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18 The CM torsor 

Over the course of the last three lectures we have established an equivalence of categories 
between complex tori C/L and elliptic curves E/C: 

∼ {lattices L ⊆ C}/∼ −→ {elliptic curves E/C}/' 

2 L 7−→ EL : y = 4x 3 − g2(L)x − g3(L) 

j(L) = j(EL) 

in which homothetic lattices correspond to isomorphic elliptic curves, and we have estab-
lished ring isomorphisms 

End(C/L) ' O(L) ' End(EL) 

where the ring 
O(L) := {α ∈ C : αL ⊆ L} 

is necessarily equal to Z or an order O in an imaginary quadratic field. In the latter case, 
which we will assume throughout this lecture, the elliptic curve EL is said to have complex 
multiplication (CM) by O, and the lattice L is necessarily homothetic to an O-ideal. 

If we fix the order O, the O-ideals L for which End(EL) ' O are precisely those for 
which O(L) = O; in the previous lecture we defined such O-ideals to be proper. Note that 
O ⊆ O(L) always holds, since L is an O-ideal, but in general O(L) be be larger than O. 

The sets 
{L ⊆ C : O(L) = O}/∼ ←→ {E/C : End(E) = O}/' 

are both in bijection with the ideal class group 

cl(O) := {proper O-ideals a}/∼ 

where the equivalence relation on proper O-ideals is defined by 

a ∼ b ⇐⇒ αa = βb for some nonzero α, β ∈ O, 

and the group operation is given by multiplying representative ideals. As noted in the 
previous lecture it is not immediately obvious that cl(O) is a group (associativity is clear 
but the existence of inverses is not); one of our first goals is to prove this. 

Remark 18.1. Recall that that an order in a Q-algebra K of dimension r is a subring 
of K that is also a free Z-module of rank r; see Definition 13.22. When K is an imaginary 
quadratic field embedded in the complex numbers, every order O in K is automatically a 
lattice in C, since in this case r = dim K = 2 and K is not contained in R. Not every lattice 
in C is an imaginary quadratic order, but every imaginary quadratic order O is a lattice in 
C (once we fix an embedding of its fraction field), as is every O-ideal (as a free Z-module 
an O-ideal must have the same rank as O because it is closed under multiplication by O). 
Notice that the equivalence relation we have defined on O-ideals coincides with our notion 
of homethety for lattices. 

Recalling that isomorphism classes of elliptic curves over an algebraically closed field are 
identified by their j-invariants, we now define the set 

EllO(C) = {j(E) : E is defined over C and End(E) = O}, 
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and we then have a bijection of sets 

∼ 
cl(O) −→ EllO(C) 

[a] 7−→ j(Ea) = j(a). 

As you will prove in Problem Set 9, the ideal class group cl(O) is finite, thus the set EllO(C) 
is finite. Its cardinality is the class number h(O) = #cl(O). Remarkably, not only are the 
sets cl(O) and EllO(C) in bijection, the set EllO(C) admits a group action by cl(O). In order 
to define this action, and to gain a better understanding of what it means for an O-ideal to 
be proper, we first introduce the notion of a fractional O-ideal. 

18.1 Fractional ideals 

Definition 18.2. Let O be an integral domain with fraction field K. For any λ ∈ K× 

1 and O-ideal a, the O-module b = λa := {λα : α ∈ a} is called a fractional O-ideal. 
Multiplication of fractional ideals b = λa and b0 = λa0 is defined in the obvious way: 

0 bb0 := (λλ0)aa , 

0 2 where aa0 is the product of the O-ideals a and a . 

Without loss of generality we can assume λ = 1/β for some β ∈ O (if λ = α/β, replace a 
with αa), and in the case of interest to us, where K is a number field, we can assume λ = 1/b 
for some positive integer b (if f ∈ Z[x] is the minimal polynomial of β then f(β) − f(0) is 
divisible by β with (f(β) − f(0))/β = −f(0)/β ∈ O, and we can take b = ±f(0) > 0). 

Fractional O-ideals that lie in O are O-ideals, and every O-ideal is a fractional O-ideal. 
Note that O is itself an O-ideal, hence a fractional O-ideal, and it acts as the multiplicative 
identity with respect to multiplication of fractional O-ideals. Fractional O-ideals b for which 
there exists a fractional O-ideal b−1 such that bb−1 = O are said to be invertible. Not every 
fractional O-ideal is invertible (the zero ideal never is, and in general there may be nonzero 
fractional O-ideals that are not invertible). The set of invertible fractional O-ideals form a 
group under multiplication (this is sometimes called the ideal group of O, even though its 
elements are fractional O-ideals many of which are not O-ideals). 

