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1 Absolute values and discrete valuations

1.1 Introduction

At its core, number theory is the study of the integer ring Z. By the fundamental theorem
of arithmetic, every element of Z can be written uniquely as a product of primes (up to
multiplication by a unit ±1), so it is natural to focus on the prime elements of Z. If p is a
prime, the ideal (p) := pZ it generates is a maximal ideal (Z has Krull dimension one), and
the residue field Z/pZ is the finite field Fp with p elements (unique up to isomorphism).
The fraction field of Z is the field Q of rational numbers. The field Q and the finite
fields Fp together make up the prime fields: every field k contains exactly one of them,
according to its characteristic: k has characteristic zero if and only if it contains Q, and k
has characteristic p if and only if k contains Fp.

The structure of the ring Z and the distribution of its primes are both intimately related
to properties of the Riemann zeta function

ζ(s) =
∑

n−s =
∏
p

(1− p−s)−1.

As a function of the complex variable s, the Riemann zeta function is holomorphic and
nonvanishing on Re(s) > 1 and admits an analytic continuation to the entire complex plane.
It has a simple pole at s = 1, which implies that there are infinitely many primes (otherwise
the product over primes on the RHS would be finite and converge). The distribution of its
zeros in the critical strip 0 < s < 1 is directly related to the distribution of primes (via
the explicit formula, which we will see later in the course). As you are probably aware,
Riemann famously conjectured more than 150 years ago that the zeros of ζ(s) in the critical
strip all lie on the critical line Re(s) = 1

2 ; this conjecture remains open.
One can also consider finite extensions of Q, such as the field Q(i) := Q[x]/(x2 + 1).

These are called number fields, and each can be constructed as the quotient of the polynomial
ring Q[x] by one of its maximal ideals; the ring Q[x] is a principal ideal domain and its
maximal ideals can all be written as (f) for some monic irreducible f ∈ Z[x]. Associated to
each number field K is a zeta function ζK(s), and each of these has an associated conjecture
regarding the location of its zeros (these conjectures all remain open).

Number fields are one of two types of global fields that we will spend much of the course
studying; the other type are known as global function fields. Let Fq denote the field with
q elements, where q is any prime power. The polynomial ring Fq[t] has much in common
with the integer ring Z. Like Z, it is a principal ideal domain of dimension one, and the
residue fields Fq[t]/(f) one obtains by taking the quotient by a maximal ideal (f), where
f ∈ Fq[t] is any irreducible polynomial, are finite fields Fqd , where d is the degree of f . In
contrast to the situation with Z, the residue fields of Fq[t] all have the same characteristic
as its fraction field Fq(t), which plays a role analogous to Q. Global function fields are finite
extensions of Fq(t) (this includes Fq(t) itself, an extension of degree 1).

Associated to each global field k is an infinite collection of local fields corresponding to
the completions of k with respect to its absolute values; when k = Q, these completions are
the field of real numbers R and the p-adic fields Qp (as you will prove on Problem Set 1).

The ring Z is a principal ideal domain (PID), as is Fq[t], and in such fields every nonzero
prime ideal is maximal and thus has an associated residue field. For both Z and Fq[t] these
residue fields are finite, but the characteristics of the residue fields of Z are all different (and
distinct from the characteristic of its fraction field), while those of Fq[t] are all the same.
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We will spend the first part of this course fleshing out this picture, in which we are
particularly interested in understanding the integral closure of the rings Z and Fq[t] in finite
extensions of their fraction fields (such integral closures are known as rings of integers),
and the prime ideals of these rings. Where possible we will treat number fields and function
fields on an equal footing, but we will also note some key differences. Surprisingly, the
apparently more complicated function field setting often turns out to be simpler than the
number field setting; for example, the analog of the Riemann hypothesis in the function
field setting (the Riemann hypothesis for curves), is not an open problem. It was proved
by André Weil in the 1940s [5]; a further generalization to varieties of arbitrary dimension
was proved by Pierre Deligne in the 1970s [3].

Zeta functions provide the tool we need to understand the distribution of primes, both
in general, and within particular residue classes; the proofs of the prime number theorem
and Dirichlet’s theorem on primes in arithmetic progressions both use zeta functions in an
essential way. Dirichlet’s theorem states that for each integer m > 1 and each integer a
coprime to m, there are infinitely many primes p ≡ a mod m. In fact, more is true: the
Chebotarev density theorem tells us that for each modulus m the primes are equidistributed
among the residue classes of the integers a coprime to m. We will see this and several other
applications of the Chebotarev density theorem in the later part of the course.

Before we begin, let us note the following.

Remark 1.1. Our rings always have a multiplicative identity that is preserved by ring
homomorphisms (so the zero ring in which 1 = 0 is not an initial object in the category
of rings, but it is the terminal object in this category). Except where noted otherwise, the
rings we shall consider are all commutative.

1.2 Absolute values

We begin with the general notion of an absolute value on a field; a reference for much of
this material is [4, Chapter 1].

Definition 1.2. An absolute value on a field k is a map | | : k → R≥0 such that for all
x, y ∈ k the following hold:

1. |x| = 0 if and only if x = 0;

2. |xy| = |x||y|;
3. |x+ y| ≤ |x|+ |y|.

If the stronger condition

4. |x+ y| ≤ max(|x|, |y|)

also holds, then the absolute value is nonarchimedean; otherwise it is archimedean.

Example 1.3. The map | | : k → R≥0 defined by

|x| =

{
1 if x 6= 0,

0 if x = 0,

is the trivial absolute value on k. It is nonarchimedean.
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Lemma 1.4. An absolute value | | on a field k is nonarchimedean if and only if

| 1 + · · ·+ 1︸ ︷︷ ︸
n

| ≤ 1

for all n ≥ 1.

Proof. See Problem Set 1.

Corollary 1.5. In a field of positive characteristic every absolute value is nonarchimedean,
and the only absolute value on a finite field is the trivial one.

Definition 1.6. Two absolute values | | and | |′ on the same field k are equivalent if there
exists an α ∈ R>0 for which |x|′ = |x|α for all x ∈ k.

1.3 Absolute values on Q

To avoid confusion we will denote the usual absolute value on Q (inherited from R) by | |∞;
it is an archimedean absolute value. But there are are infinitely many others. Recall that
any element of Q× may be written as ±

∏
q q

eq , where the product ranges over primes and
the exponents eq ∈ Z are uniquely determined (as is the sign).

Definition 1.7. For a prime p the p-adic valuation vp : Q→ Z is defined by

vp

(
±
∏
q

qeq

)
:= ep,

and we define vp(0) :=∞. The p-adic absolute value on Q is defined by

|x|p := p−vp(x),

where |0|p = p−∞ is understood to be 0.

Theorem 1.8 (Ostrowski’s Theorem). Every nontrivial absolute value on Q is equiva-
lent to | |p for some p ≤ ∞.

Proof. See Problem Set 1.

Theorem 1.9 (Product Formula). For every x ∈ Q× we have∏
p≤∞
|x|p = 1.

Proof. See Problem Set 1.

1.4 Discrete valuations

Definition 1.10. A valuation on a field k is a group homomorphism k× → R such that for
all x, y ∈ k we have

v(x+ y) ≥ min(v(x), v(y)).

We may extend v to a map k → R ∪ {∞} by defining v(0) := ∞. For any any 0 < c < 1,
defining |x|v := cv(x) yields a nonarchimedean absolute value. The image of v in R is the
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value group of v. We say that v is a discrete valuation if its value group is equal to Z
(every discrete subgroup of R is isomorphic to Z, so we can always rescale a valuation with
a discrete value group so that this holds). Given a field k with valuation v, the set

A := {x ∈ k : v(x) ≥ 0},

is the valuation ring of k (with respect to v). A discrete valuation ring (DVR) is an integral
domain that is the valuation ring of its fraction field with respect to a discrete valuation;
such a ring A cannot be a field, since v(FracA) = Z 6= Z≥0 = v(A).

It is easy to verify that every valuation ring A is a in fact a ring, and even an integral
domain (if x and y are nonzero then v(xy) = v(x) + v(y) 6= ∞, so xy 6= 0), with k as its
fraction field. Notice that for any x ∈ k× we have v(1/x) = v(1)−v(x) = −v(x), so at least
one of x and 1/x has nonnegative valuation and lies in A. It follows that x ∈ A is invertible
(in A) if and only if v(x) = 0, hence the unit group of A is

A× = {x ∈ k : v(x) = 0},

We can partition the nonzero elements of k according to the sign of their valuation. Elements
with valuation zero are units in A, elements with positive valuation are non-units in A, and
elements with negative valuation do not lie in A, but their multiplicative inverses are non-
units in A. This leads to a more general notion of a valuation ring.

Definition 1.11. A valuation ring is an integral domain A with fraction field k with the
property that for every x ∈ k, either x ∈ A or x−1 ∈ A.

