically
subexponential running times. There are factorization algorithms such as the quadratic
sieve and the number field sieve that are heuristically faster when all of the prime factors of
N are large, but in practice one first uses ECM to look for any relatively small prime factors
before resorting to these heavyweight algorithms.

The fact that the complexity of ECM depends primarily on the size of the smallest prime
divisor of N also makes it a very good algorithm for smoothness testing. Testing whether a
given integer N is LN [1/2, c]-smooth using ECM takes just h √ i �q p p �

LLN [1/2,c]
1/2, 2 ≈ exp 2 log(exp(c log N log log N) log log(exp(c log N log log N) �q � p

= exp 2c log N log log N(1/2 + o(1)) log log N � �
= exp (

√
c + o(1))(log N)

1/4(log log N)
3/4 � √ �

= LN 1/4, c

expected time, which is faster than any other method known.10

11.7 Eÿcient implementation

Algorithm 11.11 spends essentially all of its time performing elliptic curve scalar multiplica-
tions modulo N , so it is worth choosing the elliptic curve representation and the coordinate

9Asymptotically, this is the same as the probability that a random integer in [1, p] is B-smooth.
10As noted earlier, for batch smoothness testing, Bernstein’s algorithm [3] is faster.

18.783 Spring 2019, Lecture #11, Page 10

system to optimize this operation. Edwards curves, which we saw in Lecture 2, are an ex-
cellent choice; see [4] for a detailed discussion of how to eÿciently implement ECM using
Edwards curves. Another popular choice is Montgomery curves [18]; as explained in [5],
there is a close relationship between Montgomery curves and Edwards curves. These were
originally introduced specifically for the purpose of optimizing the elliptic curve factorization
method but are now used in many other applications of elliptic curves, including primality
proving and cryptography.

11.8 Montgomery Curves

A Montgomery curve is an elliptic curve defined by an equation of the form

3 By2 = x + Ax2 + x, (6)

where B 6= 0 and A 6= ±2. To convert this to Weierstrass form, let u = Bx and w = B2y.
Substituting x = u/B and y = w/B2 in (6) and multiplying by B3 yields

2 3 + B2 w = u + ABu2 u,

which is in the form of a general Weierstrass equation. To obtain a short Weierstrass
equation, we assume our base field has characteristic di˙erent from 3 and complete the cube

AB by letting v = u + . We then obtain 3

2 3 w = u + ABu2 + B2 u � �3 � �2 � �
AB AB AB 2 w = v − + AB v − + B2 v −
3 3 3

2 A2B2 A3B3 2A2B2 A3B3 AB3

w = v 3 − ABv2 + v − + ABv2 − v + + B2 v −
3 27 3 9 3 � � � �

A2B2 2A3B3
2 3 AB3

w = v + B2 − v + − .
3 27 3

In order to check that (6) actually defines an elliptic curve, we should verify that it
is nonsingular. We could do these using the coeÿcients of the curve in short Weierstrass
form, but it is easier to do this directly. We need to determine whether there are any points

3 2 (x : y : z) on the projective curve By2z = x + Ax2z + xz at which all three partial
derivatives vanish. For any such point we must have

∂ ∂ ∂ 2 : 3x 2 + 2Axz + z = 0, : 2Byz = 0, : By2 = Ax2 + 2xz = 0.
∂x ∂y ∂z

We assume we are working in a field of characteristic not equal to 2 or 3. Suppose that
∂ ∂ y 6= 0. Then the equation for ∂y gives z = 0, and from ∂x , we get x = 0. But this is a

∂ contradiction, since the equation for is not satisfied. On the other hand, if y = 0, then ∂z
A2 −A 2 − A2 2 2 A2 z = x 6= 0. We have 3x x + 4 x = 0, and therefore 3 − 3 = 0, since x =6 0. 2 4

Thus A2 = 4, but we require A =6 ±2 in (6), so this cannot be the case.

11.9 Montgomery curve group law

The transformation of a Montgomery curve to Weierstrass form is a linear transformation
that preserves the symmetry about the y-axis, so the geometric view of the group law remains

18.783 Spring 2019, Lecture #11, Page 11

⎪
⎪

the same: three points on a line sum to zero, which is is the point at infinity. To add points
P1 and P2 we construct the line P1P2 (using a tangent when P1 = P2), find the third
intersection point with the curve, and then reflect over the y-axis to obtain P3 = P1 + P2.
In this section we compute explicit algebraic formulas for this operation, just as we did for
curves in Weierstrass form earlier in the course.