18.2 Norms 

Let O be an order in an imaginary quadratic field K. We want to define the norm of 
fractional O-ideal b = λa, a rational number that is the product of the norms of λ and a. 
We first define the norm of a field element λ ∈ K× , and the norm of an O-ideal a. 

Definition 18.3. Let K/k be a field extension and let λ ∈ K× . The multiplication-by-λ 
map K → K is an invertible linear transformation Mλ ∈ GL(K) of K as a k-vector space. 
The (field) norm and trace of λ are defined by 

NK/kλ := det Mλ ∈ k× and TK/kλ := tr Mλ ∈ k. 

1Some authors define fractional O-ideals to be finitely generated O-submodules of K. Every finitely 
generated O-module in K is a fractional ideal under our definition, and when O is noetherian (which applies 
to orders in number fields), the definitions are equivalent. 

2One can also add fractional O-ideals via b + b0 := {b + b0 : b ∈ b, b0 ∈ b}, but we won’t need this. 
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One typically computes the norm and trace by fixing a basis for K as a k vector space and 
writing Mλ as a matrix using this basis, but the norm and trace of Mλ do not depend on 
the choice of basis. When K is a number field and k = Q it is common to simply write 
N := NK/Q and T := TK/Q when the number field K is clear from context, but note that 
for λ ∈ Q we have Nλ = λ[K:Q] and Tλ = [K : Q]λ, which depend on K, not just λ. 

When K ' End0(E) is an imaginary quadratic field, Definition 18.3 coincides with our 
definition of the (reduced) norm and trace of an element of End0(E) (see Definition 13.6). 
When K is an imaginary quadratic field embedded in C we have Nα = αᾱ and Tα = α + ᾱ, 
where ᾱ denotes complex conjugation (equivalently, the action of the unique non-trivial 
element of Gal(K/Q)). Thus in this setting the complex conjugate 

ᾱ = Tα − α = α̂ 

is the dual of α ∈ End0(E) = K ,→ C. 

Definition 18.4. Let O be an order in a number field K and let a be a nonzero O-ideal. 
The (absolute) norm of the ideal a is 

Na := [O : a] = #O/a ∈ Z>0. 

We can also interpret Na as the ratio of the volumes of fundamental parallelepipeds for a 
and O, viewed as lattices in the Q-vector space K. 

We now show that our two definitions of norm agree on principal O-ideals. 

Lemma 18.5. Let α be a nonzero element of an order O in a number field K. Then 

N(α) = |Nα|, 

where (α) denotes the principal O-ideal generated by α. 

Proof. The lemma follows from the fact that the determinant of Mα ∈ GL(K) ' GLn(Q) 
can be interpreted as the signed volume of the fundamental parallelepiped of the lattice 
(α) in the Q-vector space K ' Qn , where n = [K : Q] is the degree of K. Notice that 
N(α) = [O : (α)] = [O : αO] = [OK : αOK ] depends only on α and K, not the order O 
(N.B. this holds for principal ideals but not in general). 

Warning 18.6. Given that the field norm is multiplicative and that we can view the ideal 
norm as the absolute value of a determinant, it would be reasonable to expect the ideal 
norm to be multiplicative. This is not always true. As an example, consider the ideal 

2 a = [2, 2i] in the order O = [1, 2i], which has norm Na = [O : a] = 2. Then a = [4, 4i] and 

2 = 22 Na = 8 6 = (Na)2 . 

However, as we shall see, the ideal norm is multiplicative when a and b are both proper 
O-ideals, and when either a or b is a principal ideal. 

Corollary 18.7. Let O be an order in a number field, let α ∈ O be nonzero, and let a be a 
nonzero O-ideal. Then 

N(αa) = N(α)Na. 

Proof. N(αa) = [O : αa] = [O : a][a : αa] = [O : a][O : αO] = NaN(α) = N(α)Na. 
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This allows us to make the following definition. 

1 Definition 18.8. Let b = a be a nonzero fractional ideal in an order O of a number field, b 
with b ∈ Z>0 (as above, we can always write b this way). The (absolute) norm of b is 

Nb := 
Na ∈ Q× 

>0. Nb 

Corollary 18.7 ensures that this does not depend on the choice of b and a. 