Let us now suppose that the integral domain A is the valuation ring of its fraction
field with respect to some discrete valuation v (which we shall see is uniquely determined).
Any element π ∈ A for which v(π) = 1 is called a uniformizer. Uniformizers exist, since
v(A) = Z≥0. If we fix a uniformizer π, every x ∈ k× can be written uniquely as

x = uπn

where n = v(x) and u = x/πn ∈ A× and uniquely determined. It follows that A is a unique
factorization domain (UFD), and in fact A is a principal ideal domain (PID). Indeed, every
nonzero ideal of A is equal to

(πn) = {a ∈ A : v(a) ≥ n},

for some integer n ≥ 0. Moreover, the ideal (πn) depends only on n, not the choice of
uniformizer π: if π′ is any other uniformizer its unique representation π′ = uπ1 differs
from π only by a unit. The ideals of A are thus totally ordered, and the ideal

m = (π) = {a ∈ A : v(a) > 0}

is the unique maximal ideal of A (and also the only nonzero prime ideal of A).

Definition 1.12. A local ring is a commutative ring with a unique maximal ideal.

Definition 1.13. The residue field of a local ring A with maximal ideal m is the field A/m.
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We can now see how to determine the valuation v corresponding to a discrete valuation
ring A. Given a discrete valuation ring A with unique maximal ideal m, we may define
v : A → Z by letting v(a) be the unique integer n for which (a) = mn and v(0) := ∞.
Extending v to the fraction field k of A via v(a/b) := v(a)−v(b) gives a discrete valuation v
on k for which A = {x ∈ k : v(x) ≥ 0} is the corresponding valuation ring.

Notice that any discrete valuation v on k with A as its valuation ring must satisfy
v(π) = 1 for some π ∈ m (otherwise v(k) 6= Z), and we then have v(π) = 1 if and only if
m = (π). Moreover, v must then coincide with the discrete valuation we just defined: for
any DVR A, the discrete valuation on the fraction field of A that yields A as its valuation
ring is uniquely determined. It follows that we could have defined a uniformizer to be any
generator of the maximal ideal of A without reference to a valuation.

Example 1.14. For the p-adic valuation vp : Q→ Z ∪ {∞} we have the valuation ring

Z(p) :=
{a
b

: a, b ∈ Z, p 6 | b
}
,

with maximal ideal m = (p); this is the localization of the ring Z at the prime ideal (p).
The residue field is Z(p)/pZ(p) ' Z/pZ ' Fp.

Example 1.15. For any field k, the valuation v : k((t))→ Z∪ {∞} on the field of Laurent
series over k defined by

v

∑
n≥n0

ant
n

 = n0,

where an0 6= 0, has valuation ring k[[t]], the power series ring over k. For f ∈ k((t))×, the
valuation v(f) ∈ Z is the order of vanishing of f at zero. For every α ∈ k one can similarly
define a valuation vα on k as the order of vanishing of f at α by taking the Laurent series
expansion of f about α.

1.5 Discrete Valuation Rings

Discrete valuation rings are in many respects the nicest rings that are not fields. In addition
to being an integral domain, every discrete valuation ring A enjoys the following properties:

• noetherian: Every increasing sequence I1 ⊆ I2 ⊆ · · · of ideals eventually stabilizes;
equivalently, every ideal is finitely generated.

• principal ideal domain: Every ideal is principal (generated by a single element).

• local : There is a unique maximal ideal m.

• dimension one: The (Krull) dimension of a ring R is the supremum of the lengths n
of all chains of prime ideals p0 ( p1 ( · · · ( pn (which need not be finite, in general).
For DVRs, (0) ⊆ m is the longest chain of prime ideals, with length 1.

• regular : The dimension of the A/m-vector space m/m2 is equal to the dimension of A.
Non-local rings are regular if this holds for every localization at a prime ideal.

• integrally closed (or normal): Every element of the fraction field of A that is the root
of a monic polynomial in A[x] lies in A.

• maximal : There are no intermediate rings strictly between A and its fraction field.
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Various combinations of these properties can be used to uniquely characterize discrete
valuation rings (and hence give alternative definitions).

Theorem 1.16. For an integral domain A, the following are equivalent:

• A is a DVR.

• A is a noetherian valuation ring that is not a field.

• A is a local PID that is not a field.

• A is an integrally closed noetherian local ring of dimension one.

• A is a regular noetherian local ring of dimension one.

• A is a noetherian local ring whose maximal ideal is nonzero and principal.

• A is a maximal noetherian ring of dimension one.

Proof. See [1, §23] or [2, §9].

1.6 Integral extensions

Integrality plays a key role in number theory, so it is worth discussing it in more detail.

Definition 1.17. Given a ring extension A ⊆ B, an element b ∈ B is integral over A if is
a root of a monic polynomial in A[x]. The ring B is integral over A if all its elements are.

Proposition 1.18. Let α, β ∈ B be integral over A ⊆ B. Then α+ β and αβ are integral
over A.

Proof. Let f ∈ A[x] and g ∈ A[y] be such that f(a) = g(b) = 0, where

f(x) = a0 + a1x+ · · ·+ am−1x
m−1 + xm,

g(y) = b0 + b1y + · · ·+ bn−1y
n−1 + yn.

It suffices to consider the case

A = Z[a0, . . . , am−1, b0, . . . , bn−1], and B =
A[x, y]

(f(x), g(y))
,

with α and β equal to the images of x and y in B, respectively, since given any A′ ⊆ B′

we have homomorphisms A → A′ defined by ai → ai and bi → bi and B → B′ defined by
x 7→ α and y 7→ β, and if x + y, xy ∈ B are integral over A then α + β, αβ ∈ B′ must be
integral over A′.

Let k be the algebraic closure of the fraction field of A, and let α1, . . . , αm be the roots
of f in k and let β1, . . . , βn be the roots of g in k. The polynomial

h(z) =
∏
i,j

(
z − (αi + βj)

)
has coefficients that may be expressed as polynomials in the symmetric functions of the αi
and βj , equivalently, the coefficients ai and bj of f and g, respectively. Thus h ∈ A[z], and
h(x+y) = 0, so x+y is integral over A. Applying the same argument to h(z) =

∏
i,j(z−αiβj)

shows that xy is also integral over A.
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Definition 1.19. Given a ring extension B/A, the ring Ã = {b ∈ B : b is integral over A}
is the integral closure of A in B. When Ã = A we say that A is integrally closed in B. For
a domain A, its integral closure (or normalization) is its integral closure in its fraction field,
and A is integrally closed (or normal) if it is integrally closed in its fraction field.

Proposition 1.20. If C/B/A is a tower of ring extensions in which B is integral over A
and C is integral over B then C is integral over A.

Proof. See [1, Thm. 10.27] or [2, Cor. 5.4].

Corollary 1.21. If B/A is a ring extension, then the integral closure of A in B is integrally
closed in B.

Proposition 1.22. The ring Z is integrally closed.

Proof. We apply the rational root test: suppose r/s ∈ Q is integral over Z, where r and s
are coprime integers. Then(r

s

)n
+ an−1

(r
s

)n−1
+ · · · a1

(r
s

)
+ a0 = 0

for some a0, . . . , an−1 ∈ Z. Clearing denominators yields

rn + an−1sr
n−1 + · · · a1sn−1r + a0s

n = 0,

thus rn = −s(an−1rn−1 + · · · a1sn−2r+ a0s
n−1) is a multiple of s. But r and s are coprime,

so s = ±1 and therefore r/s ∈ Z.

Corollary 1.23. Every unique factorization domain is integrally closed. In particular,
every PID is integrally closed.

Proof. The proof of Proposition 1.22 works for any UFD.

Example 1.24. The ring Z[
√

5] is not a UFD (nor a PID) because it is not integrally
closed: consider φ = (1 +

√
5)/2 ∈ FracZ[

√
5], which is integral over Z (and hence over

Z[
√

5]), since φ2 − φ− 1 = 0. But φ 6∈ Z[
√

5], so Z[
√

5] is not integrally closed.

The corollary implies that every discrete valuation ring is integrally closed. In fact, more
is true.

Proposition 1.25. Every valuation ring is integrally closed.

Proof. Let A be a valuation ring with fraction field k and let α ∈ k be integral over A.
Then

αn + an−1α
n−1 + an−2α

n−2 + · · ·+ a1α+ a0 = 0

for some a0, a1, . . . , an−1 ∈ A. Suppose α 6∈ A. Then α−1 ∈ A, since A is a valuation ring.
Multiplying the equation above by α−(n−1) ∈ A and moving all but the first term on the
LHS to the RHS yields

α = −an−1 − an−1α−1 − · · · − a1α2−n − a0α1−n ∈ A,

contradicting our assumption that α 6∈ A. It follows that A is integrally closed.
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Definition 1.26. A number field K is a finite extension of Q. The ring of integers OK is
the integral closure of Z in K.

Remark 1.27. The notation ZK is also sometimes used to denote the ring of integers of K.
The symbol O emphasizes the fact that OK is an order in K; in any Q-algebra K of finite
dimension r, an order is a subring of K that is also a free Z-module of rank r, equivalently,
a Z-lattice in K that is also a ring. In fact, OK is the maximal order of K: it contains
every order in K.

Proposition 1.28. Let A be an integrally closed domain with fraction field K. Let α be
an element of a finite extension L/K, and let f ∈ K[x] be its minimal polynomial over K.
Then α is integral over A if and only if f ∈ A[x].

Proof. The reverse implication is immediate: if f ∈ A[x] then certainly α is integral over A.
For the forward implication, suppose α is integral over A and let g ∈ A[x] be a monic
polynomial for which g(α) = 0. In K[x] we may factor f(x) as

f(x) =
∏
i

(x− αi).

