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17 Complex multiplication 

Over the course of the last two lectures we established a one-to-one correspondence between 
lattices L ⊆ C (up to homethety) and elliptic curves E/C (up to isomorphism), given by 
the map that sends each lattice L to the elliptic curve 

2 EL : y = 4x 3 − g2(L)x − g3(L), 

together with an explicit isomorphism 

Φ: C/L → EL(C) ( 
(℘(z), ℘0(z)) z 6∈ L; 

z 7→ 
0 z ∈ L, 

where ℘(z) is the Weierstrass ℘-function for the lattice L. 
To complete our understanding of the categorical equivalence of complex tori and elliptic 

curves, we want to relate morphisms of complex tori to isogenies of elliptic curves. In 
particular, we want to be able to explicitly understand how to relate the endomorphism ring 
of a complex torus to the endomorphism ring of the corresponding elliptic curve. 

A complex torus C/L is both a complex manifold and a group in which the group oper-
ations are defined by holomorphic maps (this makes it a complex Lie group). A morphism 
in the category of complex tori must respect both structures: we require morphisms of com-
plex tori to be holomorphic maps that are also group homomorphisms (just as isogenies are 
morphisms of algebraic varieties that are also homomorphisms of abelian groups). 

17.1 Morphisms of complex tori 

We have not formally defined what it means to be a holomorphic map of complex manifolds 
(or even a complex manifold), but for maps ϕ : C/L1 → C/L2 of complex tori it simply 
means that ϕ is induced by a holomorphic function f : C → C that makes the following 
diagram commute: 

C 
f → C ← 

←
 

←
 

π1 π2 →
 

→
 

ϕ C/L1 

← → C/L2 

where π1 and π2 are quotient maps.1 

Each α ∈ C determines a holomorphic multiplication-by-α map z 7→ αz that is an 
endomorphism of C (as a group under addition). Whenever αL1 ⊆ L2 this induces a group 
homomorphism 

ϕα : C/L1 → C/L2 

z + L1 7→ αz + L2 

that is also a holomorphic map of complex manifolds. 
Remarkably, every morphism of complex tori arises in this way. In fact, every holomor-

phic map that fixes zero arises in this way; this is analogous to the fact that every morphism 
of elliptic curves that fixes zero is automatically a group homomorphism. 

1We should note that in general holomorphic maps of complex manifolds are defined locally on charts 
and need not be induced by a single global map; complex tori are a particularly simple special case. 
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Theorem 17.1. Let ϕ : C/L1 → C/L2 be a holomorphic map with ϕ(0) = 0. There is a 
unique α ∈ C for which ϕ = ϕα. 

Proof. Let πi : C → C/Li be quotient maps and let f : C → C be a holomorphic function 
for which ϕ(π1(z)) = π2(f(z)). For all z ∈ C and ω ∈ L1 we have 

π2(f(z + ω)) = ϕ(π1(z + ω)) = ϕ(π1(z)) = π2(f(z)), 

thus f(z +ω)−f(z) ∈ ker π2 = L2. For each ω ∈ L the function gω(z) := f(z +ω)−f(z) is a 
continuous map from the connected set C to a discrete set L2; its image must be connected 

0 and therefore consists of a single point. It follows that gω(z) is constant and gω(z) = 0, which 
implies that f 0(z + ω) = f 0(z) for all z ∈ C and ω ∈ L1. Thus f 0(z) is periodic with respect 
to L1 and is therefore a holomorphic elliptic function, hence constant (see Remark 15.10). 

Thus f(z) = αz + β, for some α, β ∈ C. For all ω ∈ L1 we have 

π2(f(ω)) = ϕ(π1(ω)) = ϕ(0) = 0. 

Taking ω = 0 shows that β = f(0) ∈ L2, and we then have αL1 ⊆ L2. For all z ∈ C we 
have ϕ(π1(z)) = π2(f(z) = π2(αz), thus ϕ = ϕα. The value of α is unique: if ϕ = ϕγ for 
some γ ∈ C then (α − γ)z ∈ L2 for all z ∈ C, which implies α − γ = ((α − γ)z)0 = 0 (as 
argued above), and therefore γ = α. 

As noted above, a morphism ϕ : C/L1 → C/L2 of complex tori is a holomorphic map 
that is also a group homomorphism; in particular, ϕ(0) = 0, so Theorem 17.1 applies and 
we have the following corollary. 

Corollary 17.2. For any two lattices L1, L2 ⊆ C the map � � 
α ∈ C : αL1 ⊆ L2 → morphisms ϕ : C/L1 → C/L2 

α 7→ ϕα 

is an isomorphism of additive groups. If L1 = L2 it is an isomorphism of commutative rings. 