When b ⊆ O we can take b = 1, in which case this agrees with Definition 18.4. 

18.3 Proper and invertible fractional ideals 

We now return to our original setting, where O is an order in an imaginary quadratic field. 
Extending our terminology for O-ideals, for any fractional O-ideal b we define 

O(b) := {α : αb ⊆ b}, 

and say that b is proper if O(b) = O. In this section we will show that b is proper if and 
only if it b is invertible (there is a fractional O-ideal b−1 for which bb−1 = O). Let us first 
note that for b = λa, whether b is proper or invertible depends only on the O-ideal a. 

Lemma 18.9. Let O be an order in an imaginary quadratic field, let a be a nonzero O-ideal, 
and let b = λa be a fractional O-ideal. Then a is proper if and only if b is proper, and a is 
invertible if and only if b is invertible. 

Proof. For the first statement, note that {α : αb ⊆ b} = {α : αλa ⊆ λa} = {α : αa ⊆ a}. 
−1 −1 For the second, if a is invertible then b−1 = λ−1a , and if b is invertible then a = λb−1 , 

−1 = aλb−1 since aa = bb−1 = O. 

We now prove that the invertible O-ideals are precisely the proper O-ideals and give an 
explicit formula for the inverse when it exists. Our proof follows the presentation in [1, §7]. 

Theorem 18.10. Let O be an order in an imaginary quadratic field and let a = [α, β] be 
an O-ideal. Then a is proper if and only if a is invertible. Whenever a is invertible we have 
aā = (Na), where ̄a = [ᾱ, β̄] and (Na) is the principal O-ideal generated by the integer Na; 

−1 1 the inverse of a is then the fractional O-ideal a = Na ā. 

Proof. If a is invertible, then for any γ ∈ C we have 

−1 γa ⊆ a =⇒ γaa −1 ⊆ aa =⇒ γO ⊆ O =⇒ γ ∈ O, 

so O(a) ⊆ O, and therefore a is a proper O-ideal, since we always have O ⊆ O(a). 
We now assume that a = [α, β] is a proper O-ideal and show that aā = (Na), which 

−1 1 2 implies a = ā. Let τ = β/α, so that a = α[1, τ ], and let ax + bx + c ∈ Z[x] be the Na 
minimal polynomial of τ made integral by clearing denominators, with a > 0 minimal. The 
fractional ideal [1, τ ] is homothetic to a, so O([1, τ ]) = O(a) = O, since a is proper. 

Let O = [1, ω]. Then ω ∈ [1, τ ] and ω = m + nτ for some m, n ∈ Z; after replacing ω 
with ω − m, we may assume ω = nτ . We also have ωτ ∈ [1, τ ], since [1, τ ] is an O-module, 
so nτ 2 ∈ [1, τ ], which implies that a|n, by the minimality of a (Gauss’s lemma implies that 

2 we must have {f ∈ Z[x] : f(τ) = 0} = (ax + bx + c)). We also have aτ [1, τ ] ⊆ [1, τ ] (since 
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aτ and aτ2 = −bτ − c lie in [1, τ ]), so aτ ∈ O([1, τ ]) = O = [1, nτ ], and we must have n = a 
and O = [1, aτ ]. Thus 

1 1 N(α) 
N(a) = [O : a] = [[1, aτ ] : α[1, τ ]] = [[1, aτ ] : α[1, aτ ]] = [O : αO] = . 

a a a 

We also have 
aā = α[1, τ ]¯ τ ] = N(α)[1, τ, ¯ τ ]. α[1, ¯ τ , τ ̄  

Using aτ 2 + bτ + c = 0, we see that τ + τ̄ = −b/a, and τ τ̄ = c/a. We then have 

N(α) 
aā = N(α)[1, τ, ¯ τ ] = τ , τ ̄ [a, aτ, −b, c] = Na[1, aτ ] = (Na)O = (Na) 

a 

as claimed, where we have used gcd(a, b, c) = 1 to get [a, aτ, −b, c] = [1, aτ ], and it follows 
that a−1 = N

1 
a ā. 

Corollary 18.11. The ideal class group cl(O) is the group of invertible fractional O-ideals 
modulo its subgroup of principal fractional O-ideals (in particular cl(O) is a group). 

Proof. Recall that cl(O) = {proper O-ideals}/∼, where ∼ denotes homethety. Let G be the 
group of invertible fractional O-ideals and H its subgroup of principal fractional O-ideals. 