For each αi we have a field embedding K(α) → K that sends α to αi and fixes K. As
elements of K we have g(αi) = 0 (since f(αi) = 0 and f must divide g), so each αi ∈ K is
integral over A and lies in the integral closure Ã of A in K. Each coefficient of f ∈ K[x]
can be expressed as a sum of products of the αi, and is therefore an element of the ring Ã
that also lies in K. But A = Ã ∩K, since A is integrally closed in its fraction field K.

Example 1.29. We saw in Example 1.24 that (1 +
√

5)/2 is integral over Z. Now consider
α = (1 +

√
7)/2. Its minimal polynomial x2 − x− 3/2 6∈ Z[x], so α is not integral over Z.
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2 Localization and Dedekind domains

After a brief review of some commutative algebra background on localizations, in this lecture
we begin our study of Dedekind domains, which are commutative rings that play a key role
in algebraic number theory and arithmetic geometry (named after Richard Dedekind).

2.1 Localization of rings

Let A be a commutative ring (unital, as always), and let S be a multiplicative subset of A;
this means S is closed under finite products (including the empty product, so 1 ∈ S), and S
does not contain zero. The localization of A with respect to S is a ring S−1A equipped with
a ring homomorphism ι : A→ S−1A that maps S into (S−1A)× and satisfies the following
universal property: if ϕ : A → B is a ring homomorphism with ϕ(S) ⊆ B× then there is a
unique ring homomorphism S−1A→ B that makes the following diagram commute:

A B

S−1A

← →ϕ

←

→
ι ← →∃!

and one says that ϕ factors uniquely through S−1A (via ι). As usual with universal prop-
erties, this guarantees that S−1A is unique (hence well-defined), provided that it exists. To
prove existence we construct S−1A as the quotient of A×S modulo the equivalence relation

(a, s) ∼ (b, t)⇔ ∃u ∈ S such that (at− bs)u = 0. (1)

We then use a/s to denote the equivalence class of (a, s) and define ι(a) := a/1; one can
easily verify that S−1A is a ring with additive identity 0/1 and multiplicative identity 1/1,
and that ι : A → S−1A is a ring homomorphism. If s is invertible in A we can view
a/s either as the element as−1 of A or the equivalence class of (a, s) in S−1A; we have
(a, s) ∼ (a/s, 1), since (a ·1−a/s ·s) ·1 = 0, so this notation should not cause any confusion.
For s ∈ S we have ι(s)−1 = 1/s, since (s/1)(1/s) = s/s = 1/1 = 1, thus ι(S) ⊆ (S−1A)×.

If ϕ : A → B is a ring homomorphism with ϕ(S) ⊆ B×, then ϕ = π ◦ ι, where π is
defined by π(a/s) := ϕ(a)ϕ(s)−1. If π : S−1A→ B is any ring homomorphism that satisfies
ϕ = π ◦ ι, then ϕ(a)ϕ(s)−1 = π(ι(a))π(ι(s))−1 = π(ι(a)ι(s)−1) = π((a/1)(1/s)) = π(a/s),
so π is unique.

In the case of interest to us, A is actually an integral domain, in which case (a, s) ∼ (b, t)
if and only if at− bs = 0 (we can always take u = 1 in the equivalence relation (1) above),
and we can then identify S−1A with a subring of the fraction field of A (which we note is
the localization of A with respect to S = A6=0), and if T is a multiplicative subset A that
contains S, then S−1A ⊆ T−1A.

When A is an integral domain the map ι : A→ S−1A is injective, allowing us to identify
A with its image ι(A) ⊆ S−1A (in general, ι is injective if and only if S contains no zero
divisors). When A is an integral domain we may thus view S−1A as an intermediate ring
that lies between A and its fraction field: A ⊆ S−1A ⊆ FracA.

2.2 Ideals in localizations of rings

If ϕ : A → B is a ring homomorphism and b is a B-ideal, then ϕ−1(b) is an A-ideal called
the contraction of b to A and sometimes denoted bc; when A is a subring of B and ϕ is
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the inclusion map we simply have bc = b ∩ A. If a is an A-ideal, in general ϕ(a) is not
a B-ideal; but we can instead consider the B-ideal generated by ϕ(a), the extension of a
to B, sometimes denoted ae.

In the case of interest to us, A is an integral domain, B = S−1A is the localization of A
with respect to some multiplicative set S, and ϕ = ι is injective, so we view A as a subring
of B. We then have

ae = aB := (ab : a ∈ a, b ∈ B). (2)

We clearly have a ⊆ ϕ−1((ϕ(a))) = aec and bce = (ϕ(ϕ−1(b))) ⊆ b; one might ask whether
these inclusions are equalities. In general the first is not: if B = S−1A and a ∩ S 6= ∅ then
ae = aB = B and aec = B ∩ A are both unit ideals, but we may still have a ( A. However
when B = S−1A the second inclusion is an equality; see [1, Prop. 11.19] or [2, Prop. 3.11]
for a short proof. We also note the following theorem.

Theorem 2.1. Let S be a multiplicative subset of an integral domain A. There is a one-
to-one correspondence between the prime ideals of S−1A and the primes ideals of A that do
not intersect S given by the inverse maps q 7→ q ∩A and p 7→ pS−1A.

Proof. See [1, Cor. 11.20] or [2, Prop. 3.11.iv].

Remark 2.2. An immediate consequence of (2) is that if a1, . . . , an ∈ A generate a as an
A-ideal, then they also generate ae = aB as a B-ideal. As noted above, when B = S−1A
we have b = bce, so every B-ideal is of the form ae (take a = bc). It follows that if A is
noetherian then so are all its localizations, and if A is a PID then so are all of its localizations.

An important special case of localization occurs when p is a prime ideal in an integral
domain A, and S = A − p (the complement of the set p in the set A). In this case it is
customary to denote S−1A by

Ap := {a/b : a ∈ A, b 6∈ p}/ ∼, (3)

and call it the localization of A at p. The prime ideals of Ap are then in bijection with the
prime ideals of A that lie in p. It follows that pAp is the unique maximal ideal of Ap and
Ap is therefore a local ring (whence the term localization).

Warning 2.3. The notation in (3) makes it tempting to assume that if a/b is an element
of FracA, then a/b ∈ Ap if and only if b 6∈ p. This is not necessarily true! As an element
of FracA, the notation “a/b” represents an equivalence class; if a/b = a′/b′ with b′ 6∈ Ap,
then in fact a/b = a′/b′ ∈ Ap. As a trivial example, take A = Z, p = (3), a/b = 9/3 and
a′/b′ = 3/1. You may object that we should write a/b in lowest terms, but when A is not
a unique factorization domain it is not clear what this means.

Example 2.4. For a field k, let A = k[x] and p = (x− 2). Then

Ap = {f ∈ k(x) : f is defined at 2}.

The ring A is a PID, so Ap is a PID with a unique nonzero maximal ideal (the ideal pAp),
hence a DVR. Its maximal ideal is

pAp = {f ∈ k(x) : f(2) = 0}.

The valuation on the field k(x) = FracA corresponding to the valuation ring Ap measures
the order of vanishing of functions f ∈ k(x) at 2. The residue field is Ap/pAp ' k, and the
quotient map Ap � Ap/pAp sends f to f(2).
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Example 2.5. Let p ∈ Z be a prime. Then Z(p) = {a/b : a, b ∈ Z, p - b}. As in the previous
example, Z is a PID and Z(p) is a DVR; the valuation on Q is the p-adic valuation. The
residue field is Z(p)/pZ(p) ' Fp and the quotient map Z(p) � Fp is reduction modulo p.

2.3 Localization of modules

The concept of localization generalizes immediately to modules. As above, let A be a
commutative ring, let S a multiplicative subset of A, and let M be an A-module. The
localization S−1M of M with respect to S is an S−1A-module equipped with an A-module
homomorphism ι : M → S−1M with the universal property that if N is an S−1A-module
and ϕ : M → N is an A-module homomorphism, then ϕ factors uniquely through S−1M
(via ι). Note that in this definition we are viewing S−1A-modules as A-modules via the
canonical homomorphism A→ S−1A that is part of the definition of S−1A. Our definition
of S−1M reduces to the definition of S−1A in the case M = A.

The explicit construction of S−1M is exactly the same as S−1A, one takes the quotient
of the S−1A-module M × S modulo the same equivalence relation as in (1):

(a, s) ∼ (b, t)⇔ ∃u ∈ S such that (at− bs)u = 0,

where a and b now denote elements of M , and ι(a) := a/1 as before. Alternatively, one can
define S−1M := M ⊗A S−1A (see [2, Prop. 3.5] for a proof that this is equivalent). In other
words, S−1M is the base change of M from A to S−1A; we will discuss base change more
generally in later lectures.

The map ι : M → S−1M is injective if and only if the map M
×s−→ M is injective for

every s ∈ S. This is a strong condition that does not hold in general, even when A is an
integral domain (the annihilator of M may be non-trivial), but it applies to all the cases we
care about. In particular, if A lies in a field K (in which case A must be an integral domain
whose fraction field lies in K) and M is an A-module that is contained in a K-vector space.
In this setting multiplication by any nonzero s ∈ A is injective and we can view M as an
A-submodule of any of its localizations S−1M .