The set {α ∈ C : αL1 ⊆ L2} on the LHS contains 0 and is closed under addition and 
negation and is thus an additive subgroup of C, and if L1 = L2 it is also closed under 
multiplication and forms a subring of C. The set of morphisms on the RHS, which we could 
have written as Hom(C/L1, C/L2), is an additive group under pointwise addition, and when 
L1 = L2 it is the endomorphism ring End(C/L1) with multiplication given by composition. 

Proof. Theorem 17.1 gives us a bijection of sets; we just need to check that it is a group/ring 
homomorphism. For i = 1, 2, let πi : C → C/Li be the projection maps as above. If 
αL1 ⊆ L2 and βL1 ⊆ L2 then for all z ∈ C we have 

ϕα+β (π1(z)) = π2((α+β)z) = π2(αz)+π2(βz) = ϕα(π1(z))+ϕβ(π1(z)) = (ϕα +ϕβ)(π1(z)), 

thus the map α 7→ ϕα defines a homomorphism of additive groups. If L1 = L2 and we put 
π = π1 = π2 then we also have 

ϕαβ (π(z)) = π(αβz) = ϕα(π(βz)) = ϕα(ϕβ (π(z)) = (ϕαϕβ )(π(z)), 

which shows that α 7→ ϕα is a ring homomorphism. 

We will henceforth identify Hom(C/L1, C/L2) with {α ∈ C : αL1 ⊆ L2} and ϕα with 
α; we thus view any α for which αL1 ⊆ L2 both as a complex number and a morphism 
C/L1 → C/L2. We will also freely use z ∈ C to denote its image under the quotient map 
π1 : C → C/L1 and use αz to denote ϕα(π1(z) = π2(αz) whenever the context is clear. 
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17.2 Morphisms of complex tori and isogenies of elliptic curves over C 

Let L1, L2 ⊆ C be lattices. In order to complete the proof that complex tori and el-
liptic curves over C are equivalent categories, we need to give an explicit isomorphism 
Hom(C/L1, C/L2) ' Hom(EL1 , EL2 ). To do this we need to first prove a lemma about 
fields of elliptic functions. 

Recall that the set of all elliptic functions for a given lattice L forms a field C(L) that 
includes the constant functions C ⊆ C(L). We now show that the extension C(L)/C is 
generated by the Weierstrass ℘-function and its derivative, and the subfield C(L)even of 
even functions (the f ∈ C(L) for which f(−z) = f(z)) is generated by the ℘-function alone. 

Lemma 17.3. Let L ⊆ C be a lattice. The following hold: 

(i) C(L) = C(℘, ℘0); 
(ii) C(L)even = C(℘); 
(iii) if f ∈ C(L)even is holomorphic on C − L then f ∈ C[℘]. 

Proof. Every f ∈ C(L) can be written as the sum of an even function and an odd function: 

f(z) + f(−z) f(z) − f(−z) 
f(z) = + . 

2 2 

Any odd function g ∈ C(L) can be written as 

g(z) 
g(z) = ℘0(z), 

℘0(z) 

where g(z)/℘0(z) is an even function; thus (i) follows from (ii). 
We now show that (ii) follows from (iii). Let f ∈ C(L)even and let m be the number of 

poles of f that lie in F0 − {0}, where F is the standard fundamental parallelogram for L. 
The integer m is a nonnegative and bounded by the order of f . If m > 0 then f(z) has a 
pole at some nonzero w ∈ F0, say of order n. Now consider the even elliptic function 

g(z) := (℘(z) − ℘(w))n , 

which is holomorphic on C − L and has a zero of order at least n at w. The function 
gf ∈ C(L)even is holomorphic at w, and every pole of gf in C − L must be a pole of f , 
so it has strictly fewer than m poles in F0 − {0}. Repeating this process m times yields a 
polynomial Q ∈ C[x] such that Q(℘)f ∈ C(L)even is holomorphic on C − L; If we assume 
(iii), then Q(℘)f = P (℘) for some P ∈ C[x] and f = P (℘)/Q(℘) ∈ C(℘), implying (ii). 