The cases involving inverses and the point at infinity are easy (we have P − P = 0 and
P + 0 = 0 + P = P), so let P1 = (x1, y1) and P2 = (x2, y2) be two (possibly equal but not
opposite) aÿne points on the curve whose sum P3 = (x3, y3) we wish to compute. We first
compute the slope m of the line P1P2. ⎧ y1 − y2 ⎪ if P1 =6 P2, ⎨x1 − x2

m = (7) ⎪
2 3x1 + 2Ax1 + 1 ⎩ if P1 = P2.

2By1

Now we want to intersect the line y−y1 = m(x−x1) with the curve equation (6). Substituting
m(x − x1) + y1 in for y, we get

3 B (m(x − x1) + y1)
2 = x + Ax2 + x. (8)

We know x1, x2, and x3 are the three roots of this cubic equation, since P1, P2, and −P3
2 all lie on the curve and the line P1P2. Thus the coeÿcient of x in (8) must be equal to

x1 + x2 + x3. We get a Bm2x2 term on the left side of (8) and an Ax2 term on the right,
so we have x1 + x2 + x3 = Bm2 − A. Solving for x3 and using the equation for P1P2 to
compute −y3, we obtain

x3 = Bm2 − (A + x1 + x2) (9)
y3 = m(x1 − x3) − y1.

These formulas closely resemble the formulas for a curve in short Weierstrass form, but
with an extra B and A in the equation for x3. However, they have the key property that they
allow us to completely eliminate the y-coordinate from consideration. This is useful because
the y-coordinate is not needed in many applications; we not need to know the y-coordinate
of a point P in order to determine whether mP = 0 for a given integer m. This makes the
y-coordinate superfluous in applications such as ECM and ECPP.

Let us consider the doubling case first. Plugging in the expression for m given by (7) in
3 the case P1 = P2 = (x1, y1) into (9) and remembering the curve equation By2 = x +Ax2 +x,

2 (3x1 + 2Ax1 + 1)2

x3 = B − (A + 2x1) 2 4B2y1
2 3 (3x1 + 2Ax1 + 1)2 − 4(A + 2x1)(x1 + Ax21 + x1)

= 3 4(x1 + Ax21 + x1)
2 (x1 − 1)2

= , 2 4x1(x1 + Ax1 + 1)

thus we can derive x3 from x1 without needing to know y1. In projective coordinates,
2 2 (x1 − z1)

2

= 2 2 4x1z1(x1 + Ax1z1 + z) 1
2 2 (x − z1)

2
1 = .

4x1z1((x1 − z1)2 + (A + 2)x1z1)

18.783 Spring 2019, Lecture #11, Page 12

Thus we may write

x3 = (x1 + z1)
2(x1 − z1)

2

4x1z1 = (x1 + z1)
2 − (x1 − z1)

2 (10)

z3 = 4x1z1((x1 − z1)
2 + C(4x1z1)).

where C = (A + 2)/4. Notice that these formulas do not involve y1 and they only require 5
multiplications: 3 to compute x3, none to compute 4x1z1, and 2 more to compute z3. One
of these is a multiplication by the constant C, which may take negligible time if we can
arrange for C to be small.

Now let us do the same thing for addition:

(y1 − y2)2

x3 = B − (A + x1 + x2)
(x1 − x2)2

x3(x1 − x2)
2 = B(y1 − y2)

2 − (A + x1 + x2)(x1 − x2)
2

= By1
2 + By2

2 − 2By1y2 − (A + x1 + x2)(x1 − x2)
2

= −2By1y2 + 2x1x2(A + x1 + x2) + x1 + x2

2 2 = −2By1Y2 + x2(x1 + Ax1 + 1) + x1(x2 + Ax2 + 1)
x2 x1

= −2By1y2 + By1
2 + By2

2 x1 x2

(x2y1 − x1y2)2

= B (11)
x1x2

This gives us an equation for x3 in P3 = P1 + P2, but it still involves the y-coordinates of
P1 and P2. To address this, let us also compute the x-coordinate x4 of P4 = P1 − P2. The
hard work is already done, we just need to negate y2 in the equation for x3. Thus

(x2y1 + x1y2)2

x4(x1 − x2)
2 = B . (12)

x1x2

Multiplying equations (11) and (12) yields

2 2 2 2 2 2 B2(x2y1 − x1y2)
2 (x2By1

2 − x1By2
2)2

x3x4(x1 − x2)
4 = = 2 2 2 2 x x) 1x2 1x2 � �2 2 3 2 3 x2(x1 + Ax1

2 + x1) − x1(x2 + Ax22 + x2)
= 2 2 x1x2 � �2 2 2 = x2(x1 + Ax1 + 1) − x1(x2 + Ax2 + 1)

2 2 = (x2x1 − x1x2 + x2 − x1)
2

= ((x1 − x2)(x1x2 − 1))2 .

