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5 Isogenies 

In almost every branch of mathematics, when considering a category of mathematical ob-
jects with a particular structure, the maps between objects that preserve this structure 
(morphisms) play a crucial role. For groups and rings we have homomorphisms, for vector 
spaces we have linear transformations, and for topological spaces we have continuous func-
tions. For elliptic curves (and more generally, abelian varieties), the structure-preserving 
maps are called isogenies. 1 

Remark 5.1. I have included some optional background material on field extensions and 
algebraic sets at the end of these notes to address some questions that came up in lecture. 

5.1 Morphisms of projective curves 

As abelian varieties, elliptic curves have both an algebraic structure (as an abelian group), 
and a geometric structure (as a smooth projective curve). We are all familiar with morphisms 
of groups (these are group homomorphisms), but we have not formally defined a morphism 
of projective curves. To do so we need to define a few notions from algebraic geometry. 
Since algebraic geometry is not a prerequisite for this course, we will take a brief detour to 
define the terms we need. 

To keep things as simple and concrete as possible, we will focus on plane projective 
curves with a few remarks along the way about how to generalize these definitions for those 
who are interested (those who are not can safely ignore the remarks). As usual, we use k̄ 

to denote a fixed algebraic closure of our base field k that contains any and all algebraic 
extensions of k that we may consider (see §5.6 for more on algebraic closures). 

Definition 5.2. Let C/k be a plane projective curve f(x, y, z) = 0 with f a nonconstant 
homogeneous polynomial in k[x, y, z] that is irreducible in k̄[x, y, z]. The function field k(C) 
is the set of equivalence classes of rational functions g/h such that: 

(i) g and h are homogeneous polynomials in k[x, y, z] of the same degree; 
(ii) h is not divisible by f , equivalently, h is not an element of the ideal (f); 
(iii) g1/h1 and g2/h2 are considered equivalent whenever g1h2 − g2h1 ∈ (f). 

¯ If L is any algebraic extension of k (including L = k), the function field L(C) is similarly 
defined with g, h ∈ L[x, y, z]. 

Remark 5.3. The function field k(X) of an irreducible projective variety X/k given by 
homogeneous polynomials f1, . . . , fm ∈ k[x0, . . . , xn] is defined similarly: just replace the 
prime ideal (f) with the prime ideal (f1, . . . , fm). 

Remark 5.4. Be sure not to confuse the notation k(C) with C(k); the latter denotes the 
set of k-rational points on C, not its function field. 

We claim that k(C) is a ring under addition and multiplication of rational functions. 
To see this, first note that if h1, h2 6∈ (f) then h1h2 6∈ (f) because f is irreducible and 

1The word isogeny literally means “equal origins". It comes from biology, where the terms isogenous, 
isogenic, and isogenetic refer to di˙erent tissues derived from the same progenitor cell. The prefix “iso” 
means equal and the root “gene” means origin (as in the word genesis). 
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k[x, y, z] is a unique factorization domain (in particular, (f) is a prime ideal). Thus for any 
g1/h1, g2/h2 ∈ k(C) we have 

g1 g2 g1h2 + g2h1 g1 g2 g1g2 
+ = ∈ k(C) and · = ∈ k(C). 

h1 h2 h1h2 h1 h2 h1h2 

We can compute the inverse of g/h as h/g except when g ∈ (f), but in this case g/h is 
equivalent to 0/1 = 0, since g · 1 − 0 · h = g ∈ (f); thus every nonzero element of k(C) is 
invertible, hence the ring k(C) is a field. 

Remark 5.5. The field k(C) contains k as a subfield (take g and h with degree 0), but it is 
not an algebraic extension of k, it is transcendental. Indeed, it has transcendence degree 1, 
consistent with the fact that C is a projective variety of dimension 1 (this is one way to 
define the dimension of an algebraic variety). See §5.6 for more on transcendental field 
extensions. 

The fact that g and h have the same degree allows us to meaningfully assign a value to 
the function g/h at a projective point P = (x0 : y0 : z0) on C, so long as h(P ) =6 0, since 

(a) we get the same result for any projectively equivalent P = (λx0 : λy0 : λz0) with 
λ ∈ k× , because g and h are homogeneous of the same degree (say d): 

g(λx, λy, λz) λdg(x, y, z) g(x, y, z) 
= = . 

h(λx, λy, λz) λdh(x, y, z) h(x, y, z) 

(b) if g1/h1 and g2/h2 are equivalent with h1(P ), h2(P ) 6= 0, then g1(P )h2(P )−g2(P )h1(P ) 
is a multiple of f(P ) = 0, so (g1/h1)(P ) = (g2/h2)(P ). 

Thus assuming the denominators involved are all nonzero, for α ∈ k(C) the value of α(P ) 
does not depend on how we choose to represent either α or P . If α = g1/h1 with h1(P ) = 0, 
it may happen that g1/h1 is equivalent to some g2/h2 with h2(P ) 6= 0. This is a slightly 
subtle point. It may not be immediately obvious whether or not such a g2/h2 exists, since 
it depends on equivalence modulo f ; in general there may be no canonical way to write g/h 
in “simplest terms”, because the ring k[x, y, z]/(f) is typically not a unique factorization 
domain. 

2 Example 5.6. Suppose C/k is defined by f(x, y, z) = zy2 − x3 − z x = 0, and consider the 
point P = (0 : 0 : 1) ∈ C(k). We can’t evaluate α = 3xz/y2 ∈ k(C) at P as written since 
its denominator vanishes at P , but we can use the equivalence relation in k(C) to write 

2 2 3xz 3xz 3z 
α = = = , 

2 2 y x3 + z2x x2 + z 

and we then see that α(P ) = 3. 

Definition 5.7. Let C/k be a projective curve with α ∈ k(C). We say that α is defined (or 
regular) at a point P ∈ C(k̄) if α can be represented as g/h for some g, h ∈ k[x, y, z] with 
h(P ) 6= 0. 

Remark 5.8. If C is the projective closure of an aÿne curve f(x, y) = 0, one can equiv-
alently define k(C) as the fraction field of k[x, y]/(f); this ring is known as the coordinate 
ring of C, denoted k[C], and it is an integral domain provided that (f) is a prime ideal 
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(which holds in our setting because we assume f is irreducible). In this case one needs to 
homogenize rational functions r(x, y) = g(x, y)/h(x, y) in order to view them as functions 
defined on projective space. This is done by introducing powers of z so that the numera-
tor and denominator are homogeneous polynomials of the same degree. The same remark 
applies to (irreducible) varieties of higher dimension. 