Let f ∈ C(L)even We now prove (iii). be nonzero and holomorphic on C − L. If the 
order of f is zero then f is constant (by Liouville’s theorem, since an elliptic function is 
necessarily bounded). Otherwise f must have a pole at 0 and its Laurent series expansion 
at 0 has the form 

∞X 
f(z) = a2kz 2k , 

k=−n 

with a−2n 6= 0, where 2n is order of f (which must be even). The function 

f(z) − a−2n℘
n(z) 

is an even elliptic function holomorphic on C − L of order at most 2(n − 1). Repeating this 
at most n times yields a polynomial P ∈ C[x] such that f − P (℘) ∈ C, and (iii) follows. 
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Theorem 17.4. For i = 1, 2 let Li ⊆ C be a lattice, let Ei := ELi be the corresponding 
elliptic curve, define ℘i(z) := ℘(z; Li), and let Φi : C/Li → Ei(C) be the isomorphism that 
sends z 6∈ Li to (℘i(z), ℘

0 
i(z)) and z ∈ Li to 0. For any α ∈ C, the following are equivalent: 

(1) αL1 ⊆ L2; 

(2) ℘2(αz) = u(℘1(z))/v(℘1(z)) for some polynomials u, v ∈ C[x]; 
(3) There is a unique φα ∈ Hom(E1, E2) such that the following diagram commutes: 

α φα 

C/L1 Φ1 E1(C) 

C/L2 Φ2 E2(C) 

For every morphism φ ∈ Hom(E1, E2) there is a unique α = αφ satisfying (1)–(3). The maps 
φ → αφ and α 7→ φα define inverse isomorphisms of Hom(E1, E2) and {α ∈ C : αL1 ⊆ L2}. 

Proof. Properties (1)–(3) clearly hold for α = 0, so we assume α 6= 0. 
(1) ⇒ (2): Let ω ∈ L1. We have ℘2(α(z + ω)) = ℘2(αz + αω) = ℘2(αz). Thus ℘2(αz) 

is periodic with respect to L1, and it is meromorphic, so it is an elliptic function for L1. It 
is an even function, so it is a rational function u(℘1(z))/v(℘1(z)) of ℘1(z), by Lemma 17.3. 

0 0 (2) ⇒ (3): Let ℘2(αz) = u(℘1(z))/v(℘1(z)), let s := (u v − v u) and t := αv2 , and define � � 
u(x) s(x) 

φα := , y . 
v(x) t(x) 

Then � �0 1 1 u(℘1(z)) s(℘1(z)) 
℘0 2(αz) = (℘2(αz))

0 = = ℘0 1(z), α α v(℘1(z)) t(℘1(z)) 

and we have � � 
u(℘1(z)) s(℘1(z)) 

φα(Φ1(z)) = φα(℘1(z), ℘1 
0 (z) = , ℘1 

0 (z) = (℘2(αz), ℘2 
0 (αz)) = Φ2(αz), 

v(℘1(z)) t(℘1(z)) 

so the diagram in (3) commutes. If φ ∈ Hom(E1, E2) also satisfies φ(Φ1(z)) = Φ2(αz) then 

(φ − φα)(Φ1(z)) = φ(Φ1(z)) − φα(Φ1(z)) = Φ2(αz) − Φ2(αz) = 0, 

and φ = φα; thus φα is the only element of Hom(E1, E2) that makes the diagram commute. 
(3) ⇒ (1): For all ω ∈ L1 we have Φ2(αω) = φα(Φ1(ω)) = φα(0) = 0, which implies 

αω ∈ L2, thus αL1 ⊆ L2. 
For any φ ∈ Hom(E1, E2), the map Φ−1 ◦ φ ◦ Φ1 is an element of Hom(C/L1, C/L2) and 2 

is therefore induced by the multiplication-by-α map α → αz for a unique α = αφ satisfying 
αL1 ⊆ L2, by Corollary 17.2. The maps α 7→ φα and φ 7→ αφ are thus inverse bijections. 

We now show that the map Ψ: Hom(E1, E2) → {α ∈ C : αL2 ⊆ L2} defined by φ 7→ αφ 

is a group homomorphism. We have Ψ(0) = 0, and for all φ1, φ2 ∈ Hom(E1, E2) 

Φ−1 Φ−1 Ψ(φ1 + φ2) = ◦ (φ1 + φ2) ◦ Φ1 = ◦ φ1 ◦ Φ1 +Φ−1 ◦ φ2 ◦ Φ1 = Ψ(φ1) + Ψ(φ2). 2 2 2 

Thus Ψ is a group homomorphism and therefore an isomorphism, since it is a bijection. 
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17.3 Endomorphism rings of complex tori and elliptic curves over C 

We now specialize to the case L = L2 = L1, and put E = EL, in which case the group 
{α ∈ C : αL ⊆ L} ' Hom(E,E) = End(E) is also a ring. 