1 Every invertible fractional O-ideal b = a is the product of an invertible principal frac-b 
tional O-ideal (1 ) and an invertible O-ideal a, by Lemma 18.9. It follows that G/H consists b 
of all cosets aH, where a is any invertible, equivalently, proper O-ideal (by Theorem 18.10). 
Every nonzero principal fractional O-ideal is invertible, since (α)−1 = (α−1), so H contains 
every nonzero principal fractional O-ideal and for any two proper/invertible O-ideals a, b 
we have a ∼ b if and only if aH = bH. It follows that cl(O) = G/H. 

Corollary 18.12. Let O be an order in an imaginary quadratic field and let a and b be 
invertible (equivalently, proper) fractional O-ideals. Then N(ab) = NaNb. 

1 1 0 N(a0b0) Proof. If a = a0 and b = b0 with a, b ∈ Z>0 and a , b0 ⊆ O then N(ab) = , so it is a b NaNb 
enough to consider the case where a and b are invertible O-ideals. We have 

(N(ab)) = abab = abab = aabb = (Na)(Nb), 

and it follows that N(ab) = NaNb, since Na, Nb, N(ab) ∈ Z>0. 

18.4 The action of the ideal class group on CM elliptic curves 

Let O be an order in an imaginary quadratic field. We are ready to define the action of 
cl(O) on EllO(C) = {j(E) : E/C with End(E) = O}, which we will do by defining an action 
of proper O-ideals on elliptic curves E/C with CM by O (up to isomorphism). 

Every E/C with End(E) = O is isomorphic to Eb, for some proper O-ideal b. For any 
proper O-ideal a we define the action of a on Eb via 

aEb = E −1b (1) a 

(we E −1b rather than Eab because ab ⊆ b but b ⊆ a−1b). The action of the equivalence a 

class [a] on the isomorphism class j(Eb), is then defined by 

[a]j(Eb) = j(E −1b), (2) a 
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which we can also write as 
[a]j(b) = j(a −1b), 

which does not depend on the choice of a and b. 
If a is a nonzero principal O-ideal, then the lattices b and a−1b are homothetic, and we 

have aEb ' Eb. Thus the identity element of cl(O) acts trivially on EllO(C). For any proper 
O-ideals a,b, and c we have 

a(bEc) = aEb−1c = Ea−1b−1c = E(ba)−1c = (ba)Ec = (ab)Ec. 

Thus we have a group action of cl(O) on EllO(C). 
For any proper O-ideals a and b, we have [a]j(b) = j(a−1b) = j(b) if and only if b is 

homothetic to a−1b, by Theorem 16.5, and in this case we have ab = λb for λ ∈ K× , and 
then a = λO is principal. This implies that the action of cl(O) is not only faithful (only the 
identity fixes every element), it is free (every stabilizer is trivial). 

The fact that the sets cl(O) and EllO(C) have the same cardinality implies that the 
action must also be transitive: if we fix any j0 ∈ EllO(C) the images [a]j0 of j0 under the 
action of each [a] ∈ cl(O) must all be distinct, otherwise the action would not be free; there 
are only #EllO(C) = #cl(O) possibilities, so the cl(O)-orbit of j0 is all of EllO(C). 

A group action that is both free and transitive is said to be regular. Equivalently, the 
action of a group G on a set X is regular if and only if for all x, y ∈ X there is a unique 
g ∈ G for which gx = y. In this situation the set X is said to be a a G-torsor (or principal 
homogeneous space) for G. We have thus shown that the set EllO(C) is a cl(O)-torsor. 

If we fix a particular element x of a G-torsor X, we can then view X as a group that 
is isomorphic to G under the map that sends y ∈ X to the unique element g ∈ G for 
which gx = y. Note that this involves an arbitrary choice of the identity element x; rather 
than thinking of elements of X as group elements, it is more appropriate to think of the 
“di˙erences” or “ratios” of elements of X as group elements. In the case of the cl(O)-torsor 
EllO(C) there is an obvious choice for the identity element: the isomorphism class j(EO). 
But when we reduce to a finite field Fq and work with the cl(O)-torsor EllO(Fq), as we shall 
soon do, we cannot readily distinguish the element of EllO(Fq) that corresponds to j(EO), 
and make an arbitrary choice. 

18.5 The CM action via isogenies 

To better understand the cl(O)-action on EllO(C) we now want to look at isogenies between 
elliptic curves with CM by O; but first let us consider the situation more generally. 