We can now formally define a rational map of projective curves. Recall that for any 
field F (including F = k(C)), we use P2(F ) to denote the the set of projective triples (x : y : 
z), with x, y, z ∈ F not all zero, modulo the equivalence relation (x : y : z) ∼ (λx : λy : λz) 
for all λ ∈ F × . 

Definition 5.9. Let C1 and C2 be plane projective curves defined over k. A rational map 
φ : C1 → C2 is a projective triple (φx : φy : φz) ∈ P2(k(C1)), such that for every point 
P ∈ C1(k̄) where φx(P ), φy(P ), φz(P ) are defined and not all zero, the projective point 
(φx(P ) : φy(P ) : φz(P )) lies in C2(k̄). The map φ is defined (or regular) at P if there exists 
λ ∈ k(C1)

× such that λφx, λφy, λφz are all defined at P and not all zero at P . 

Remark 5.10. This definition generalizes to projective varieties in Pn in the obvious way. 

We should note that a rational map is not simply a function from C1(k) to C2(k) defined 
by rational functions, for two reasons. First, it might not be defined everywhere (although 
for smooth projective curves this does not happen, by Theorem 5.14 below). Second, it is 
required to map C1(k̄) to C2(k̄), which does not automatically hold for every rational map 
the carries C1(k) to C2(k); indeed, in general C1(k) could be the empty set (if C1 is an 
elliptic curve then C1(k) is nonempty, but it could contain just a single point). 

Remark 5.11. This is a general feature of classical algebraic geometry. In order for the 
definitions to work properly, one must consider the situation over an algebraic closure; an 
alternative approach is to use schemes, but we will not use schemes in this course. 

It is important to remember that a rational map φ = (φx : φy : φz) is defined only up 
to scalar equivalence by functions in k(C)× . There may be points P ∈ C1(k̄) where one of 
φx(P ), φy(P ), φz(P ) is not defined or all three are zero, but it may still possible to evaluate 
φ(P ) after rescaling by λ ∈ k(C)×; we will see an example of this shortly. 

The value of φ(P ) is unchanged if we clear denominators in (φx, φy, φz) by multiplying 
through by an appropriate homogeneous polynomial (note: this is not the same as rescaling 
by an element of λ ∈ k(C)×). This yields a triple (ψx : ψy : ψz) of homogeneous polynomials 
of equal degree that we view as a representing any of the three equivalent rational maps 

(ψx/ψz : ψy/ψz : 1), (ψx/ψy : 1 : ψz/ψy), (1 : ψy/ψx : ψz/ψx), 

all of which are equivalent to φ. We then have φ(P ) = (ψx(P ) : ψy(P ) : ψz(P ) whenever any 
of ψx, ψy, ψz is nonzero at P . Of course it can still happen that ψx, ψy, ψz all vanish at P , 
in which case we might need to look for an equivalent tuple of homogeneous polynomials 
that represents φ, but with this representation at least ψx, ψy, ψz are always defined at P . 

This leads to the following equivalent definition of a rational map, which has a more 
algebraic flavor. 

Definition 5.12. Let C1 and C2 be plane projective curves over k defined by f1(x, y, z) = 0 
and f2(x, y, z) = 0, respectively. A rational map φ : C1 → C2 is a triple of homoge-
neous polynomials ψx, ψy, ψz ∈ k[x, y, z] of the same degree, not all of which lie in (f1), 
such that f2(ψx, ψy, ψz) ∈ (f1). The rational map φ is defined at P ∈ C1(k̄) if any of 
ψx(P ), ψy(P ), ψz(P ) is nonzero (in which case (ψx(P ) : ψy(P ) : ψz(P )) ∈ C2(k̄)). 
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The equivalence of Definitions 5.9 and 5.12 follows from Corollary 5.51 (see §5.7). 

Definition 5.13. A rational map that is defined everywhere is called a morphism. 

For elliptic curves, distinguishing rational maps from morphisms is unnecessary; every 
rational map between elliptic curves is a morphism. More generally, we have the following. 

Theorem 5.14. If C1 is a smooth projective curve then every rational map from C1 to a 
projective curve C2 is a morphism. 

The proof of this theorem is straight-forward (see [6, II.2.1]), but requires a bit of com-
mutative algebra that is outside the scope of this course.2 

Remark 5.15. Theorem 5.14 is specific to smooth curves; it is not true more generally. 

Two projective curves C1 and C2 are isomorphic if they are related by an invertible 
morphism φ; this means that there is a morphism φ−1 such that φ−1 ◦ φ and φ ◦ φ−1 are the 
identity maps on C1(k̄) and C2(k̄), respectively. An isomorphism φ : C1 → C2 is necessarily 
a morphism that defines a bijection from C1(k̄) from C2(k̄), but the converse is not true, 
in general, because the inverse map of sets from C2(k̄) to C1(k̄) might not be a morphism 
(because it can’t be defined by rational functions); we will see an example of this shortly. 

Before leaving the topic of morphisms of curves, we note one more useful fact. 

Theorem 5.16. A morphism of projective curves is either surjective or constant. 

This theorem is a consequence of the fact that projective varieties are complete (or 
proper), which implies that the image of a morphism of projective varieties is itself a projec-
tive variety. This is a standard result that is proved in most introductory algebraic geometry 
textbooks, see [2, II.4.9], for example. In the case of projective curves the image of a mor-
phism φ : C1 → C2 of curves either has dimension 1, in which case φ is surjective (our 
curves are irreducible, by definition, and therefore cannot properly contain another curve), 
or dimension 0, in which case the image is a single point and φ is constant. 

5.2 Isogenies of elliptic curves 

We can now define the structure-preserving maps between elliptic curves that will play a 
key role in this course. 

Definition 5.17. An isogeny φ : E1 → E2 of elliptic curves defined over k is a surjective 
morphism of curves that induces a group homomorphism E1(k̄) → E2(k̄). The elliptic curves 
E1 and E2 are then said to be isogenous. 