We will mostly be interested in the case S = A − p, where p is a prime ideal of A, in
which case we write Mp for S−1M , just as we write Ap for S−1A.

Proposition 2.6. Let A be a subring of a field K, and let M be an A-module contained in
a K-vector space V (equivalently, for which the map M →M ⊗A K is injective).1 Then

M =
⋂
m

Mm =
⋂
p

Mp,

where m ranges over the maximal ideals of A, p ranges over the prime ideals of A, and the
intersections take place in V .

Proof. The fact that M ⊆
⋂

mMm is immediate. Now suppose x ∈
⋂

mMm and consider
the A-ideal a := {a ∈ A : ax ∈ M}. For each maximal ideal m we can write x = m/s for
some m ∈ M and s ∈ A − m; we then have sx ∈ M and s ∈ a, but s 6∈ m, so a 6⊆ m. It
follows that a and must be the unit ideal, so 1 ∈ a and x = 1 · x ∈M ; thus ∩mMm ⊆M .

We now note that each Mp contains some Mm (since each p is contained in some m),
and every maximal ideal is prime, so ∩mMm = ∩pMp.

1The image is a tensor product of A-modules that is also a K-vector space. We need the natural map to
be injective in order to embed M in it. Note that V necessarily contains a subspace isomorphic to M ⊗A K.
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An important special case of this proposition occurs when K = FracA and V = K, in
which case M is an A-submodule of K. Every ideal I of A is an A-submodule of K, and
can thus be localized as above. The localization of I (as an A-module) at a prime ideal p
of A is the same thing as the extension of I (as an A-ideal) to the localization of A at p. In
other words,

Ip = {i/s : i ∈ I, s ∈ A− p} = {ia/s : i ∈ I, a ∈ A, s ∈ A− p} = IAp.

We also have the following corollary of Proposition 2.6.

Corollary 2.7. Let A be an integral domain. Every ideal I of A (including I = A) is equal
to the intersection of its localizations at the maximal ideals of A, and also to the intersection
of its localizations at the prime ideals of A.

Example 2.8. If A = Z then Z =
⋂
p Z(p) in Q.

Proposition 2.6 and Corollary 2.7 are powerful tools, because they allow us work in
local rings (rings with just one maximal ideal), which often simplifies matters considerably.
For example, to prove that an ideal I in an integral domain A satisfies a certain property,
it is enough to show that this property holds for all its localizations Ip at prime ideals p
and is preserved under intersections. We now want to consider rings A that satisfy some
further assumptions that make its localizations become even easier to work with.

2.4 Dedekind domains

Proposition 2.9. Let A be a noetherian domain. The following are equivalent:

(i) For every nonzero prime ideal p ⊂ A the local ring Ap is a DVR.

(ii) The ring A is integrally closed and dimA ≤ 1.

Proof. If A is a field then (i) and (ii) both hold, so let us assume that A is not a field, and
put K := FracA. We first show that (i) implies (ii). Recall that dimA is the supremum
of the length of all chains of prime ideals. It follows from Theorem 2.1 that every chain
of prime ideals (0) ( p1 ( · · · ( pn extends to a corresponding chain in Apn of the same
length; conversely, every chain in Ap contracts to a chain in A of the same length. Thus

dimA = sup{dimAp : p ∈ SpecA} = 1,

since every Ap is either a DVR (p 6= (0)), in which case dimAp = 1, or a field (p = (0)), in
which case dimAp = 0. Any x ∈ K that is integral over A is integral over every Ap (since
they all contain A), and the Ap are integrally closed, since they are DVRs or fields. So
x ∈

⋂
pAp = A, and therefore A is integrally closed, which shows (ii).

To show that (ii) implies (i), we first show that the following properties are all inherited
by localizations of a ring: (1) no zero divisors, (2) noetherian, (3) dimension at most one,
(4) integrally closed. (1) is obvious, (2) was noted in Remark 2.2, and (3) follows from
Theorem 2.1 since, as argued above, we have dimAp ≤ dimA. To show (4), suppose x ∈ K
is integral over Ap. Then

xn +
an−1
sn−1

xn−1 + · · ·+ a1
s1
x+

a0
s0

= 0
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for some a0, . . . , an−1 ∈ A and s0, . . . , sn−1 ∈ A − p. Multiplying both sides by sn, where
s = s0 · · · sn−1 ∈ S, shows that sx is integral over A, hence an element of A, since A is
integrally closed. But then sx/s = x is an element of Ap, so Ap is integrally closed as
claimed.

Thus (ii) implies that every Ap is an integrally closed noetherian local domain of di-
mension at most 1, and for p 6= (0) we must have dimAp = 1. Thus for every nonzero
prime ideal p, the ring Ap is an integrally closed noetherian local domain of dimension 1,
and therefore a DVR, by Theorem 1.16.

Definition 2.10. A noetherian domain satisfying either of the equivalent properties of
Proposition 2.9 is called a Dedekind domain.

Corollary 2.11. Every PID is a Dedekind domain. In particular, Z is a Dedekind domain,
as is k[x] for any field k.

Remark 2.12. Every PID is both a UFD and a Dedekind domain. Not every UFD is a
Dedekind domain (consider k[x, y], for any field k), and not every Dedekind domain is a
UFD (consider Z[

√
−13], in which (1 +

√
−13)(1 −

√
−13) = 2 · 7 = 14). However (as we

shall see), every ring that is both a UFD and a Dedekind domain is a PID.

One of our first goals in this course is to prove that ring of integers of number fields
and coordinate rings of global function fields are Dedekind domains. More precisely, we will
prove that if A is a Dedekind domain and L is a finite separable extension of its fraction
field, then the integral closure of A in L is a Dedekind domain. This includes the two main
cases of interest to us, in which either A = Z and L is a number field, or A = Fq[t] and L is
a global function field. Recall from Lecture 1 that number fields and global function fields
are the two types of global fields (as we will prove in later lectures).

2.5 Fractional ideals

Throughout this subsection, A is a noetherian domain (not necessarily a Dedekind domain)
and K is its fraction field.

Definition 2.13. A fractional ideal of a noetherian domain A is a finitely generated A-
submodule of its fraction field.

Fractional ideals generalize the notion of an ideal: when A is noetherian the ideals of
A are precisely the finitely generated A-submodules of A, and when A is also a domain we
can extend this notion to its fraction field. Every ideal of A is also a fractional ideal of A,
but fractional ideals are typically not ideals because they need not be contained in A. Some
authors use the term integral ideal to distinguish the fractional ideals that lie in A (and are
thus ideals) but we will not use this terminology.

Lemma 2.14. Let A be a noetherian domain with fraction field K, and let I ⊆ K be an
A-module. Then I is finitely generated if and only if aI ⊆ A for some nonzero a ∈ A.

Proof. For the forward implication, if r1/s1, . . . , rn/sn generate I as an A-module, then
aI ⊆ A for a = s1 · · · sn. Conversely, if aI ⊆ A, then aI is an ideal, hence finitely generated
(since A is noetherian), and if a1, . . . , an generate aI then a1/a, . . . , an/a generate I.
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Remark 2.15. Lemma 2.14 gives an alternative definition of fractional ideals that can be
extended to domains that are not necessarily noetherian; they are A-submodules I of K for
which there exists a nonzero r ∈ A such that rI ⊆ A. When A is noetherian this coincides
with our definition above.

Corollary 2.16. Every fractional ideal of A can be written in the form 1
aI, for some nonzero

a ∈ A and ideal I.

Definition 2.17. A fractional ideal of A is principal if it is generated by one element, that
is, it has the form xA for some x ∈ K. We will also use the notation (x) := xA to denote
the principal fractional ideal generated by x ∈ K.

As with ideals, we can add and multiply fractional ideals:

I + J := (i+ j : i ∈ I, j ∈ J), IJ := (ij : i ∈ I, j ∈ J).

Here the notation (S) means the A-module generated by S ⊆ K. As with ideals, we
actually have I +J = {i+ j : i ∈ I, j ∈ J}, but the ideal IJ is typically not the same as set
{ij : i ∈ I, j ∈ J}, it consists of all finite sums of elements in this set. We also have a new
operation, corresponding to division. For any fractional ideals I, J with J nonzero, the set

(I : J) := {x ∈ K : xJ ⊆ I}

is called a colon ideal. Some texts refer to (I : J) as the ideal quotient of I by J , but note
that it is not a quotient of A-modules (for example, (Z : Z) = Z but Z/Z = {0}).

We do not assume I ⊆ J (or J ⊆ I), the definition makes sense for any fractional ideals
I and J with J nonzero. 2 If I = (x) and J = (y) are principal fractional ideals then
(I : J) = (x/y), so colon ideals can be viewed as a generalization of division in K×.

Lemma 2.18. Let I and J be fractional ideals of a noetherian domain A with J nonzero.
Then (I : J) is a fractional ideal of A.

Proof. It is clear from the definition that (I : J) is closed under addition and multiplication
by elements of A (since I is), so (I : J) is an A-module of the fraction field of A. To
show that (I : J) is finitely generated, we first suppose that I, J ⊆ A are ideals. For
any nonzero j ∈ J ⊆ A we have j(I : J) ⊆ I ⊆ A, so (I : J) is finitely generated,
by Lemma 2.14. For the general case, choose a and b so that aI ⊆ A and bJ ⊆ A via
Lemma 2.14. Then (I : J) = (abI : abJ) with abI, abJ ⊆ A, which we have already shown
is finitely generated.