Canceling a factor of (x1 − x2)2 from both sides gives

x3x4(x1 − x2)
2 = (x1x2 − 1)2 , (13)

which does not involve y1 or y2 (but does require us to know x4).

18.783 Spring 2019, Lecture #11, Page 13

We now switch to projective coordinates: � �2 � �2 x3 x4 x1 x2 x1x2 · − = − 1
z3 z4 z1 z2 z1z2

x3 z4 (x1x2 − z1z2)2

= · ,
z3 x4 (x1z2 − x2z1)2

which yields

x3 = z4 [(x1 − z1)(x2 + z2) + (x1 + z1)(x2 − z2)]
2 (14)

z3 = x4 [(x1 − z1)(x2 + z2) − (x1 + z1)(x2 − z2)]
2

These formulas require just 6 multiplications, but they assume that we already know the
x-coordinate x4/z4 of P1 − P2. But if we structure the double-and-add algorithm for scalar
multiplication appropriately, we can use the formulas in (10) and (14) to eÿciently compute
the x-coordinate of the scalar multiple mP using what is known as a Montgomery ladder. We
assume points are represented simply as projective pairs (x : z) that omit the y-coordinate.

Algorithm 11.13 (Montgomery Ladder).
Input: A point P = (x1 : z1) on a Montgomery curve and a positive integer m.
Output: The point mP = (xm : zm). Pk 1. Let m = i=0 mi2

i be the binary representation of m.

2. Set Q[0] = P and compute Q[1] = 2P (note that P = Q[1] − Q[0]).

3. For i = k − 1 down to 0:

a. Q[1 − mi] ← Q[1] + Q[0] (Using P = Q[1] − Q[0])
b. Q[mi] ← 2Q[0]

4. Return Q[0].

The Montgomery ladder is the usual double-and-add algorithm, augmented to ensure
that Q[1] − Q[0] = P is invariant throughout. A nice feature of the algorithm is that
every iteration of the loop is essentially the same: a Montgomery addition followed by a
Montgomery doubling. This makes the algorithm resistant to side-channel attacks. If we
assume that the input point P is in aÿne form (x1 : 1), then z1 = z4 = 1 in the addition
formulas in (14), which saves one multiplication. This yields a total cost of (10+o(1)) log2 m
field multiplications for Algorithm 11.13, or only (9 + o(1)) log2 m if the constant C is small
enough to make the multiplications by C negligible. This is faster than using Edwards’
curves (at least in a side-channel resistant configuration where one is not using optimized
doubling formulas).

An implementation of Algorithms 11.11 and 11.13 can be found in this Sage Worksheet.

11.10 Torsion on a Montgomery Curve

Every Montgomery point has (0, 0) as a rational point of order 2 (as with curves in short
Weierstrass form, the points of order 2 are precisely those with y-coordinate 0). This tells us
that not every elliptic curve can be put in Montgomery form, since not every elliptic curve
has a rational point of order 2. In fact, more is true.

18.783 Spring 2019, Lecture #11, Page 14

https://cocalc.com/share/6c380724-2efb-4b0c-9b19-3a7f107ce7e7/18.783%20Lecture%2011%20Montgomery%20ECM.sagews?viewer=share

3 Theorem 11.14. The Montgomery curve E/k defined by By2 = x + Ax2 + x has either
three rational points of order 2 or a rational point of order 4 (possibly both).

3 Proof. The cubic x + Ax2 + x has either one or three rational roots, and these roots are
distinct, since the curve is nonsingular. If it has three roots, then there are three rational
points of the form (x, 0), all of which have order 2.

2 If it has only one root, then x + Ax +1 has no roots, so A2 − 4 = (A + 2)(A − 2) is not
a quadratic residue. Therefore one of A +2 and A − 2 is a quadratic residue (and the other

A−2 is not), so either A+2 or is a quadratic residue. We will use this fact to find a point B B
of order 4 that doubles to the 2-torsion point (0, 0), which is the unique point on the curve
whose x-coordinate is 0.

To get x3 = 0 in the doubling formulas (10), we must have x1 = ±z1, equivalently,
x1/z1 = ±1. Plugging this into the curve equation, we seek a solution to either By2 = A +2

A−2 or By2 = A − 2. But we have already shown that either A+2 or is a quadratic residue, B B
so one of these equations has a solution and there is a rational point of order 4.