Let φ : E1 → E2 be an isogeny of elliptic curves over C, and let L1 and L2 be corre-
sponding lattices, so that E1 = EL1 and E2 = EL2 . By Theorem 17.4, there is a unique 
α = αφ with αL1 ⊆ L2 such that the following diagram commutes 

Φ1 Φ2 

C/L1 α C/L2 

E1(C) φ E2(C) . 

As we are only interested in lattices up to homethety and elliptic curves up to isomorphism, 
we can replace L1 with the homothetic lattice αL1 and E1 by an isomorphic elliptic curve so 
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that α = 1 and the isogeny φ is induced by the inclusion L1 ⊆ L2; note that this amounts to 
composing φ with an isomorphism and does not change its degree. Up to an isomorphism of 
elliptic curves and a homethety of lattices, every isogeny φ : E1 → E2 arises from an inclusion 
of lattices L1 ⊆ L2. In this situation it is clear what the kernel of φ is. By commutativity, 
since α = 1, the kernel of φ consists of the images Φ1(z) of points z ∈ C for which Φ2(z) = 0; 
these are precisely the z ∈ L2 (which includes L1 ⊆ L2 but may also include z ∈ L2 − L1, 
since L2 is a finer lattice). We have Φ1(z) = 0 if and only if z ∈ L1, and it follows that 

# ker φ = [L2 : L1]. 

We are in characteristic zero, so φ is automatically separable and deg φ = # ker φ = [L2 : L1]. 
The discussion above applies to any isogeny of elliptic curves over C; up to isomor-

phism they all arise from lattice inclusions; in particular, the inclusion nL ⊆ L induces the 
multiplication-by-n endomorphism of EL. 

Let us now specialize to the case where E1/C has CM by O. Then L1 is homothetic to a 
proper (hence invertible) O-ideal b, so let us put L1 = b and E1 = Eb. If a is any invertible 
O-ideal, the inclusion of lattices b ⊆ a−1b (given by ab ⊆ b) induces an isogeny 

φa : Eb → Ea−1b = aEb 

that corresponds to the action of a on Eb defined in (1). Moreover, if E2 = EL2 has CM by 
O, then L2 is homothetic to an invertible O-ideal c, and if we replace b by the homothetic 
O-ideal (Nc)b, then c divides (hence contains) b, because Nc = cc̄, by Theorem 18.10. If 
we now put a = bc−1 , then the isogeny φa : Eb → Ec = aEb induced by the inclusion b ⊆ c 
corresponds to the action of a on Eb. After rescaling a, b, c by integer multiples if necessary, 
we can assume a is an invertible O-ideal. 

Thus all elliptic curves over C with CM by O are isogenous, and up to isomorphism, 
every isogeny between elliptic curves over C with CM by O is of the form Eb → aEb, where 
a and b are invertible O-ideals. 

Definition 18.13. Let E/k be any elliptic curve with CM by an imaginary quadratic 
order O, and let a be an O-ideal. The a-torsion subgroup of E is defined by 

E[a] := {P ∈ E(k̄) : α(P ) = 0 for all α ∈ a}, 

where we are viewing each α ∈ a ⊆ O ' End(E) as an endomorphism. 

Theorem 18.14. Let O be an imaginary quadratic order, let E/C be an elliptic curve with 
endomorphism ring O, let a be an invertible O-ideal, and let φa be the corresponding isogeny 
from E to aE. The following hold: 

(i) ker φa = E[a]; 

(ii) deg φa = Na. 

Proof. By composing φa with an isomorphism if necessary, we assume without loss of gener-
ality that E = Eb for some invertible O-ideal b. Let Φ be the isomorphism from C/b → Eb 
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that sends z to (℘(z), ℘0(z)). We have 

Φ−1(E[a]) = {z ∈ C/b : αz = 0 for all α ∈ a} 
= {z ∈ C : αz ∈ b for all α ∈ a}/b 

= {z ∈ C : za ⊆ b}/b 

= {z ∈ C : zO ⊆ a −1b}/b 

= (a −1b)/b � � 
z→z −1b = ker C/b −→ C/a 

= Φ−1(ker φa), 

which proves (i). We then note that 

#E[a] = [a −1b : b] = [b : ab] = [O : aO] = [O : a] = Na, 

which proves (ii). 

Corollary 18.15. Let O be an imaginary quadratic order and let a be an invertible O-ideal. 
For every elliptic curve E/C with CM by O the elliptic curves E and aE are related by an 
isogeny φa : E → aE of degree Na. 