Definition 2.19. A fractional ideal I is invertible if IJ = A for some fractional ideal J .

Inverses are unique when they exist: if IJ = A = IJ ′ then J = JA = JIJ ′ = AJ ′ = J ′.
We may use I−1 to denote the inverse of a fractional ideal I when it exists.

Lemma 2.20. A fractional ideal I of A is invertible if and only if I(A : I) = A (in which
case (A : I) is its inverse).

Before proving the lemma, note that I(A : I) ⊆ A always holds, since for y ∈ I and
x ∈ (A : I) we have xy ∈ xI ⊆ A, by the definition of (A : I). The lemma states that this
inclusion is an equality precisely when I is invertible.

2The definition still makes sense when J is the zero ideal, but (I : (0)) = K will typically not be finitely
generated as an A-module, hence not a fractional ideal.
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Proof. Suppose I is invertible, with IJ = A. Then jI ⊆ A for all j ∈ J , so J ⊆ (A : I),
and A = IJ ⊆ I(A : I) ⊆ A, so I(A : I) = A.

In the next lecture we will prove that in a Dedekind domain every nonzero fractional
ideal is invertible, but let us first note that this is not true in general.

Example 2.21. Consider the subring A := Z+2iZ of the Gaussian integers (with i2 = −1).
The set I := 2Z[i] is a non-invertible A-ideal (even though it is an invertible Z[i]-ideal);
indeed, we have (A : I) = Z[i] and I(A : I) = 2Z[i] ( A.
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3 Properties of Dedekind domains

In the previous lecture we defined a Dedekind domain as a noetherian domain A that
satisfies either of the following equivalent conditions:

• the localizations of A at its nonzero prime ideals are all discrete valuation rings;

• A is integrally closed and has dimension at most one.

In this lecture we will establish several additional properties enjoyed by Dedekind domains,
the most significant of which is unique factorization of ideals. As we noted last time,
Dedekind domains are typically not unique factorization domains (this occurs if and only if
it is also a principal ideal domain), but ideals can be uniquely factored into prime ideals.

3.1 Invertible fractional ideals and the ideal class group

In this section A is a noetherian domain (not necessarily a Dedekind domain) and K is its
fraction field. Recall that a fractional ideal of A is a finitely generated A-submodule of K,
and if I and J are fractional ideals, so is the colon ideal

(I : J) := {x ∈ K : xJ ⊆ I},

and we that a fractional ideal I is invertible if IJ = A for some fractional ideal J . The
definition of (A : I) implies I(A : I) ⊆ A, and Lemma 2.20 implies that I is invertible
precisely when this inclusion is an equality, in which case the inverse of I is (A : I).

Ideal multiplication is commutative and associative, thus the set of nonzero fractional
ideals of a noetherian domain form an abelian monoid under multiplication with A = (1)
as the identity. It follows that the subset of invertible fractional ideals is an abelian group.

Definition 3.1. The ideal group IA of a noetherian domain A is the group of invertible
fractional ideals. Note that, despite the name, elements of IA need not be ideals.

Every nonzero principal fractional ideal (x) is invertible (since (x)−1 = (x−1)), and a
product of principal fractional ideals is principal (since (x)(y) = (xy)), as is the unit ideal
(1), thus the set of nonzero principal fractional ideals PA is a subgroup of IA.

Definition 3.2. Let A be a noetherian domain. The quotient cl(A) := IA/PA is the ideal
class group of A; it is also called the Picard group of A and denoted Pic(A).1

Example 3.3. If A is a DVR with uniformizer π then its nonzero fractional ideals are the
principal fractional ideals (πn) with n ∈ Z (including n ≤ 0). We have (πm)(πn) = (πm+n),
thus the ideal group of A is isomorphic to Z (under addition). In this case PA = IA and
the ideal class group cl(A) is trivial.

Remark 3.4. A Dedekind domain is a UFD if and only if its ideal class group is trivial (see
Corollary 3.19 below), thus cl(A) may be viewed as a measure of how far A is from being
a UFD. More generally, the ideal class group of an integrally closed noetherian domain A

1In general, the Picard group of a commutative ring A as the group of isomorphism classes of A-modules
that are invertible under tensor product (equivalently, projective modules of rank one). When A is a
noetherian domain, the Picard group of A is canonically isomorphic to the ideal class group of A and the
two notions may be used interchangeably.
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is trivial when A is a UFD, and the converse holds if one replaces the ideal class group
with the divisor class group. One defines a divisor as an equivalence class of fractional
ideals modulo the equivalence relation I ∼ J ⇔ (A : I) = (A : J), and in an integrally
closed noetherian domain A (or more generally, a Krull domain), the set of divisors forms
a group that contains principal divisors as a subgroup; the divisor class group is defined
as the quotient, and it is trivial if and only if A is a UFD (this holds more generally for
any Krull domain, see [2, Thm. 8.34]). In a Dedekind domain, fractional ideals are always
distinct as divisors and every nonzero fractional ideal is invertible, so the ideal class group
and divisor class group coincide.2

3.2 Invertible ideals in Dedekind domains

In order to prove that every nonzero fractional ideal in a Dedekind domain is invertible, we
first note that arithmetic of fractional ideals behaves well under localization.

Lemma 3.5. Let I and J be fractional ideals of A of a noetherian domain A, and let p be
a prime ideal of A. Then Ip and Jp are fractional ideals of Ap, as are

(I + J)p = Ip + Jp, (IJ)p = IpJp, (I : J)p = (Ip : Jp).

The same applies if we localize with respect to any multiplicative subset S of A.

Proof. Ip = IAp is a finitely generated Ap-module (since I is a finitely generated A-module;
see Remark 2.2), hence a fractional ideal of Ap, and similarly for Jp. We have

(I + J)p = (I + J)Ap = IAp + JAp = Ip + Jp,

where we use the distributive law in K to get (I + J)Ap = IAp + JAp. We also have

(IJ)p = (IJ)Ap = IpJp,

since (IJ)Ap ⊆ IpJp obviously holds and by writing sums of fractions over a common
denominator we can see that IpJp ⊆ (IJ)Ap also holds. Finally

(I : J)p = {x ∈ K : xJ ⊆ I}p = {x ∈ K : xJp ⊆ Ip} = (Ip : Jp).

For the last statement, note that no part of our proof depends on the fact that we localized
with respect to a multiplicative set of the from A− p.

Theorem 3.6. Let I be a fractional ideal of a noetherian domain A. Then I is invertible
if and only if its localization at every maximal ideal of A is invertible, equivalently, if and
only if its localization at every prime ideal of A is invertible.

Proof. Suppose I is invertible. Then I(A : I) = A, and for any maximal ideal m we have
Im(Am : Im) = Am, by Lemma 3.5, so Im is also invertible.

Now suppose Im is invertible for every maximal ideal m; then Im(Am : Im) = Am for
every maximal ideal m. Applying Lemma 3.5 and Proposition 2.6 yields

I(A : I) =
⋂
m

(I(A : I))m =
⋂
m

Im(Am : Im) =
⋂
m

Am = A,

so I is invertible. The same proof works for prime ideals.
2In general, the divisor class group and the ideal class group (or Picard group) of an integrally closed

noetherian domain A may differ when dimA > 1; see [1, Thm. 19.38] for a dimension 2 an example in which
the ideal class group is trivial but the divisor class group is not (implying that A is not a UFD).
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Corollary 3.7. In a Dedekind domain every nonzero fractional ideal is invertible.

Proof. If A is Dedekind then all of its localizations at maximal ideals are DVRs, hence
PIDs, and in a PID every nonzero fractional ideal is invertible. It follows from Theorem 3.6
that every nonzero fractional ideal of A is invertible.

An integral domain in which every nonzero ideal is invertible is a Dedekind domain (see
Problem Set 2), so this gives another way to define Dedekind domains. Let us also note an
equivalent condition that will be useful in later lectures.

Lemma 3.8. A nonzero fractional ideal I in a noetherian local domain A is invertible if
and only if it is principal.

Proof. If I is principal then it is invertible, so we only need to show the converse. Let I
be an invertible fractional ideal, and let m be the maximal ideal of A. We have II−1 = A,
so
∑n

i=1 aibi = 1 for some ai ∈ I and bi ∈ I−1, and each aibi lies in II−1 = A. One of the
products aibi, say a1b1, must be a unit, otherwise the sum would not be a unit (note that
A = m t A×, since A is a local ring). For every x ∈ I we have a1b1x ∈ (a1), since b1x ∈ A
(because x ∈ I and b1 ∈ I−1). It follows that x = (a1b1)

−1a1b1x ∈ (a1), since (a1b1)
−1 ∈ A,

so we have I ⊆ (a1) ⊆ I, which shows that I = (a1) is principal.

Corollary 3.9. A nonzero fractional ideal in a noetherian domain A is invertible if and
only if it is locally principal, that is, its localization at every maximal ideal of A is principal.