Thus, like Edwards curves, the torsion subgroup of a Montgomery curve always has
order divisible by 4. For the purposes of the ECM algorithm this is actually a feature,
since it slightly increases the likelihood that the group order will be smooth. In fact, most
implementations use specific parameterizations to generate curves E/Q that are guaranteed
to have even larger torsion subgroups, typically isomorphic to either Z/12Z or Z/2Z⊕Z/8Z;
see [1, 4, 18] for examples (the Z/12Z case is illustrated in the example implementation).

The converse of Theorem 11.14 does not hold; there are elliptic curves with three rational
points of order 2 that cannot be put in Montgomery form. However, every elliptic curve
with a rational point of order 4 can be put in Montgomery form.

2 3 Theorem 11.15. Let E : y = x + ax + b be an elliptic curve over a field k. Suppose E(k)
2 contains a point P of order 4, and let 2P = (x0, 0). Then 3x0 + a is a square in k and E p

3 2 can be put in Montgomery form E0 : By2 = x + Ax2 + x by setting B = 1/ 3x0 + a and
A = 3x0B; the map (x, y) 7→ (B(x − x0), By) defines an isomorphism from E to E0 .

Proof. Let P = (u, v). From the elliptic curve doubling formula, we have � �2 2 3u + a
x0 = − 2u

2v
2 3 (9u4 + 6au + a2) − 8u(u + au + b)

=
4(u3 + au + b)

u4 − 2au2 − 8bu + a2

= .
4(u3 + au + b)

Therefore u satisfies

2 u 4 − 4x0u 3 − 2au 2 − (4ax0 + 8b)u − 4bx0 + a = 0.

3 3 We have 02 = x0 + ax0 + b, so we can replace b by −x0 − ax0, yielding

3 4 2 2 u 4 − 4x0u 3 − 2au 2 + (8x0 + 4ax0)u + 4x0 + 4ax0 + a = 0.

The LHS is a perfect square. If we put u = z + x0 we can write this as

2 (z 2 − (3x0 + a))2 = 0.

18.783 Spring 2019, Lecture #11, Page 15

2 2 Now z = u − x0 ∈ k, so z2 − (3x0 + a) must have a root in k. Thus 3x0 + a is a square,
3 as claimed, and it is nonzero because x0 is not a repeated root of x0 + ax0 + b. Now let p

2 3 B = 1/ 3x0 + a and A = 3x0B be as in the theorem and let E0 : By2 = x + Ax2 + x.
To check that (x, y) 7→ (B(x − x0), By) defines an isomorphism from E → E0 , we plug

(B(x − x0), By) into the equation for E0 and note that

B(By)2 = (B(x − x0))
3 + A(B(x − x0))

2 + B(x − x0)
2 2 3 2 B2 y = B2(x 3 − 3x0x 2 + 3x0x − x0) + 3x0B

2(x 2 − 2x0x + x0) + x − x0

2 2 3 2 y = x 3 − 3x0x + 2x0 + (x − x0)(3x0 + a)
2 3 3 y = x + ax − x0 − ax0

y 2 = x 3 + ax + b.

This also shows that E0 is not singular, since E is not (so we must have A2 6= 4).

References

[1] A.O.L. Atkin and F. Morain, Finding suitable curves for the elliptic curve method of
factorization, Mathematics of Computation 60 (1992), 399–405.

[2] R. Barbulescu, P. Gaudry, A. Joux, E. Thomé, A heuristic quasi-polynomial algorithm
for discrete logarithm in finite fields of small characteristic, in Advances in Cryptology
— EUROCRYPT 2014, LNCS 8441 (2014), Springer, 1–16.

[3] D.J. Bernstein, How to find smooth parts of integers, unpublished preprint, 2004.

[4] D.J. Bernstein, P. Birkner, T. Lange, and C. Peters, ECM using Edwards curves, Math-
ematics of Computation 82 (2013), 1139–1179.

[5] D.J. Bernstein and T. Lange, Montgomery curves and the Montgomery ladder , Cyrptol-
ogy ePrint Archive, Report 2017/293, 2017.

[6] E. Canfield, P. Erd®s, and C. Pomerance, On a problem of Oppenheim concerning “fac-
torisatio numerorum”, Journal of Number Theory 17 (1983), 1–28.

[7] A. Enge, Discrete logarithms in curves over finite fields, Finite fields and applications,
Contemporary Mathematics 461, AMS, 2008, 119–139.

[8] A. Enge and P. Gaudry, A general framework for subexponential discrete logarithm algo-
rithms, Acta Arithmetica 102 (2002), 83–103.

[9] P. Gaudry, Index calculus for abelian varieties of small dimension and the elliptic curve
discrete logarithm problem, J. Symbolic Computation 44 (2009), 1690–1702.