Corollary 17.5. Let L ⊆ C be a lattice and let E := EL. The maps α 7→ φα and φ → αφ 

are inverse ring isomorphisms between {α ∈ C : αL ⊆ L} and End(E), the involution φ 7→ φ̂ 

of End(E) corresponds to complex conjugation α 7→ ᾱ in {α ∈ C : αL ⊆ L}, and we have 
T(α) := α + ᾱ = tr φα and N(α) := αᾱ = deg φα = deg u = deg v + 1, where u, v ∈ C[x] are 
as in (2) of Theorem 17.4. 

Proof. Let Φ: C/L → E(C) and Ψ: End(E) → {α ∈ C : αL ⊆ L} be as in Theorem 17.4 
and its proof (so Ψ(φ) = αφ); they are both group isomorphisms. For φ1, φ2 ∈ End(E) we 
have 

Ψ(φ1φ2) = Φ−1 ◦ (φ1 ◦ φ2) ◦ Φ = (Φ−1 ◦ φ1 ◦ Φ) ◦ (Φ−1 ◦ φ2 ◦ Φ) = Ψ(φ1)Ψ(φ2), 

thus Ψ is a ring homomorphism and therefore a ring isomorphism, since it is a bijection. 
For any φ ∈ End(E), the complex number α := αφ satisfies the characteristic equation 

x 2 − (tr φ)x + deg φ = 0, 

which has integer coeÿcients and discriminant tr(φ)2 −4 deg(φ) ≤ 0. Thus α ∈ Z, or α is an 
algebraic integer in an imaginary quadratic field, and in either case its complex conjugate ᾱ 

ˆ ˆ satisfies the same quadratic equation and we have ¯ = deg φ = φφ, which implies ¯ = φ αα α 
({α ∈ C : αL ⊆ L} ' End(E) has no zero divisors, so the cancellation law applies), and we 
have T(α) = α + ᾱ = φ + φ̂ = tr φ and N(α) = αᾱ = φφ̂ = deg φ. 

Finally, for any α ∈ {α ∈ C : αL ⊆ L} we can apply (2) in Theorem 17.4 to write 
v(℘(z))℘(αz) = u(℘(z)) for some u, v ∈ C[x]. The functions u(℘(z)) and v(℘(z)) have poles 
of order 2 deg u and 2 deg v at 0, respectively, while ℘(αz) has a pole of order 2 at 0, so we 
must have deg u = deg v + 1 and 

deg φ = max(deg u, deg v) = deg u = deg v + 1, � � 
u(x) s(x) where φ = φα := y is as in the proof of Theorem 17.4. v(x) , t(x) 

Remark 17.6. Theorem 17.4 and Corollary 17.5 explain the origin of the term complex 
multiplication (CM). When End(EL) is bigger than Z the extra endomorphisms in End(EL) 
all correspond to multiplication-by-α maps in End(C/L), for some α ∈ C − R that is an 
algebraic integer in an imaginary quadratic field. 

Corollary 17.7. Let E be an elliptic curve defined over C. Then End(E) is commutative 
and therefore isomorphic to either Z or an order in an imaginary quadratic field. 

Proof. Let L be the lattice corresponding to E. The ring End(E) ' {α ∈ C : αL ⊆ L} is 
clearly commutative, and therefore not an order in a quaternion algebra. The result then 
follows from our classification of endomorphism rings of elliptic curves in Lecture 13. 

Remark 17.8. Corollary 17.7 applies to elliptic curves over Q, number fields, or any field 
that can be embedded in C. It can be extended to all fields of characteristic 0 via the 
Lefschetz principle; see [1, Thm. VI.6.1]. 
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17.4 Elliptic curves with a given endomorphism ring 

We have shown that for any lattice L ⊆ C we have ring isomorphisms 

End(EL) ' {α ∈ C : αL ⊆ L} ' End(C/L). (1) 

As noted above, we have been treating the isomorphism on the left as an equality, and it 
will be convenient to do the same for the isomorphism on the right. The endomorphism 
algebra End0(EL) is isomorphic to either Q or an imaginary quadratic field, so we can 
always embed End0(EL) in C. Once we have done this, provided that we regard End(EL) as 
a subring of End0(EL) (via the canonical injection φ 7→ φ ⊗ 1), we actually have an equality 
End(EL) = {α ∈ C : αL ⊆ L}; moreover, when End(C/L) is an imaginary quadratic 
order O, we can choose the embedding of End0(EL) into C so that each multiplication-by-α 
endomorphism of C/L is identified with φα ∈ End(EL) (as opposed to φ̂α). This is known as 
the normalized identification of End(EL) with End(C/L) = O, which we henceforth assume. 