3.3 Unique factorization of ideals in Dedekind domains

We are now ready to prove the main result of this lecture, that every nonzero ideal in a
Dedekind domain has a unique factorization into prime ideals. As a first step we need to
show that every ideal is contained in only finitely many prime ideals.

Lemma 3.10. Let A be a Dedekind domain and let a ∈ A be nonzero. The set of prime
ideals that contain a is finite.

Proof. Consider the following subsets S and T of the ideal group IA:

S := {I ∈ IA : (a) ⊆ I ⊆ A},
T := {I ∈ IA : A ⊆ I ⊆ (a)−1}.

The sets S and T are both non-empty (they contain A) and partially ordered by inclusion.
The elements of S are all ideals, and we have bijections

ϕ1 : S → T ϕ2 : T → S

I 7→ I−1 I 7→ aI

with ϕ1 order-reversing and ϕ2 order-preserving. The composition ϕ := ϕ2 ◦ ϕ1 is thus an
order-reversing permutation of S. Since A is noetherian, the set S satisfies the ascending
chain condition: every chain I1 ⊆ I2 ⊆ I3 ⊆ · · · of ideals in S is eventually constant. By
applying our order-reversing permutation ϕ we see that S also satisfies the descending chain
condition: every chain I1 ⊇ I2 ⊇ I3 ⊇ · · · of ideals in S is eventually constant.

Now if a lies in infinitely many distinct prime ideals p1, p2, p3, . . ., then

p1 ⊇ p1 ∩ p2 ⊇ p1 ∩ p2 ∩ p3 ⊇ · · ·
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is a descending chain of ideals in S that must stabilize. Thus for n sufficiently large we have

p1 · · · pn−1 ⊆ p1 ∩ · · · ∩ pn−1 = p1 ∩ · · · ∩ pn ⊆ pn.

The prime ideal pn contains the product p1 · · · pn−1, so it must contain one of the factors
p1, · · · , pn−1 (this is what it means for an ideal to be prime). But this contradicts dimA ≤ 1:
we cannot have a chain of prime ideals (0) ( pi ( pn of length 2 in A.

Corollary 3.11. Let I be a nonzero ideal of a Dedekind domain A. The number of prime
ideals of A that contain I is finite.

Proof. Apply Lemma 3.10 to any nonzero a ∈ I.

Example 3.12. The Dedekind domain A = C[t] contains uncountably many nonzero prime
ideals pr = (t− r), one for each r ∈ C. But any nonzero f ∈ C[t] lies in only finitely many
of them, namely, the pr for which f(r) = 0; equivalently, f has finitely many roots.

Let p be a nonzero prime ideal in a Dedekind domain A with fraction field K, let π be a
uniformizer for the discrete valuation ring Ap, and let I be a nonzero fractional ideal of A.
The localization Ip is a nonzero fractional ideal of Ap, hence of the form (πn) for some n ∈ Z
that does not depend on the choice of π (note that n may be negative). We now extend the
valuation vp : K → Z ∪ {∞} to fractional ideals by defining vp(I) := n and vp((0)) := ∞;
for any x ∈ K we have vp((x)) = vp(x).

The map vp : IA → Z is a group homomorphism: if Ip = (πm) and Jp = (πn) then

(IJ)p = IpJp = (πm)(πn) = (πm+n),

so vp(IJ) = m+n = vp(I)+vp(J). It is order-reversing with respect to the partial ordering
on IA by inclusion and the total order on Z: for any I, J ∈ IA, if I ⊆ J then vp(I) ≥ vp(J).

Lemma 3.13. Let p be a nonzero prime ideal in a Dedekind domain A. If I is an ideal
of A then vp(I) = 0 if and only if p does not contain I. In particular, if q is any nonzero
prime ideal different from p then vq(p) = vp(q) = 0.

Proof. If I ⊆ p then vp(I) ≥ vp(p) = 1 is nonzero. If I 6⊆ p then pick a ∈ I−p and note that
0 = vp(a) ≥ vp(I) ≥ vp(A) = 0, since (a) ⊆ I ⊆ A. The prime ideals p and q are nonzero,
hence maximal (since dimA ≤ 1), so neither contains the other and vq(p) = vp(q) = 0.

Corollary 3.14. Let A be a Dedekind domain with fraction field K. For each nonzero
fractional ideal I we have vp(I) = 0 for all but finitely many prime ideals p. In particular,
if x ∈ K× then vp(x) = 0 for all but finitely many p.

Proof. For I ⊆ A this follows from Corollary 3.11 and Lemma 3.13. For I 6⊆ A let I = 1
aJ

with a ∈ A and J ⊆ A. Then vp(I) = vp(J) − vp(a) = 0 − 0 = 0 for all but finitely many
prime ideals p. This holds in particular for I = (x), for any x ∈ K×.

We are now ready to prove our main theorem.

Theorem 3.15. Let A be a Dedekind domain. The ideal group IA of A is the free abelian
group generated by its nonzero prime ideals p. The isomorphism

IA '
⊕
p

Z
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is given by the inverse maps

I 7→ (. . . , vp(I), . . .)∏
p

pep ←[ (. . . , ep, . . .)

Proof. Corollary 3.14 implies that the first map is well defined (the vector associated to
I ∈ IA has only finitely many nonzero entries and is thus an element of the direct sum).
For each nonzero prime ideal p, the maps I 7→ vp(I) and ep 7→ pep are group homomorphisms,
and it follows that the maps in the theorem are both group homomorphisms. To see that
the first map is injective, note that if vp(I) = vp(J) then Ip = Jp, and if this holds for
every p then I = ∩pIp = ∩pJp = J , by Corollary 2.7. To see that it is surjective, note that
Lemma 3.13 implies that for any vector (. . . , ep, . . .) in the image we have

vq

(∏
p

pep

)
=
∑
p

epvq(p) = eq,

which implies that
∏

p p
ep is the pre-image of (. . . , ep, . . .); it also shows that the second

map is the inverse of the first map.

Remark 3.16. When A is a DVR, the isomorphism given by Theorem 3.15 is just the
discrete valuation map vp : IA

∼−→ Z, where p is the unique maximal ideal of A.

Corollary 3.17. In a Dedekind domain every nonzero fractional ideal I has a unique
factorization I =

∏
p p

vp(I) into nonzero prime ideals p.3

Remark 3.18. Every integral domain with unique ideal factorization is a Dedekind domain
(see Problem Set 2).

The isomorphism of Theorem 3.15 allows us to reinterpret the operations we have defined
on fractional ideals. If I =

∏
p p

ep and J =
∏

p p
fp are nonzero fractional ideals then

IJ =
∏

pep+fp ,

(I : J) =
∏

pep−fp ,

I + J =
∏

pmin(ep,fp) = gcd(I, J),

I ∩ J =
∏

pmax(ep,fp) = lcm(I, J),

and for all I, J ∈ IA we have
IJ = (I ∩ J)(I + J).

A key consequence of unique factorization is that I ⊆ J if and only if ep ≥ fp for all p;
this implies that J contains I if and only if J divides I. Recall that in any commutative
ring, if J divides I (i.e. JH = I for some ideal H) then J contains I (the elements of I are
H-linear, hence A-linear, combinations of elements of J and so lie in J), whence the slogan
to divide is to contain. In a Dedekind domain the converse is also true: to contain is to
divide. This leads to another characterization of Dedekind domains (see Problem Set 2).

3We view A =
∏

p p
vp(A) =

∏
p p

0 = (1) as an (empty) product of prime ideals.
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Given that inclusion and divisibility are equivalent in a Dedekind domain, we may view
I+J as the greatest common divisor of I and J (it is the smallest ideal that contains, hence
divides, both I and J), and I ∩ J as the least common multiple of I and J (it is the largest
ideal contained in, hence divisible by, both I and J).4

We also note that

x ∈ I ⇐⇒ (x) ⊆ I ⇐⇒ vp(x) ≥ ep for all p,

(where I =
∏

p p
ep as above), and therefore

I = {x ∈ K : vp(x) ≥ ep for all p}.

We have I ⊆ A if and only if ep ≥ 0 for all p.

Corollary 3.19. A Dedekind domain is a UFD if and only if it is a PID, equivalently, if
and only if its class group is trivial.

Proof. Every PID is a UFD, so we only need to prove the reverse implication. The fact
that we have unique factorization of ideals implies that it is enough to to show that every
prime ideal is principal. Let p be a nonzero prime ideal in a Dedekind domain A that is
also a UFD, let a ∈ p nonzero, and let a = p1 · · · pn be the unique factorization of a into
irreducible elements. Now p contains and therefore divides (a) = (p1) · · · (pn), so p divides
(and therefore contains) some (pi), which is necessarily a prime ideal (in a UFD, irreducible
elements generate prime ideals). But A has dimension one, so we must have p = (pi).

3.4 Representing ideals in a Dedekind domain

Not all Dedekind domains are PIDs; a typical Dedekind domain will contain ideals that
require more than one generator. But it turns out that two generators always suffice, and
we can even pick one of them arbitrarily. To prove this we need the following lemma.
Recall that two A-ideals I and J are said to be relatively prime, or coprime, if I + J = A;
equivalently, gcd(I, J) = (1).

Lemma 3.20. Let A be a Dedekind domain and let I and I ′ be nonzero ideals. There exists
an ideal J coprime to I ′ such that IJ is principal.