Remark 5.18. Unless otherwise stated, we assume that the isogeny φ is itself defined 
over k (meaning that it can be represented by a rational map whose coeÿcients lie in k). In 
general, if L/k is an algebraic extension, we say that two elliptic curves defined over k are 
“isogenous over L” if they are related by an isogeny that is defined over L. Strictly speaking, 
in this situation we are really referring to the “base change” of the elliptic curves to L (same 
equations, di˙erent field of definition), but we won’t be pedantic about this. 

2The key point is that the coordinate ring of a smooth curve is a Dedekind domain. Thus its localization 
at every point P is a DVR, and after choosing a uniformizer we can rescale any rational map φ by a suitable λ 
(which will typically vary with P ) so that all the components of φ have non-negative valuation at P and at 
least one has valuation zero and is therefore nonvanishing at P . 
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This definition is stronger than is actually necessary, for three reasons. First, any mor-
phism of abelian varieties that preserves the identity element (the distinguished point that 
is the zero element of the group) induces a group homomorphism; we won’t bother to prove 
this (see [6, Theorem III.4.8] for a proof), since for all the isogenies we are interested in 
it will be obvious that they are group homomorphisms. Second, by Theorem 5.16, any 
non-constant morphism of curves is surjective, and third, by Theorem 5.14, a rational map 
whose domain is a smooth projective curve is automatically a morphism. This leads to the 
following equivalent definition which is commonly used. 

Definition 5.19. An isogeny φ : E1 → E2 of elliptic curves defined over k is a non-constant 
rational map that sends the distinguished point of E1 to the distinguished point of E2. 

Warning 5.20. Under our definitions the zero morphism, which maps every point on E1 

to the zero point of E2, is not an isogeny. This follows the standard convention for general 
abelian varieties which requires isogenies to preserve dimension (so they must be surjective 
and have finite kernel). In the case of elliptic curves this convention is not always followed 
(notably, Silverman [6, III.4] includes the zero morphism in his definition of an isogeny), but 
it simplifies the statement of many theorems and is consistent with the more general usage 
you may see in later courses, so we will use it (we will still have occasion to refer to the zero 
morphism, we just won’t call it an isogeny). 

Definition 5.21. Elliptic curves E1 and E2 defined over a field k are isomorphic if there 
exist isogenies φ1 : E1 → E2 and φ2 : E2 → E1 whose composition is the identity; the 
isogenies φ1 and φ2 are then isomorphisms. 

Definition 5.22. A morphism from an elliptic curve E/k to itself that fixes the distinguished 
point is called an endomorphism. An endomorphism that is also an isomorphism is an 
automorphism. 

Except for the zero morphism, every endomorphism is an isogeny. As we shall see in the 
next lecture, the endomorphisms of an elliptic curve have a natural ring structure. 

5.3 Examples of isogenies 

We now give three examples of isogenies that are endomorphisms of an elliptic curve E/k 
2 3 defined by a short Weierstrass equation y = x + Ax + b (we assume char(k) =6 2, 3). 

5.3.1 The negation map 

In projective coordinates the map P 7→ −P is given by 

(x : y : z) 7→ (x : −y : z), 

which is evidently a rational map. It is defined at every projective point, and in particular, 
at every P ∈ E(k̄), so it is a morphism (as it must be, since it is a rational map defined 
on a smooth curve). It fixes 0 = (0 : 1 : 0) and is not constant, thus it is an isogeny. It is 
also an endomorphism, since it is a morphism from E to E that fixes 0, and moreover an 
isomorphism (it is its own inverse), and therefore an automorphism. 
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5.3.2 The multiplication-by-2 map 
2 3 Let E/k be the elliptic curve defined by y = x + Ax + B, and let φ : E → E be defined by 

P 7→ 2P . This is obviously a non-trivial group homomorphism (at least over k̄), and we will 
now show that it is a morphism of projective curves. Recall that the formula for doubling 
an aÿne point P = (x, y) on E is given by the rational functions 

(3x2 2 + A)2 − 8xy 
φx(x, y) = m(x, y)2 − 2x = , 

4y2 

2 2 4 12xy2(3x + A) − (3x + A)3 − 8y 
φy(x, y) = m(x, y)(x − φx(x, y)) − y = , 

8y3 

2 where m(x, y) := (3x + A)/(2y) is the slope of the tangent line at P . Homogenizing these 
and clearing denominators yields the rational map φ := (ψx/ψz : ψy/ψz : 1), where 

2 2 ψx(x, y, z) = 2yz((3x + Az2)2 − 8xy z), 
2 2 2 4 2 ψy(x, y, z) = 12xy z(3x + Az2) − (3x + Az2)3 − 8y z , 

ψz(x, y, z) = 8y 3 z 3 . 

2 2 3 If y = 0 then 3x + Az2 6= 0 (because y z = x + Axz2 + Bz3 is non-singular), and it follows 
that the only point in E(k̄) where ψx, ψy, ψz simultaneously vanish is the point 0 = (0 : 1 : 0). 
As a rational map of smooth projective curves, we know that φ is a morphism, hence defined 
everywhere, so there must be an alternative representation of φ that we can evaluate at the 
point 0. Now in fact we know a priori that φ(0) must be 0, since 2 · 0 = 0 but let’s verify 
this explicitly. 

2 In projective coordinates the curve equation is f(x, y, z) := y z − x3 − Axz2 − Bz3 = 0. 
We are free to add any multiple of f in k[x, y, z] of the correct degree (in this case 6) to any 
of ψx, ψy, ψz without changing the rational function φ they define. Let us replace ψx with 

2 ψx + 18xyzf and ψy with ψy + (27f − 18y z)f , and remove the common factor z2 to obtain 

ψx(x, y, z) = 2y(xy 2 − 9Bxz2 + A2 z 3 − 3Ax2 z), 
2 4 ψy(x, y, z) = y 4 − 12y z(2Ax + 3Bz) − A3 z 

+ 27Bz(2x 3 + 2Axz2 + Bz3) + 9Ax2(3x 2 + 2Az2), 

ψz(x, y, z) = 8y 3 z. 

This is another representation of the rational map φ, and we can use this representation of 
φ to evaluate φ(0) = (ψx(0, 1, 0) : ψy(0, 1, 0) : ψz(0, 1, 0)) = (0 : 1 : 0) = 0, as expected. 