We now want to focus on the CM case, where End(EL) is an order O in an imaginary 
quadratic field K. The order O is a lattice, and we would like to understand how the lattices 
L and O are related. In particular, for which lattices L do we have End(EL) = O? 

An obvious candidate is L = O. If α ∈ End(EO), then αO ⊆ O and therefore α ∈ O, 
since the ring O contains 1. Conversely, if α ∈ O, then αO ⊆ O, since O is closed under 
multiplication, and therefore α ∈ End(EO); thus End(EO) = O. 

The same holds for any lattice homothetic to O. Indeed, the set {α ∈ C : αL ⊆ L} does 
not change if we replace L with L0 = λL for any λ ∈ C× , so we are really only interested in 
lattices up to homethety (and elliptic curves up to isomorphism). The question now before 
us is this: are there any lattices L not homothetic to O for which we have End(EL) = O? 

Given that we are only considering lattices up to homethety, we may assume without 
loss of generality that L = [1, τ ], and we can always write O = [1, ω] for some imaginary 
quadratic integer ω. If End(EL) = O, then we must have ω · 1 = ω ∈ L, so ω = m + nτ , 
for some m, n ∈ Z. Thus nL = [n, ω − m] = [n, ω], which means that L is homothetic 
to a sublattice of O (of index n). This sublattice must be closed under multiplication by 
O, which implies that L is homothetic to an O-ideal (recall that an O-ideal is an additive 
subgroup of O closed under multiplication by O, equivalently, any O-submodule of O). 

But the situation is a bit more complicated than it appears. While every lattice L for 
which End(EL) = O is an O-ideal, the converse does not hold (unless O is the maximal 
order OK ). If we start with an arbitrary O-ideal L, it is clear that the set 

O(L) := {α ∈ C : αL ⊆ L} = {α ∈ K : αL ⊆ L} 

is an order in K: note that O ⊆ O(L) = End(EL), since the O-ideal L is closed under 
multiplication by O, and this implies that End0(EL) = K. But it is not necessarily true 
that O(L) is equal to O; if O 6= OK we can always find an O-ideal L for which O(L) strictly 
contains O (see Problem Set 9). This motivates the following definition. 

Definition 17.9. Let O be an order in an imaginary quadratic field K, and let L be an 
O-ideal. We say that L is a proper O-ideal if O(L) = O. 

Given that we are only interested in lattices up to homethety, we shall regard two O-
ideals as equivalent if they are homothetic as lattices. A homethety L0 = λL between lattices 
that are O-ideals can always be written with λ = a/b for some a, b ∈ O. To see this, note 
that if L = [ω1, ω2] then we can take α = λω1 ∈ O and β = ω1. Thus homothetic O-ideals L 
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and L0 always satisfy an equation αL = βL0 for some α, β ∈ O. This motivates the following 
definition. 

Definition 17.10. Let O be an order in an imaginary quadratic field K. Two O-ideals a 
and b are said to be equivalent if they are homothetic as lattices; equivalently, αa = βb for 
some nonzero α, β ∈ O; we can also write this as (α)a = (β)b, where (α) and (β) denote 
principal ideals and (α)a and (β)b are products of ideals. 

Recall that the product of two O-ideals a and b is the ideal generated by all products 
ab with a ∈ a and b ∈ b, and that ideal multiplication is commutative and associative. It is 
enough to consider products of generators, so if a = [a1, a2] and b = [b1, b2], then ab is the 
ideal generated by the four elements a1b1, a1b2, a2b1, a2b2. Since ab is an additive subgroup 
of O, it is necessarily a free Z-module of rank 2 and can be written as a lattice [c1, c2], where 
c1 and c2 are O-linear combinations of a1b1, a1b2, a2b1, a2b2. Note that ideal multiplication 
respects equivalence: 

αa = βb and γc = δd =⇒ αγac = βδcd. 

Definition 17.11. Let O be an order in an imaginary quadratic field. The ideal class group 
cl(O) is the multiplicative group of equivalence classes of proper O-ideals. 

We should note that it is not clear a priori that cl(O) is actually a group; it is clearly 
closed under an associative multiplication and contains an identity element (the class of 
principal ideals), but it is not obvious that every element has an inverse. We will give an 
explicit proof of this in the next lecture (see Problem Set 9 for an alternative proof that also 
shows that cl(O) is finite). But even without knowing that cl(O) is actually a group, our 
discussion above makes the following proposition clear. 

Theorem 17.12. Let O be an order in an imaginary quadratic field. There is a one-to-
one correspondence between elements of the ideal class group cl(O) and homethety classes of 
lattices L ⊆ C for which End(EL) ' O. 
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