Proof. Let p1, . . . , pn be the nonzero prime ideals dividing I ′ (a finite list, by Corollary 3.11).
For 1 ≤ i ≤ n define the ideal ai := p1 · · · pi−1pi+1 · · · pn and choose ai ∈ I so that

ai ∈ aiI and ai 6∈ piI.

Note that aiI ∩ piI ( aiI because vpi(aiI ∩ piI) = vpi(piI) > vpi(I) = vpi(aiI), so such an ai
exists. Each ai is necessarily nonzero, and satisfies vpi(a) = vpi(I) since

vpi(ai) ≥ vpi(aiI) = vpi(I) and vpi(ai) < vpi(piI) = vpi(I) + 1,

and for j 6= i we have vpj (ai) ≥ vpj (pjI) > vpj (I). We now define a := a1 + · · · + an, so
that vpi(a) = vpi(ai) = vpi(I) for 1 ≤ i ≤ n (by the nonarchimedean triangle equality; see
Problem Set 1). We thus have vp(a) = vp(I) for all prime ideals p|I ′.

Now (a) is contained in I and therefore divisible by I (since A is a Dedekind domain),
so (a) = IJ for some ideal J . For each prime ideal p|I ′ we have vp(J) = vp(a)− vp(I) = 0,
so J is coprime to I ′, and IJ = (a) is principal as desired.

4It may seem strange at first glance that the greatest common divisor of I and J is the smallest ideal
dividing I and J , but note that if A = Z then gcd((a), (b)) = (gcd(a, b)) for any a, b ∈ Z, so the terminology
is consistent (note that bigger numbers generate smaller ideals).
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One can show that every integral domain satisfying Lemma 3.20 is a Dedekind domain
(see Problem Set 2).

Corollary 3.21 (Finite approximation). Let I be a nonzero fractional ideal in a Dedekind
domain A and let p1, . . . , pn be a finite set of nonzero prime ideals of A. Then I contains
an element x for which vpi(x) = vpi(I) for 1 ≤ i ≤ n.

Proof. Let I = 1
sJ with s ∈ A and J an ideal. As in the proof of Lemma 3.20, we can

pick a ∈ J so that vpi(a) = vpi(J) for 1 ≤ i ≤ n. If we now let x = a/s then we have
vpi(x) = vpi(a)− vpi(s) = vpi(J)− vpi(s) = vpi(I) for 1 ≤ i ≤ n as desired.

Corollary 3.22. Let I be a nonzero ideal in a Dedekind domain A. The quotient ring A/I
is a principal ideal ring (every ideal in A/I is principal).

Proof. Let ϕ : A→ A/I be the quotient map, let J̄ be an (A/I)-ideal and let J := ϕ−1(J)
be its inverse image in A; then I ⊆ J , and J̄ ' J/I as (A/I)-modules. By Corollary 3.21 we
may choose a ∈ J so that vp(a) = vp(J) for all nonzero prime ideals p|I. For every nonzero
prime ideal p we then have vp(J) ≤ vp(I) and

vp((a) + I) =

{
min(vp(a), vp(I)) = vp(a) = vp(J) if p|I,
min(vp(a), vp(I)) = vp(I) = 0 = vp(J) if p - I,

so (a) + I = J (here we are using unique factorization of ideals; in a Dedekind domain two
ideals with the same valuation at every nonzero prime ideal must be equal). If follows that
J̄ ' J/I = ((a) + I)/I = ϕ((a)) = (ϕ(a)) is principal.

The converse of Corollary 3.22 also holds; an integral domain whose quotients by nonzero
ideals are principal ideal rings is a Dedekind domain (see Problem Set 2).

Definition 3.23. A ring that has only finitely many maximal ideals is called semilocal.

Example 3.24. The ring Z(3) ∩ Z(5) is semilocal, it has just two maximal ideals.

Corollary 3.25. Every semilocal Dedekind domain is a principal ideal domain.

Proof. If we let I ′ be the product of all the prime ideals in A and apply Lemma 3.20 to any
ideal I we will necessarily have J = A and IJ = I principal.

Theorem 3.26. Let I be a nonzero ideal in a Dedekind domain A and let a ∈ I be nonzero.
Then I = (a, b) for some b ∈ I.

Proof. We have (a) ⊆ I, so I divides (a) and we have II ′ = (α) for some nonzero ideal I ′.
By Lemma 3.20 there is an ideal J coprime to I ′ such that IJ is principal, so IJ = (b) for
some b ∈ I. We have gcd((a), (b)) = gcd(II ′, IJ) = I, since gcd(I ′, J) = (1), and it follows
that I = (a, b).

Theorem 3.26 gives us a convenient way to represent ideals I in the ring of integers of a
global field. We can always pick a ∈ Z or a ∈ Fq[t]; we will see in later lectures that there is
a natural choice for a (the absolute norm of I). It also gives us yet another characterization
of Dedekind domains: they are precisely the integral domains for which Theorem 3.26 holds.

We end this section with a theorem that summarizes the various equivalent definitions
of a Dedekind domain that we have seen.
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Theorem 3.27. Let A be an integral domain. The following are equivalent:

• A is an integrally closed noetherian domain of dimension at most one.

• A is noetherian and its localizations at nonzero prime ideals are DVRs.

• Every nonzero ideal in A is invertible.

• Every nonzero ideal in A is a (finite) product of prime ideals.

• A is noetherian and “to contain is to divide” holds for ideals in A.

• For every ideal I in A there is an ideal J in A such that IJ is principal.

• Every quotient of A by a nonzero ideal is a principal ideal ring.

• For every nonzero ideal I in A and nonzero a ∈ I we have I = (a, b) for some b ∈ I.

Proof. See Problem Set 2.
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4 Étale algebras, norm and trace

4.1 Separability

In this section we briefly review some standard facts about separable and inseparable field
extensions that we will use repeatedly throughout the course. Those familiar with this
material should feel free to skim it. In this section K denotes any field, K is an algebraic
closure that we will typically choose to contain any extensions L/K under consideration,
and for any polynomial f =

∑
aix

i ∈ K[x] we use f ′ :=
∑
iaix

i−1 to denote the formal
derivative of f (this definition also applies when K is an arbitrary ring).

Definition 4.1. A polynomial f in K[x] is separable if (f, f ′) = (1), that is, gcd(f, f ′) is a
unit in K[x]. Otherwise f is inseparable.

If f is separable then it splits into distinct linear factors over over K, where it has
deg f distinct roots; this is sometimes used as an alternative definition. Note that the
proper of separability is intrinsic to the polynomial f , it does not depend on the field we
are working in; in particular, if L/K is any field extension whether or not a polynomial in
f ∈ K[x] ⊆ L[x] does not depend on whether we view f as an element of K[x] or L[x].

Warning 4.2. Older texts (such as Bourbaki) define a polynomial in K[x] to be separable
if all of its irreducible factors are separable (under our definition); so (x− 1)2 is separable
under this older definition, but not under ours. This discrepancy does not change the
definition of separable elements or field extensions.

Definition 4.3. Let L/K be an algebraic field extension. An element α ∈ L is separable
over K if it is the root of a separable polynomial in K[x] (in which case its minimal
polynomial is necessarily separable). The extension L/K is separable if every α ∈ L is
separable over K; otherwise it is inseparable.

Lemma 4.4. An irreducible polynomial f ∈ K[x] is inseparable if and only if f ′ = 0.

Proof. Let f ∈ K[x] be irreducible; then f is nonzero and not a unit, so deg f > 0. If f ′ = 0
then gcd(f, f ′) = f 6∈ K× and f is inseparable. If f is inseparable then g := gcd(f, f ′) is a
nontrivial divisor of f and f ′. This implies deg g = deg f , since f is irreducible, but then
deg f ′ < deg f = deg g, so g cannot divide f ′ unless f ′ = 0.

Corollary 4.5. Let f ∈ K[x] be irreducible and let p ≥ 0 be the characteristic of K. We
have f(x) = g(xp

n
) for some irreducible separable g ∈ K[x] and integer n ≥ 0 that are

uniquely determined by f .

Proof. If f is separable the theorem holds with g = f and n = 0; for uniqueness, note that
if p = 0 then pn 6= 0 if and only if n = 0, and if p > 0 and g(xp

n
) is inseparable unless n = 0

because g(xp
n
)′ = g′(xp

n
)pnxp

n−1 = 0 (by the previous lemma). Otherwise f(x) :=
∑
frx

r

is inseparable and f ′(x) =
∑
rfrx

r−1 = 0 (by the lemma), and this can occur only if p > 0
and fr = 0 for all r ≥ 0 not divisible by p. So f = g(xp) for some (necessarily irreducible)
g ∈ K[x]. If g is separable we are done; otherwise we proceed by induction. As above, the
uniqueness of g and n is guaranteed by the fact that g(xp

n
)′ = 0 for all n > 0.

Corollary 4.6. If char K = 0 then every algebraic extension of K is separable.
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Lemma 4.7. Let L = K(α) be an algebraic field extension contained in an algebraic closure
K of K and let f ∈ K[x] be the minimal polynomial of α over K. Then

# HomK(L,K) = #{β ∈ K : f(β) = 0} ≤ [L : K],

with equality if and only if α is separable over K.

