
18.785 Number Theory Fall 2019 

Problem Set #5 

Description 

These problems are related to material covered in Lectures 9–11. Collaboration is permit-
ted/encouraged, but you must identify your collaborators, and any references consulted 
other than the lecture notes. If there are none, write Sources consulted: none at the 
top of your problem set. The first person to spot each typo/error in the problem set or 
lecture notes will receive 1-5 points of extra credit. 

Instructions: First do the warm up problems, then solve any combination of problems 
1-5 that sum to 96 points and write up your answers in latex. Finally, complete the 
survey problem 6 (worth 4 points). 

Problem 0. 

These are warm up problems that do not need to be turned in. 

(a) Prove (1) all local fields have the same cardinality, (2) all global fields have the same 
cardinality, (3) completing a field with cardinality at least #R does not change its 
cardinality, (4) taking the algebraic closure of an infinite field does not change its 
cardinality. 

(b) Prove that an open subgroup of a topological group is always closed, but a closed 
subgroup need not be open (give an explicit example). 

√ 
(c) Prove that Q7( 

3 2) ' Q7(ζ342), where ζ342 is a primitive 342nd root of unity. 

(d) Prove that there are exactly two non-isomorphic cubic extensions of Q2. 

Problem 1. Complete algebraically closed fields (64 points) 

The field of complex numbers has the virtue of being both complete and algebraically 
closed. One might ask whether there are any nonarchimedean fields with this property. 
We proved in lecture that every finite extension of Qp is a local field, and in particular, 
complete. In this problem you will prove that the algebraic closure Q of Qp is not p 

complete, but the completion Cp of Q is both complete and algebraically closed. p 

(a) Prove that if K is a complete perfect field with nonarchimedean absolute value | | 
and algebraic closure K then there is a unique absolute value on K that restricts 
to | | (so we may unambiguously view K as a field with absolute value | |). You 
may assume that (all variants of) Hensel’s lemma hold for any complete field with 
a nonarchimedean absolute value (the valuation ring need not be discrete). 

(b) Let Zp := {x ∈ Qp : |x|p ≤ 1} be the valuation ring of Qp, with maximal ideal 
m := {x ∈ Q : |x|p < 1}. Prove that Zp/m is an infinite algebraic extension of Fp, p 

and that it is algebraically closed (hence we may denote it Fp). 

(c) Prove that the image of | |p : Q
× 
p → R>0 is the set pQ of fractional powers of p. 

Conclude that Zp is not a DVR. 
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(d) Prove that Zp is not compact and Q is not locally compact (unlike Zp and Qp). p 

Recall that a Baire space is a topological space in which every countable intersection 
of open dense sets is dense. The Baire Category Theorem states that every complete 
metric space (and also every locally compact Hausdorff space) is a Baire space. 

(e) Let Xn := {x ∈ Q : [Qp(x) : Qp] ≤ n}. Show that Xn is a closed set whose interior p 

is empty. Conclude that Q is not a Baire space and therefore not complete. p 

(f) Prove the following form of Krasner’s Lemma: Let K be a complete perfect 
field with nontrivial nonarchimedean absolute value | | and algebraic closure K, let 
α ∈ K, and let � 

� := min |α − σ(α)| : σ ∈ Gal(K/K), σ(α) 6= α . 

Then K(α) ⊆ K(β) for all β ∈ B<�(α). 

(g) Prove the following form of Continuity of Roots: Let K be a complete perfect 
field with nontrivial nonarchimedean absolute value | | and algebraic closure K, P n and let α ∈ K have minimal polynomial f(x) = fix

i ∈ K[x]. Prove that i=0P n for every � > 0 there is a δ > 0 such that if g(x) = i ∈ K[x] is a monic i=0 gix 
polynomial with i |gi − fi| < δ then g(x) has a root β for which |α − β| < �. 

P 

(h) Prove that if K is a complete perfect field with a nontrivial nonarchimedean abso-
lute value then the completion of its algebraic closure is algebraically closed (so in 
particular, Cp is algebraically closed). 