Having seen how messy things can get even with the relatively simple isogeny P 7→ 2P , 
in the future we will be happy to omit such verifications and rely on the fact that if we have 
a rational map that we know represents an isogeny φ, then φ(0) = 0 must hold. For elliptic 
curves in Weierstrass form, this means we only have to worry about evaluating isogenies at 
aÿne points, which allows us to simplify the equations by fixing z = 1. 

5.3.3 The Frobenius endomorphism 

Let Fp be a finite field of prime order p. The Frobenius automorphism π : Fp → Fp is the map 
p p x 7→ x . It is easy to check that π is a field automorphism: 0p = 0, 1p = 1, (−a)p = −a , 
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P� � −1)p p)−1 pbp p kbp−k p (a = (a , (ab)p = a , and (a + b)p = a = a + bp. If f(x1, . . . , xk) is k 
any rational function with coeÿcients in Fp, then 

p p f(x1, . . . , xk)
p = f(x1, . . . , xk), 

since the coeÿcients of f are all fixed by π, which acts trivially on Fp. 
Every power πn of π is also an automorphism of Fp; the fixed field of πn is the finite 

n field Fpn with p elements. For a finite field Fq = Fpn the map x 7→ xq is called the q-power 
Frobenius map, which we may denote by πq. 

Definition 5.23. Let E be an elliptic curve over a finite field Fq. The Frobenius endomor-
q q phism of E is the map πE : (x : y : z) 7→ (x : y : zq). 

To see that this defines a morphism from E to E, for any point P = (x, y, z) ∈ E(Fq), 
if we raise both sides of the curve equation 

2 3 y z = x + Axz2 + Bz3 

to the qth power, we get 

2 3 (y z)q = (x + Axz2 + Bz3)q 

q)2 q)3 q)2 q)3 q (y z = (x + Axq(z + B(z , 

q thus (x : yq : zq) ∈ E(Fq); we have Aq = A and Bq = B because A, B ∈ Fq. Note that 
if q 6= p and use the p-power Frobenius we still get a point on an elliptic curve, namely 
2 3 y = x + Apx + Bp, but this curve is not the same as E (or even isomorphic to E). 

To see that πE is also a group homomorphism, note that the group law on E is defined 
by rational functions whose coeÿcients lie in Fq; these coeÿcients are invariant under the 
q-power map, so πE (P + Q) = πE (P ) + πE (Q) for all P, Q ∈ E(Fq). 

These facts hold regardless of the equation used to define E and the formulas for the 
group law, including curves defined by a general Weierstrass equation (which is needed in 
characteristic 2 and 3). 

Remark 5.24. The Frobenius endomorphism induces a group isomorphism from E(Fq) 
to E(Fq), since over the algebraic closure we can take qth roots of coordinates of points, 
and doing so still fixes elements of Fq (in other words, the inverse of πq in Gal(Fq/Fq) also 
commutes with the group operation). But as an isogeny the Frobenius endomorphism is not 
an isomorphism because there is no rational map from E → E that acts as its inverse (why 
this is so will become obvious in later lectures). 

5.4 A standard form for isogenies 

To facilitate our work with isogenies, it will be convenient to put them in a standard form. 
In order to do so we will assume throughout that we are working with elliptic curves in short 

2 3 Weierstrass form y = x + Ax + B. Implicit in this assumption is that our elliptic curves 
are defined over a field k whose characteristic is not 2 or 3.3 

3In fact everything in this section works without modification for elliptic curves of the form y 2 = f(x), 
even if the quadratic term of f (x) is nonzero, so we only need to assume the characteristic is not 2. 
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Lemma 5.25. Let E1 and E2 be elliptic curves over k in short Weierstrass form, and let 
α : E1 → E2 be an isogeny. Then α can be defined by an aÿne rational map of the form � � 

u(x) s(x) 
α(x, y) = , y , 

v(x) t(x) 

where u, v, s, t ∈ k[x] are polynomials in x with u ⊥ v and s ⊥ t. 

The notation f ⊥ g indicates that the polynomials f and g are coprime in k[x] (equiva-
lently, they have no common roots in k̄). 

Proof. Suppose α is defined by the rational map (αx : αy : αz). Then for any aÿne point 
(x : y : 1) ∈ E1(k̄) we can write � � 

α(x, y) = r1(x, y), r2(x, y) , 

with r1(x, y) := αx(x, y, 1)/αz(x, y, 1) and r2(x, y) := αy(x, y, 1)/αz(x, y, 1). By repeatedly 
2 3 using the curve equation y = x + Ax + B for E1 to replace y2 with a polynomial in x, we 

can assume that both r1 and r2 have degree at most 1 in y. We then have 

p1(x) + p2(x)y 
r1(x, y) = , 

p3(x) + p4(x)y 

for some p1, p2, p3, p4 ∈ k[x]. We now multiply the numerator and denominator of r1(x, y) 
by p3(x) − p4(x)y, and use the curve equation for E1 to replace y2 in the denominator with 
a polynomial in x, putting r1 in the form 

q1(x) + q2(x)y 
r1(x, y) = , 

q3(x) 

for some q1, q2, q3 ∈ k[x]. 
We now use the fact that α is a group homomorphism and must therefore satisfy α(−P ) = 

−α(P ) for any P ∈ E1(k̄). Recall that the inverse of an aÿne point (x, y) on a curve in 
short Weierstrass form is (x, −y). Thus α(x, −y) = −α(x, y) and we have � � � � 

r1(x, −y), r2(x, −y) = r1(x, y), −r2(x, y) 

Thus r1(x, y) = r1(x, −y), and this implies that q2 is the zero polynomial. After eliminating 
u(x) any common factors from q1 and q3, we obtain r1(x, y) = v(x) for some u, v ∈ k[x] with u ⊥ v, 

as desired. The argument for r2(x, y) is similar, except now we use r2(x, −y) = −r2(x, y) to 
s(x) show that q1 must be zero, yielding r2(x, y) = t(x) y for some s, t ∈ k[x] with s ⊥ t. 

(u(x) s(x) We shall refer to the expression α(x, y) = , y) given by Lemma 5.25 as the v(x) t(x) 

standard form of an isogeny α : E1 → E2. The fact that the rational functions u(x)/v(x) 
and s(x)/t(x) are in lowest terms implies that the polynomials u, v, s and t are uniquely 
determined up to a scalar in k× . 