Proof. This follows immediately from the theorem and discussion above. 

18.6 Discriminants 

To streamline our work with imaginary quadratic orders, we define the discriminant of O, a 
negative integer that uniquely determines O. Since O is a subring of an imaginary quadratic 
field that has rank 2 as a Z-module, we can always write O as [1, τ ], where τ is an algebraic 

2 integer that does not lie in Z; its minimal polynomial is necessarily of the form x + bx + c 
with discriminant b2 − 4c ∈ Z<0. 

Definition 18.16. Let O = [1, τ ] be an imaginary quadratic order. The discriminant of O 
is the discriminant of the minimal polynomial of τ , which we can compute as � �2 

disc(O) = (τ + τ̄)2 − 4τ τ̄ = (τ − τ̄)2 = det 
1 τ

. 
1 τ̄  

If A is the area of a fundamental parallelogram of O then 

disc(O) = (τ − τ̄)2 = −4| im τ |2 = −4A2 , 

thus the discriminant does not depend on our choice of τ , it is intrinsic to the lattice O. 

Since the discriminant disc(O) is a negative integer of the form b2 − 4c with b, c ∈ Z, it 
is necessarily a square modulo 4 (hence congruent ot 0 or 1 mod 4). 

Definition 18.17. A negative integer D that is a square modulo 4 is an (imaginary 
quadratic) discriminant. Discriminants not of the form u2D0 for some integer u > 1 and 
discriminant D0 are said to be fundamental. Every discriminant can be written uniquely as 
the product of a square and a fundamental discriminant. 
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There is a one-to-one relationship between imaginary quadratic discriminants and orders 
in imaginary quadratic fields; fundamental discriminants correspond to maximal orders. 

Theorem 18.18. Let D be an imaginary quadratic discriminant. There is a unique imagi-
nary quadratic order O with disc(O) = D √ = u2DK , where DK is the fundamental discrimi-
nant of the maximal order OK in K = Q( DK ), and u = [OK : O]. 

Proof. Write D = √disc(O) as D = u2DK , with u ∈ Z>0 and DK a fundamental discrimi-
nant. Let K = Q( DK ), and let OK be its ring of integers, the maximal order of K, by 
Theorem 13.26. Now define (√ 

DK if DK ≡ 0 mod 4; 2 √ τ := 
1+ DK if DK ≡ 1 mod 4. 2 

Then disc([1, τ ]) = (τ − τ̄)2 = DK , and τ + τ̄  and τ τ̄  are integers, so τ ∈ OK and [1, τ ] is a 
suborder of OK . But OK is the maximal order of K, so OK = [1, τ ] and disc(OK ) = DK . 
The order O = [1, uτ ] then has discriminant (uτ − uτ )2 = u2DK = D. 

Conversely, if O = [1, ω] is any imaginary quadratic order of discriminant D, than ω is 
the root of a quadratic equation of discriminant D and therefore an algebraic integer in the √ √ 
field Q( D) = Q( DK ) = K. We must have O ⊆ OK , since OK is the unique maximal 
order. The ratio of the squares of the areas of the fundamental parallelograms of OK and O 

2 must be D/DK = u , which implies [OK : O] = u. Let OK = [1, τ ] with τ defined as above. 
By Lemma 18.19 below, uOk ⊆ O, so uτ ∈ O, and the lattice [1, uτ ] ⊆ O has index u in OK 

and is therefore equal to O. It follows that [1, uτ ] is the unique imaginary quadratic order 
of discriminant D. 

The index u = [OK : O] is also called the conductor of the order O. 

Lemma 18.19. If L0 is an index n sublattice of L then nL is an index n sublattice of L0 . 

Proof. Without loss of generality, L = [1, τ ] and L0 = [a, b + cτ ] (let a be the least positive 
integer in L0). Comparing areas of fundamental parallelograms yields 

n| im τ | = |a im cτ | = |ac|| im τ | 
n = |ac|, 

Thus a|n, so n ∈ L0, and a(b+cτ)−ba = acτ = ±nτ , so nτ ∈ L0; therefore nL = [n, nτ ] ⊆ L0 . 
2 We have [L : L0] = n and [L : L0][L0 : nL] = [nL : L] = n , so [L0 : nL] = n. 

References 

2 2: [1] David A. Cox, Primes of the form x + ny Fermat, class field theory, and complex 
multiplication, second edition, Wiley, 2013. 
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