Remark: The simplifying assumption that K is perfect is not necessary; one can prove 
alternative versions of (f) and (g) that do not assume K is perfect but still imply (h). 

Problem 2. Finite extensions of local fields (64 points) 

If K is an archimedean local field, then either K = R, in which case K has exactly 
one nontrivial finite extension (up to isomorphism), or K = C, in which case K has no 
nontrivial finite extensions. So let us assume that K is a nonarchimedean local field; 
then K is a finite extension of Qp or a finite extension of Fp((t)). For a positive integer n, 
we wish to determine the number of degree-n extensions of K (which we count only up 
to isomorphism). Let A be the valuation ring of K, and let En be the set of Eisenstein 
polynomials f ∈ A[x] of degree n. 

First consider the case where K is a finite extension of Qp: 

(a) Show that there is a natural topology on En induced by the topology on A and 
that En is compact in this topology. 

(b) Prove that for any finite extension L/K, the set 

{f ∈ En : K[x]/(f(x)) ' L} 

is open in the topology on En. 

(c) Prove that K has only finitely many totally ramified extensions of degree n. 
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(d) Prove that K has only finitely many extensions of degree n. 

(e) Derive a formula for the number of degree-q extensions of Qp (up to isomorphism), 
where p and q are distinct primes. 

Now consider the case where K is a finite extension of Fp((t)): 

(f) Show that K has infinitely many non-isomorphic extensions of degree n, for some n 
(hint: consider extensions K[x]/(f(x)) with f(x) = xp − x − α for some α ∈ K). 

(g) Why does your proof above for finite extensions of Qp not apply here? Pinpoint 
exactly where the proof breaks down when Qp is replaced by Fp((t)). 

Problem 3. Completions of Fq(t) (32 points) 

Recall from Problem 2 of Problem Set 1 that the absolute values | |π on Fq(t) all arise 
from discrete valuations, all but one of which corresponds to a prime ideal of Fq[t] that 
we can uniquely identify by a monic irreducible polynomial π; let us use π = ∞ to 
denote the other discrete valuation v∞(f) := − deg(f), which one can view as the order 
of vanishing at infinity. Let Fq(t)π denote the completion of Fq(t) with respect to the 
absolute value | |π, where q is any prime power. 

(a) Prove that Fq(t)π is isomorphic to Fπ((T )), where Fπ denotes the residue field 
of Fq(t) with respect to | |π and T ∈ Fq(t) is a uniformizer. For each discrete 
valuation π give an explicit description of the field Fπ and the uniformizer T and 
determine the discrete valuations π for which Fπ = Fq. 

(b) Let π1 and π2 be two discrete valuations for which Fπ1 ' Fπ2 ' Fq and consider 
the completions Fq(t)π1 and Fq(t)π2 . Are they isomorphic (1) as fields, (2) as 
Fq(t)-algebras, (3) as topological fields? 

(c) Now consider the analogous question for completions of Q: for distinct primes p 
and q, are Qp and Qq isomorphic as (1) fields, (2) Q-algebras, (3)topological fields? 

(d) Determine the structure of the abelian group Fp(t)π 
×/Fp(t)

×n , where p and n are π 
primes and π is a discrete valuation on Fp(t) (your answer will depend on p, π, n). 
(Problem 5 of Problem Set 4 asked the analogous question for completions of Q). 

Problem 4. The absolute Galois group of Fq (32 points) 

Let Fq be a finite field with q elements, let Fq be a fixed algebraic closure of Fq, and for 
every positive integer n let us fix the finite field 

q Fqn := {x ∈ Fq : x 
n 
= x} 

n with q elements. For any set S (finite or infinite), we use #S to denote its cardinality 
(isomorphism class in the category of sets), and if L/K is any field extension, [L : K] 
denotes the the cardinality of any K-basis for L (i.e. dimK L). Recall that cardinals 
are ordered by monomorphisms of representative sets (so #S ≤ #T if and only if an 
injection f : S → T exists), and for any set S we have the strict inequality 2#S > #S 
(here 2#S denotes the cardinality of the set of all subsets of S). We also note the standard 
cardinals i0 := ℵ0 := #Z, i1 := 2i0 = #R, and in+1 := 2in . 
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S 
(a) Prove that Fq = Fqn and compute the cardinals #Fq and [Fq : Fq]. n≥1 

Let N denote the set of positive integers partially ordered by divisibility. Consider 
the inverse system of groups � � 

Gal(Fqn /Fq) n∈N, 

where for m|n the homomorphism Gal(Fqn /Fq) → Gal(Fqm /Fq) is induced by restriction 
(the image of σ ∈ Gal(Fqn /Fq) is obtained by restricting its domain to Fqm ). 