2 2 Lemma 5.26. Let E1 : y = f1(x) and E2 : y = f2(x) be elliptic curves over k and let 
(u(x) s(x) 3 α(x, y) = v(x) , t(x) y) be an isogeny from E1 to E2 in standard form. Then v divides t2 

and t2 divides v3f1. Moreover, v(x) and t(x) have the same set of roots in k̄ . 
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� � 
u s Proof. Substituting , y for (x, y) in the equation for E2 gives ((s/t)y)2 = f2(u/v), and v t 

using the equation for E1 to replace y2 with f2(x) yields 

(s/t)2f1 = (u/v)3 + A2(u/v) + B2 

3 2 3 as an identity involving polynomials f1, s, t, u, v ∈ k[x]. If we put w = u + A2uv + B2v 
and clear denominators we obtain 

3 2 v s 2f1 = t w. (1) 

Note that u ⊥ v implies v ⊥ w, since any common factor of v and w must divide u. It 
follows that v3|t2 and t2|v3f1. This implies that v and t have the same roots in k̄: every 
root of v is clearly a root of t (since v3|t2), and every root x0 of t is a double root of t2|v3f1, 
and since f1 has no double roots (because E1 is not singular), x0 must be a root of v (and 
possibly also a root of f1). 

s(x) Corollary 5.27. Let α(x, y) = (u(x) y) be an isogeny E1 → E2 in standard form. The v(x) , t(x) 
aÿne points (x0 : y0 : 1) ∈ E1(k̄) in the kernel of α are precisely those for which v(x0) = 0. 

(u(x0) s(x0) Proof. If v(x0) =6 0, then t(x0) 6= 0, and α(x0, y0) = , y) is an aÿne point and v(x0) t(x0) 

therefore not 0 (the point at infinity), hence not in the kernel of α. 
By homogenizing and putting α into projective form, we can write α as 

α = (ut : vsy : vt), 

where ut, vsy, and vt are now homogeneous polynomials of equal degree (s, t, u, v ∈ k[x, z]). 
Suppose y0 =6 0. By the previous lemma, if v(x0, 1) = 0, then t(x0, 1) = 0, and since 

v3|t2 , the multiplicity of (x0, 1) as a root of t is strictly greater than its multiplicity as a 
root of v. This implies that, working over k̄ , we can renormalize α by dividing by a suitable 
power of x − x0z so that αy does not vanish at (x0 : y0 : 1) but αx and αz both do. Then 
α(x0 : y0 : 1) = (0 : 1 : 0) = 0, and (x0 : y0 : 1) lies in the kernel of α as claimed. 

2 If y0 = 0, then x0 is a root of the cubic f(x) in the equation y = f1(x) for E1, and it 
is not a double root, since E1 is not singular. In this case we renormalize α by multiplying 

2 by yz and then replacing y z with f1(x, z). Because (x0, 1) only has multiplicity 1 as a root 
of f1(x, z), its multiplicity as a root of vf1 is no greater than its multiplicity as a root of t 
(here again we use v3|t2), and we can again renormalize α by dividing by a suitable power 
of x − x0z so that αy does not vanish at (x0 : y0 : 1), but αx and αz do (since they are now 
both divisible by y0 = 0). Thus (x0 : y0 : 1) is again in the kernel of α. 

The corollary implies that if we have an isogeny α : E1 → E2 in standard form, we know 
exactly what to do if whenever we get a zero in the denominator when we try to compute 
α(P ): we must have α(P ) = 0. This allows us to avoid in all cases the messy process that 
we went through earlier with the multiplication-by-2 map. We also obtain the following. 

Corollary 5.28. Let α : E1 → E2 be an isogeny of elliptic curves defined over a field k. 
The kernel of α is a finite subgroup of E1(k̄) 

This corollary is true in general, but we will prove it under the assumption that we can 
put the isogeny α in our standard form (so char(k) 6= 2). 

s Proof. If we put α in standard form (u , y) then the polynomial v(x) has at most deg v v t 
distinct roots in k̄ , each of which can occur as the x-coordinate of at most two points on the 
elliptic curve E1. 
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Remark 5.29. Note that this corollary would not be true if we included the zero morphism 
in our definition of an isogeny. 

One can also use the standard form of an isogeny α : E1 → E2 to show that α is surjective 
as a map from E1(k̄) to E2(k̄); see [7, Thm. 2.22].4 But we already know that this applies 
to any non-constant morphism of curves (and even included surjectivity in our original 
definition of an isogeny), so we won’t bother to prove this. 

5.5 Degree and separability 

We now define two important invariants of an isogeny that can be easily determined when 
it is in standard form. 

s(x) Definition 5.30. Let α(x, y) = (u(x) y) be an isogeny in standard form. The degree of v(x) , t(x) 
u(x) α is deg α := max{deg u, deg v}, and we say that α is separable if the derivative of is v(x) 

nonzero; otherwise we say that α is inseparable. 

As noted earlier, the polynomials u, v, s, t are uniquely determined up to a scalar factor, so 
the degree and separability of α are intrinsic properties that do not depend on its represen-
tation as a rational map. 

Remark 5.31. The degree and separability of an isogeny can defined in a way that is more 
obviously intrinsic using function fields. If α : E1 → Ek is an isogeny of elliptic curves 
defined over k then it induces an injection of function fields 

α ∗ : k(E2) → k(E1) 

that sends f to f ◦ α (notice the direction of this map; the categorical equivalence between 
smooth projective curves and their function fields is contravariant). The degree of α is then 
the degree of k(E1) as an extension of the subfield α∗(k(E2)); this degree is finite because 
both are finite extensions of a purely transcendental extension of k. The isogeny α is then 
said to be separable if this field extension is separable (and is inseparable otherwise). This 
approach has the virtue of generality, but it is not as easy to apply explicitly. Our definition 
is equivalent, but we won’t prove this. 

Let us now return to the three examples that we saw earlier. 

• The standard form of the negation map is α(x, y) = (x, −y). It is separable and has 
degree 1. 

• The standard form of the multiplication-by-2 isogeny is � 
x4 − 2Ax2 − 8Bx + A2 x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − A3 − 8B2 

α(x, y) = , 
4(x3 + Ax + B) 8(x3 + Ax + B)2 

It is separable and has degree 4. 

• The standard form of the Frobenius endomorphism of E/Fq is � � 
q 3 πE (x, y) = x , (x + Ax + B)(q−1)/2 y . 