[10] R. Granger, T. Kleinjung, J. Zumbragel, Discrete logarithms in GF (29234), NMBRTHY
listserv posting, January 31, 2014.

[11] D.M. Gordon, Discrete Logarithms in GF (p) using the number field sieve, SIAM J.
Discrete Math 6 (1993), 124–138.

[12] A. Granville, Smooth numbers, computational number theory and beyond , in Algorith-
mic Number Theory: Lattices, Number Fields, Curves and Cryptography (MSRI Work-
shop), Mathematical Sciences Research Institute Publications 44, 2008, 267–324.

18.783 Spring 2019, Lecture #11, Page 16

http://www.ams.org/journals/mcom/1993-60-201/S0025-5718-1993-1140645-1/home.html
http://www.ams.org/journals/mcom/1993-60-201/S0025-5718-1993-1140645-1/home.html
http://link.springer.com/chapter/10.1007%2F978-3-642-55220-5_1
http://link.springer.com/chapter/10.1007%2F978-3-642-55220-5_1
http://cr.yp.to/papers.html#smoothparts
http://www.ams.org/journals/mcom/2013-82-282/S0025-5718-2012-02633-0/home.html
https://eprint.iacr.org/2017/293.pdf
http://www.sciencedirect.com/science/article/pii/0022314X83900021
http://www.sciencedirect.com/science/article/pii/0022314X83900021
http://www.ams.org/books/conm/461/
http://journals.impan.pl/cgi-bin/doi?aa102-1-6
http://journals.impan.pl/cgi-bin/doi?aa102-1-6
http://www.sciencedirect.com/science/article/pii/S074771710800182X
http://www.sciencedirect.com/science/article/pii/S074771710800182X
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;9aa2b043.1401
http://epubs.siam.org/doi/abs/10.1137/0406010
http://library.msri.org/books/Book44/files/09andrew.pdf

[13] A. Joux, A new index calculus algorithm with complexity L(1/4 + o(1)) in very small
characteristic, in Selected Areas in Cryptography — SAC 2013, LNCS 8282 (2014),
Springer, 355–379.

[14] T. Kleinjung, Discrete logarithms in GF(2ˆ1279), NMBRTHRY listerv posting, October 17,
2014.

[15] T. Kleinjung, C. Diem, A.K. Lenstra, C. Priplata, C. Stahlke, Discrete logarithms in
GF (p) — 768 bits, NMBRTHRY listserv posting, June 16, 2016.

[16] A. Joux, R. Lercier, N. Smart, and F. Vercauteren, The number field sieve in the medium prime
case, Advances in Cryptology —CRYPTO 2006, LNCS 4117 (2006), Springer, 326–344.

[17] H. Lenstra, Factoring integers with elliptic curves , Annals of Mathematics 126 (1987),
649–673

[18] P.L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization,
Mathematics of Computation 48 (1987), 243–264.

[19] J.M. Pollard, Theorems of Factorization and Primality Testing , Proceedings of the
Cambridge Philosophical Society 76 (1974): 521–528

[20] L.C. Washington, Elliptic Curves: Number Theory and Cryptography , second edition,
Chapman and Hall/CRC, 2008.

[21] P. Zimmermann and B. Dodson, 20 years of ECM , Algorithmic Number Theory 7th
International Symposium (ANTS VII), LNCS 4076 (2006), 525–542.

18.783 Spring 2019, Lecture #11, Page 17

http://link.springer.com.libproxy.mit.edu/chapter/10.1007%2F978-3-662-43414-7_18
http://link.springer.com.libproxy.mit.edu/chapter/10.1007%2F978-3-662-43414-7_18
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;256db68e.1410
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;a0c66b63.1606
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;a0c66b63.1606
http://link.springer.com/chapter/10.1007%2F11818175_19
http://link.springer.com/chapter/10.1007%2F11818175_19
https://openaccess.leidenuniv.nl/bitstream/1887/3826/1/346_086.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/home.html
http://dx.doi.org/10.1017/S0305004100049252
http://link.springer.com/chapter/10.1007%2F11792086_37
https://www.taylorfrancis.com/books/9780429140808

MIT OpenCourseWare
https://ocw.mit.edu

18.783 Elliptic Curves
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

	
	Index calculus, smooth numbers, and factoring integers
	Index calculus
	The Canfield-Erdös-Pomerance Theorem
	Optimizing the smoothness bound
	Improvements
	The Pollard p-1 method
	The elliptic curve method for factoring integers (ECM)
	Efficient implementation
	Montgomery Curves
	Montgomery curve group law
	Torsion on a Montgomery Curve