(b) Prove that we have isomorphisms of abelian groups 

Gal(Fq/Fq) ' lim Gal(Fqn /Fq) ' lim Z/nZ. ←− ←− 
n∈N n∈N 

and that if we view Zb := lim Z/nZ as an inverse limit of rings we have a ring ←− 
isomorphism Y bZ ' Zp. 

p 

(c) Compute the cardinality of Gal(Fq/Fq). Conclude that #Gal(Fq/Fq) =6 [Fq : Fq]. 

(d) Compute the cardinality of the set of subgroups of Gal(Fq/Fq) and the cardinality 
of the set of subfields k ⊆ Fq that contain Fq. Conclude that the Galois corre-
spondence does not hold for Gal(Fq/Fq); in particular, many different subgroups 
of Gal(Fq/Fq) have the same fixed field k (ridiculously many, in fact). 

In later lectures we will see that the Galois correspondence does hold if we regard 
Gal(Fq/Fq) as a topological group and restrict our attention to closed subgroups. 

Problem 5. Uniqueness of norms (32 points) 

Let K be a field with absolute value | | and let V be a K-vector space. The absolute 
value | | induces a topology on K via the metric d(x, y) := |x − y|, and every norm k k 
on V induces a topology on V via the metric d(v, w) := kv − wk. 

The goal of this problem is to prove that if K is complete and V has finite dimension 
then the topology on V is uniquely determined by the topology on K. One can find 
standard proofs for K = R and K = C in most analysis textbooks, and the same 
proof works for any locally compact field. But the standard approach does not work in 
general because it relies on the assumption that closed balls are compact (as we proved 
in Lecture 9, this is equivalent to local compactness). Here we follow the approach of 
Cassels [?], which works for any complete field and any finite-dimensional vector space. 

(a) Give an example of a complete field that is not locally compact, and give an 
example of an infinite-dimensional vector space over a complete field with norms 
that induce different topologies. 

Two norms k k1 and k k2 on V are said to be equivalent if there exists a constant 
c ∈ R such that kvk1 ≤ ckvk2 and kvk2 ≤ ckvk1 for all v ∈ V . 

(b) Show that equivalent norms induce the same topology. 
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Let us now fix a complete field K and a vector space V with basis (v1, . . . , vn), and 
for v = x1v1 + · · · xnvn ∈ V define the sup-norm kvk∞ := maxi |xi|. 

(c) Show that the topology induced by the sup-norm does not depend on the choice 
of basis and that V is complete in this topology. 

(d) Let c := n maxi kvik. Prove that if k k is a norm on V then kvk ≤ ckvk∞ for v ∈ V . 

(e) Prove that if k k is a norm on V then there is a constant C ∈ R such that 
kvk∞ ≤ Ckvk for v ∈ V (hint: use induction on n). Conclude that every norm 
on V is equivalent to the sup-norm and thus induces the same topology. 

Problem 6. Survey (4 points) 

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”), 
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount 
of time you spent on each problem to the nearest half hour. 

Interest Difficulty Time Spent 
Problem 1 
Problem 2 
Problem 3 
Problem 4 
Problem 5 

Please rate each of the following lectures that you attended, according to the quality of 
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic 
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”) 
and the novelty of the material to you (1=“old hat”, 10=“all new”). 

Date Lecture Topic Material Presentation Pace Novelty 
10/7 Extensions of complete DVRs 
10/9 Totally ramified extensions 

Please feel free to record any additional comments you have on the problem sets and the 
lectures, in particular, ways in which they might be improved. 
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