Note that we have used the curve equation to transform yq (and q is odd because we 
are not in characteristic 2). It is inseparable, because (xq)0 = qxq−1 = 0 in Fq (since q 
must be a multiple of the characteristic p), and it has degree q. 

4The theorem in [7] assumes that α is an endomorphism but the proof works for any isogeny. 

� 

y . 
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5.6 Field extensions 

Most of the material in this section can be found in any standard introductory algebra text, 
such as [1, 3]. We will occasionally need results in slightly greater generality than you may 
have seen before, and here we may reference [4, 5]. 

We start in the general setting of an arbitrary field extension L/k with no restrictions 
on k or L. The fields k and L necessarily have the same prime field (the subfield of k 
generated by the multiplicative identity), and therefore the same characteristic. The degree 
of the extension L/k, denoted [L : k], is the dimension of L as a k-vector space; this is a 
cardinal number, which need not be finite. If we have a tower of fields k ⊆ L ⊆ M , then 

[M : k] = [M : L][L : k], 

where the RHS is a product of cardinals.5 When [L : k] is finite we say that L/k is a finite 
extension. 

An element α ∈ L is said to be algebraic over k if it is the root of a polynomial in k[x], 
and otherwise it is transcendental over k. The extension L/k is algebraic if every element 
of L is algebraic over k, and otherwise it is transcendental. If M/L and L/k are both 
algebraic extensions, so is M/k. A necessary and suÿcient condition for L/k to be algebraic 
is that L be equal to the union of all finite extensions of k contained in L; in particular, 
every finite extension is algebraic. 

The subset of L consisting of the elements that are algebraic over k forms a field called 
the algebraic closure of k in L. A field k is algebraically closed if every every non-constant 
polynomial in k[x] has a root in k; equivalently, k has no non-trivial algebraic extensions. 
For every field k there exists an extension k/k¯ with k̄ algebraically closed; such a k̄ is called 
an algebraic closure of k, and all such k̄ are isomorphic (but this isomorphism is not unique 
in general). Any algebraic extension L/k can be embedded into any algebraic closure of k, 
since every algebraic closure of L is also an algebraic closure of k. 

Remark 5.32. When working with algebraic extensions of k it is convenient to view them 
all as subfields of a some fixed algebraic closure k̄ (there is in general no canonical choice). 
The key point is that we can always (not necessarily uniquely) embed any algebraic extension 
of L/k in our chosen k̄ , and if we have another extension M/L, our embedding of L into k̄ 

can always be extended to an embedding of M into k̄ . 

A set S ⊆ L is said to be algebraically independent (over k) if for every finite subset 
{s1, . . . , sn} of S and every nonzero polynomial f ∈ k[x1, . . . , xn] we have 

f(s1, . . . , sn) =6 0. 

Note that this means the empty set is algebraically independent (just as the empty set is 
linearly independent in any vector space). An algebraically independent set S ⊆ L for which 
L/k(S) is algebraic is called a transcendence basis for the extension L/k. 

Theorem 5.33. Every transcendence basis for L/k has the same cardinality. 

Proof. We will only prove this in the case that L/k has a finite transcendence basis (which 
includes all extensions of interest to us); see [4, Theorem 7.9] for the general case. Let 

5Recall that a cardinal number is an equivalence class of equipotent sets (sets that can be put in bijection). 
The product of n1 = #S1 and n2 = #S2 is n1n2 = #(S1 × S2) and the sum is the cardinality of the disjoint 
union: n1 + n2 = #(S1 t S2). But we shall be primarily interested in finite cardinals (natural numbers). 
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S = {s1, . . . , sm} be a smallest transcendence basis and let T = {t1, . . . , tn} be any other 
transcendence basis, with n ≥ m. The set {t1, s1, . . . , sm} must then algebraically depen-
dent, since t1 ∈ L is algebraic over k(S), and since t1 is transcendental over k, some si, say s1, 
must be algebraic over k(t1, s2, . . . , sm). It follows that L is algebraic over k(t1, s2, . . . , sm), 
and the set T1 = {t1, s2, . . . , sm} must be algebraically independent, otherwise it would 
contain a transcendence basis for L/k smaller than S. So T1 is a transcendence basis for 
L/k of cardinality m that contains t1. 

Continuing in this fashion, for i = 2, . . . ,m we can iteratively construct transcendence 
bases Ti of cardinality m that contain {t1, . . . , ti}, until Tm ⊆ T is a transcendence basis of 
cardinality m; but then we must have Tm = T , so n = m. 

Definition 5.34. The transcendence degree of a field extension L/K is the cardinality of 
any (hence every) transcendence basis for L/k. 

Unlike extension degrees, which multiply in towers, transcendence degrees add in towers: 
for any fields k ⊆ L ⊆ M , the transcendence degree of M/k is the sum (as cardinals) of the 
transcendence degrees of M/L and L/k. 

We say that the extension L/k is purely transcendental if L = k(S) for some transcen-
dence basis S for L/k. All purely transcendental extensions of k with the same transcendence 
degree are isomorphic. Every field extension L/k can be viewed as an algebraic extension 
of a purely transcendental extension: if S is a transcendence basis of L/k then L/k(S) is an 
algebraic extension of the purely transcendental extension k(S)/k. 

Remark 5.35. It is not the case that every field extension is a purely transcendental 
extension of an algebraic extension; indeed, most function fields are counterexamples. 

The field extension L/k is said to be simple if L = k(x) for some x ∈ L. A purely 
transcendental extension of transcendence degree 1 is obviously simple, but, less trivially, so 
is any finite separable extension (see below for the definition of separable); this is known as 
the primitive element theorem. 

Remark 5.36. The notation k(x) can be slightly confusing. If x ∈ L is transcendental 
over k then k(x) is isomorphic to the field of rational functions over k, in which case we may 
as well regard x as a variable. But if x ∈ L is algebraic over k, then every rational expression 
r(x) with nonzero denominator can be simplified to a polynomial in x of degree less than 
n = [k(x) : k] by reducing modulo the minimal polynomial f of x (note that we can invert 
nonzero denominators modulo f); indeed, this follows from the fact that {1, x, . . . , xn−1} is 
a basis for the n-dimensional k-vector space k(x). 

5.6.1 Algebraic extensions 

We now assume that L/k is algebraic and fix k̄ so that L ∈ k̄ . The extension L/k is normal 
if it satisfies either of the equivalent conditions: 

• every irreducible polynomial in k[x] with a root in L splits completely in L; 
• σ(L) = L for all σ ∈ Aut(k/k) (every automorphism of k that fixes k also fixes L).6 

6Some authors write Gal(L/k) for Aut(L/k), others only use Gal(L/k) when L/k is known to be Galois; 
we will use the later convention. 
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Even if L/k is not normal, there is always an algebraic extension M/L for which M/k is 
normal. The minimal such extension is called the normal closure of L/k; it exists because 
intersections of normal extensions are normal. It is not true in general that if L/k and M/L 
are normal extensions then so is M/k, but if k ⊆ L ⊆ M is a tower of fields with M/k 
normal, then M/L is normal (but L/k need not be). 
A polynomial f ∈ k[x] is separable if any of the following equivalent conditions hold: 

• the factors of f in k̄[x] are all distinct; 
• f and f 0 have no common root in k̄; 
• gcd(f, f 0) = 1 in k[x]. 

An element α ∈ L is separable over k if any of the following equivalent conditions hold: 

• α is a root of a separable polynomial f ∈ k[x]; 
• the minimal polynomial of α is separable; 
• char(k) = 0 or char(k) = p > 0 and the minimal polynomial of α is not of the form 
g(xp) for some g ∈ k[x]. 

The elements of L that are separable over k form a field called the separable closure of k 
in L. The separable closure of k in its algebraic closure k̄ is denoted ksep and is simply called 
the separable closure of k. If k ⊆ L ⊆ M then M/k is separable if and only if both M/L 
and L/k are separable. 

Definition 5.37. A field k is perfect if any of the following equivalent conditions hold: 
p • char(k) = 0 or char(k) = p > 0 and k = {x : x ∈ k} (k is fixed by Frobenius); 

• every finite extension of k is separable over k; 
• every algebraic extension of k is separable over k. 

It is clear from the definition that finite fields and all fields of characteristic 0 are perfect, 
which includes most of the fields of interest to us in this course. 

Example 5.38. The rational function field k = Fp(t) is not perfect. If we consider the finite 
extension L = k(t1/p) obtained by adjoining a pth root of t to k, the minimal polynomial of 
t1/p is xp − t, which is irreducible over k but not separable (its derivative is 0). 

Definition 5.39. An algebraic extension L/k is Galois if it is both normal and separable, 
in which case we call Gal(L/k) = Aut(L/k) the Galois group of L/k. 

The extension ksep/k is always normal: if an irreducible polynomial f ∈ k[x] has a root 
α in ksep, then (up to scalars) f is the minimal polynomial of α over k, hence separable 
over k, so all its roots lie in ksep. Thus ksep/k is a Galois extension and its Galois group 

Gk := Gal(ksep/k) 

is the absolute Galois group of k (we could also define Gk as Aut(k̄/k), since the restriction 
map from Aut(k̄/k) to Gal(ksep/k) is an isomorphism). 

The splitting field of a polynomial f ∈ k[x] is the extension of k obtained by adjoining 
all the roots of f (which lie in k̄). Every splitting field is normal, and every finite normal 
extension of k is the splitting field of some polynomial over k; when k is a perfect field we 
can go further and say that L/k is a finite Galois extension if and only if it is the splitting 
field of some polynomial over k. 
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For finite Galois extensions M/k we always have #Gal(M/k) = [M : k], and the fun-
damental theorem of Galois theory gives an inclusion-reversing bijection between subgroups 
H ⊆ Gal(M/k) and intermediate fields k ⊆ L ⊆ M in which L = MH and H = Gal(M/L) 
(note that M/L is necessarily Galois). Beware that none of the statements in this paragraph 
necessarily apply to infinite Galois extensions; modifications are required.7 

5.7 Algebraic sets 

Let k be a perfect field and fix an algebraic closure k̄ . 

Definition 5.40. The n-dimensional aÿne space An = An over k is the set k 

An := {(x1, . . . , xn) ∈ k̄n}, 

equivalently, An is the vector space k̄n regarded as a set. When k is clear from context we 
may just write An . If k ⊆ L ⊆ k̄ , the set of L-rational points (or just L-points) in An is 

An(L) = {(x1, . . . , xn) ∈ Ln} = An(k̄)GL , 

where An(k̄)GL denotes the set of points in An(k̄) fixed by GL := Gal(Lsep/L). In particular, 
An(k) = An(k̄)Gk . 

Definition 5.41. If S is a set of polynomials in k̄[x1, . . . , xn], the set of points 

ZS := {P ∈ An : f(P ) = 0 for all f ∈ S}, 

is called an (aÿne) algebraic set. If k ⊆ L ⊆ k̄ , the set of L-rational points in ZS is 

ZS (L) = ZS ∩ An(L). 

When S is a singleton {f} we may write Zf in place of Z{f}. 

Note that if I is the A-ideal generated by S, then ZI = ZS , since f(P ) = g(P ) = 0 
implies (f + g)(P ) = 0 and f(P ) = 0 implies (fg)(P ) = 0. Thus we can always replace S 
by the ideal (S) that it generates, or by any set of generators for (S). 

Example 5.42. We have Z∅ = Z(0) = An and Z{1} = Z(1) = ∅. 

For any S, T ⊆ A we have 

S ⊆ T =⇒ ZT ⊆ ZS , 

2 but the converse need not hold, even if S and T are ideals: consider T = (x1) and S = (x1). 
We now recall the notion of a noetherian ring and the Hilbert basis theorem. 

Definition 5.43. A commutative ring R is noetherian if every R-ideal is finitely generated.8 

Equivalently, every infinite ascending chain of R-ideals 

I1 ⊆ I2 ⊆ · · · 

eventually stabilizes, that is, In+1 = In for all suÿciently large n. 
7See Section 26.3 in the 18.785 Lecture notes for more details on infinite Galois extensions. 
8The term “noetherian” refers to the German mathematician Emmy Noether. 
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Theorem 5.44 (Hilbert basis theorem). If R is a noetherian ring, then so is R[x]. 

Proof. See [1, Theorem 14.6.7] or [3, Theorem 8.32]. 

Note that we can apply the Hilbert basis theorem repeatedly: if R is noetherian then 
so is R[x1], and so is (R[x1])[x2] = R[x1, x2], . . . , and so is R[x1, . . . , xn]. Like every field, 
k̄ is a noetherian ring (it has just two ideals, so it certainly satisfies the ascending chain 

¯ condition). Thus A = k[x1, . . . , xn] is noetherian, so every A-ideal is finitely generated. It 
follows that every algebraic set can be written in the form ZS with S finite. 

Definition 5.45. For an algebraic set Z ⊆ An , the ideal of Z is the set 

I(Z) = {f ∈ k̄[x1, . . . , xn] : f(P ) = 0 for all P ∈ Z}. 

The set I(Z) is clearly an ideal, since it is closed under addition and under multiplication 
by elements of k̄[x1, . . . , xn], and we note that 

Y ⊆ Z =⇒ I(Z) ⊆ I(Y ) 

and 
I(Y ∪ Z) = I(Y ) ∩ I(Z) 

(both statements are immediate from the definition). 
We have Z = ZI(Z) for every algebraic set Z, but it is not true that I = I(ZI ) for every 

ideal I. As a counterexample, consider I = (f2) for some polynomial f ∈ A. In this case 

I(Z(f2)) = (f) 6= (f2). 

In order to avoid this situation, we want to restrict our attention to radical ideals. 

Definition 5.46. Let R be a commutative ring. For any R-ideal I we define 
√ 

r I = {x ∈ R : x ∈ I for some integer r > 0}, 
√ 

and say that I is a radical ideal if I = I. 
√ 

Lemma 5.47. For any ideal I in a commutative ring R, the set I is an ideal. 
√ √ 

r r r Proof. Let x ∈ I with x ∈ I. For any y ∈ R we have y x = (xy)r ∈ I, so xy ∈ I. If √ 
y ∈ I with ys ∈ I, then every term in the sum � � X r + s i r+s−i (x + y)r+s = x y 

i 
i 

√ 
r is a multiple of either x ∈ I or ys ∈ I, hence lies in I, so (x+y)r+s ∈ I and (x+y) ∈ I. 

Theorem 5.48 (Hilbert’s Nullstellensatz ). For every ideal I ⊆ k̄[x1, . . . , xn] we have 
√ 

I(ZI ) = I. 

Proof. See [4, Theorem 7.1]. 

Nullstellensatz literally means “zero locus theorem”. Theorem 5.48 is the strong form of 
the Nullstellensatz ; it implies the weak Nullstellensatz. 
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Theorem 5.49 (weak Nullstellensatz ). For any ideal I ( k̄[x1, . . . , xn], the variety ZI is 
nonempty. 

Proof. Suppose I is an ideal for which ZI is the empty set. Then I(ZI ) = (1), and by the √ 
strong Nullstellensatz, I = (1). But then 1r = 1 ∈ I, so I = k̄[x1, . . . , xn]. 

Note the importance of working over the algebraic closure k̄ . It is easy to find proper 
ideals I for which ZI (k) = ∅ when k is not algebraically closed; consider Z(x2+y2+1)(Q) in 
A2 . A useful corollary of the weak Nullstellensatz is the following. 

Corollary 5.50. The maximal ideals of the ring k̄[x1, . . . , xn] are all of the form 

mP = (x1 − P1, . . . , xn − Pn) 

for some point P = (P1, . . . , Pn) in An(k̄). 
¯ ¯ Proof. The evaluation map that sends f ∈ k[x1, . . . , xn] to f(P ) ∈ k is a surjective ring 

¯ ¯ homomorphism with kernel mP . Thus k[x1, . . . , xn]/mP ' k is a field, hence mP is a 
maximal ideal. If m is any maximal ideal in k̄[x1, . . . , xn], then it is a proper ideal, and by 
the weak Nullstellensatz the algebraic set Zm is nonempty and contains a point P ∈ An . So 
I(Zm) ⊆ mP , but m ⊆ I(Zm) ⊆ mP is maximal, so m = mP . 

We also have the following corollary of Hilbert’s Nullstellensatz. 

Corollary 5.51. There is a one-to-one inclusion-reversing correspondence between radical 
ideals I ⊆ k̄[x1, . . . , xn] and algebraic sets Z ⊆ An(k̄) in which I = I(Z) and Z = ZI . 

Remark 5.52. It is hard to overstate the importance of Corollary 5.51; it is the basic fact 
that underlies nearly all of algebraic geometry. It tells us that the study of algebraic sets 
(geometric objects) is the same thing as the study of radical ideals (algebraic objects). It 
also suggests ways in which we might generalize our notion of an algebraic set: there is no 
reason to restrict ourselves to radical ideals in the ring k̄[x1, . . . , xn], there are many other 
rings we might consider. This approach eventually leads to the more general notion of a 
scheme, which is the fundamental object in modern algebraic geometry. 

Definition 5.53. A algebraic set is irreducible if it is nonempty and not the union of two 
smaller algebraic sets. 

Theorem 5.54. An algebraic set is irreducible if and only if its ideal is prime. 

Proof. (⇒) Let Y be an irreducible algebraic set and suppose fg ∈ I(Y ) for some f, g ∈ A. 
We will show that either f ∈ I(Y ) or g ∈ I(Y ) (and therefore I(Y ) is prime). 

Y ⊆ Zfg = Zf ∪ Zg 

= (Y ∩ Zf ) ∪ (Y ∩ Zg), 

and since Y is irreducible we must have either Y = (Y ∩ Zf ) = Zf or Y = (Y ∩ Zg) = Zg), 
hence either f ∈ I(Y ) or g ∈ I(Y ). Therefore I(Y ) is a prime ideal. 

(⇐) Now suppose I(Y ) is prime and that Y = Y1 ∪ Y2. We will show that either Y = Y1 

or Y = Y2. This will show that Y is irreducible, since Y must be nonempty (I(Y ) =6 A 
because I(Y ) is prime). We have 

I(Y ) = I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2) ⊇ I(Y1)I(Y2), 

and therefore I(Y ) divides/contains either I(Y1) or I(Y2), since I(Y ) is a prime ideal, but 
it is also contained in both I(Y1) and I(Y2), so either I(Y ) = I(Y1) or I(Y ) = I(Y2). Thus 
either Y = Y1 or Y = Y2, since algebraic sets with the same ideal must be equal. 
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