Proof. Each element of HomK(L,K) is uniquely determined by the image of α, which must
be a root β of f(x) in K. The number of these roots is equal to [L : K] = deg f precisely
when f , and therefore α, is separable over K.

Definition 4.8. Let L/K be a finite extension of fields. The separable degree of L/K is

[L : K]s := # HomK(L,K).

The inseparable degree of f is

[L : K]i := [L : K]/[L : K]s

We will see shortly that [L : K]s always divides [L : K], so [L : K]i is an integer (in fact a
power of the characteristic of K), but it follows immediately from our definition that

[L : K] = [L : K]s[L : K]i.

holds regardless.

Theorem 4.9. Let L/K be an algebraic field extension. and let φK : K → Ω be a homomor-
phism to an algebraically closed field Ω. Then φK extends to a homomorphism φL : L→ Ω.

Proof. We use Zorn’s lemma. Define a partial ordering on the set F of pairs (F, φF ) for
which F/K is a subextension of L/K and φF : F → Ω extends φK by defining

(F1, φF1) ≤ (F2, φF2)

whenever F2 contains F1 and φF2 extends φF1 . Given any totally ordered subset C of F , let
E be the field

⋃
{F : (F, φF ) ∈ C} and define φE : E → Ω by φE(x) = φF (x) for x ∈ F ⊆ E

(this does not depend on the choice of F because C is totally ordered). Then (E, φE) is a
maximal element of C, and by Zorn’s lemma, F contains a maximal element (M,φM ).

We claim that M = L. If not, then pick α ∈ L−M and consider the field F = M(α) ⊆ L
properly containingM , and extend φM to ϕF : F → Ω be letting φF (α) be any root of αM (f)
in Ω, where f ∈ M [x] is the minimal polynomial of α over M and αM (f) is the image of
f in Ω[x] obtained by applying φM to each coefficient. Then (M,φM ) is strictly dominated
by (F, φF ), contradicting its maximality.

Lemma 4.10. Let L/F/K be a tower of finite extensions of fields. Then

# HomK(L,K) = # HomK(F,K)# HomF (L,K).

Proof. We decompose L/F/K into a tower of simple extensions and proceed by induction.
The result is trivial if L = K and otherwise it suffices to consider K ⊆ F ⊆ F (α) = L,
where K = F in the base case. Theorem 4.9 allows us to define a bijection

HomK(F,K)×HomF (F (α),K)→ HomK(F (α),K)

that sends (φ1, φ2) to φ : L → K defined by φ|F = φ1 and φ(α) = (φ̂1φ̂2φ̂
−1
1 )(α), where

φ̂1, φ̂2 ∈ AutK(K) are arbitrary extensions of φ1, φ2 to K; note that φ(α) does not depend
on these choices and is a root of φ(f), where f ∈ F [x] is the minimal polynomial of α and
φ(f) is its image in φ(F )[x]. The inverse bijection is φ1 = φ|F and φ2(α) = (φ̂−1

1 φ̂φ̂1)(α).
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Corollary 4.11. Let L/F/K be a tower of finite extensions of fields. Then

[L : K]s = [L : F ]s[F : K]s

[L : K]i = [L : F ]i[F : K]i

Proof. The first equality follows from the lemma and the second follows from the identities
[L : K] = [L : F ][F : K] and [L : K] = [L : K]s[L : K]i.

Theorem 4.12. Let L/K be a finite extension of fields. The following are equivalent:

(a) L/K is separable;

(b) [L : K]s = [L : K];

(c) L = K(α) for some α ∈ L separable over K;

(d) L ' K[x]/(f) for some monic irreducible separable polynomial f ∈ K[x].

Proof. The equivalence of (c) and (d) is immediate (let f be the minimal polynomial of α
and let α be the image of x in K[x]/(f)), and the equivalence of (b) and (c) is given by
Lemma 4.7. That (a) implies (c) is the Primitive Element Theorem, see [2, §15.8] or
[3, §V.7.4] for a proof. It remains only to show that (c) implies (a).

So let L = K(α) with α separable over K. For any β ∈ L we can write L = K(β)(α),
and we note that α is separable over K(β), since its minimal polynomial over K(β) divides
it minimal polynomial over K, which is separable. Lemma 4.7 implies [L : K]s = [L : K]
and [L : K(β)]s = [L : K(β)] (since L = K(α) = K(β)(α)), and the equalities

[L : K] = [L : K(β)][K(β) : K]

[L : K]s = [L : K(β)]s[K(β) : K]s

then imply [K(β) : K]s = [K(β) : K]. So β is separable over K (by Lemma 4.7). This
applies to every β ∈ L, so L/K is separable and (a) holds.

Corollary 4.13. Let L/K be a finite extension of fields. Then [L : K]s ≤ [L : K] with
equality if and only if L/K is separable.

Proof. We have already established this for simple extensions, and otherwise we my decom-
pose L/K into a finite tower of simple extensions and proceed by induction on the number
of extensions, using the previous two corollaries at each step.

Corollary 4.14. Let L/F/K is a tower of finite extensions of fields. Then L/K is separable
if and only if both L/F and F/K separable.

Proof. The forward implication is immediate and the reverse implication follows from Corol-
laries 4.11 and 4.13.

Corollary 4.15. Let L/F/K be a tower of algebraic field extensions. Then L/K is separable
if and only if both L/F and F/K are separable.

Proof. As in the previous corollary the forward implication is immediate. To prove the
reverse implication, we assume L/F and F/K are separable and show that every β ∈ L is
separable over K. If β ∈ F we are done, and if not we at least know that β is separable
over F . Let M/K be the subextension of F/K generated by the coefficients of the minimal
polynomial f ∈ F [x] of β over F . This is a finite separable extension of K, and M(β) is also
a finite separable extension of M , since the minimal polynomial of β over M(β) is f , which
is separable. By the previous corollary, M(β), and therefore β, is separable over K.
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Corollary 4.16. Let L/K be an algebraic field extension, and let

F = {α ∈ L : α is separable over K}.

Then F is a separable field extension of K.

Proof. This is clearly a field, since if α and β are both separable over K then K(α) and
K(α, β) are separable extensions of K (by the previous corollary), thus every element of
K(α, β), including αβ and α + β, is separable over K and lies in F . The field F is then
separable by construction.

Definition 4.17. Let L/K be an algebraic field extension. The field F in Corollary 4.16
is the separable closure of K in L. When L is an algebraic closure of K it is simply called
a separable closure of K and denoted Ksep.

When K has characteristic zero the notions of separable closure and algebraic closure
necessarily coincide. This holds more generally whenever K is a perfect field.

Definition 4.18. A field K is perfect if every algebraic extension of K is separable.

All fields of characteristic zero are perfect. Perfect fields of positive characteristic are
characterized by the following property.

Theorem 4.19. A field K of characteristic p > 0 is perfect if and only if K = Kp, that is,
every element of K is a pth power, equivalently, the map x 7→ xp is an automorphism.

Proof. If K 6= Kp then for any α ∈ K − Kp the polynomial xp − α is irreducible and
the extension K[x]/(xp − α) is inseparable, implying that K is not perfect. Now suppose
K = Kp and let f ∈ K[x] be irreducible. By Corollary 4.5, we havef(x) = g(xp

n
) for some

separable g ∈ K[x] and n ≥ 0. If n > 0 then

f(x) = g(xp
n
) = g̃(xp

n−1
)p,

where g̃ is the polynomial obtained from g by replacing each coefficient with its pth root
(thus g̃(x)p = g(xp), since we are in characteristic p). But this contradicts the irreducibility
of f . So n = 0 and f = g is separable. The fact that every irreducible polynomial in K[x]
is separable implies that every algebraic extension of K is separable, so K is perfect.

Corollary 4.20. Every finite field is a perfect field.

Proof. If a field K has cardinality pn then #K× = pn − 1, thus α = αp
n

= (αp
n−1

)p for all
α ∈ K and every element of K is a pth power.

Definition 4.21. A field K is separably closed if K has no nontrivial finite separable
extensions. Equivalently, K is equal to its separable closure in any algebraic closure of K.

Definition 4.22. An algebraic extension L/K is purely inseparable if [L : K]s = 1.

Remark 4.23. The trivial extension K/K is both separable and purely inseparable (but
not inseparable!); conversely, an extension that is separable and purely inseparable is trivial.

Example 4.24. If K = Fp(t) and L = K[x]/(xp − t) = Fp(t1/p), then L/K is a purely
inseparable extension of degree p.
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Proposition 4.25. Let K be a field of characteristic p > 0. If L/K is purely inseparable
of degree p then L = K(a1/p) ' K[x]/(xp − a) for some a ∈ K −Kp.

Proof. Every α ∈ L−K is inseparable over K, and by Corollary 4.5 its minimal polynomial
over K is of the form f(x) = g(xp) with f monic. We have 1 < deg f ≤ [L : K] = p, so
g(x) must be a monic polynomial of degree 1, which we can write as g(x) = x − a. Then
f(x) = xp − a, and we must have a 6∈ Kp since f is irreducible (a difference of pth powers
can be factored). We have [L : K(α)] = 1, so L = K(α) ' K[x]/(xp − a) as claimed.

Theorem 4.26. Let L/K be an algebraic extension and let F be the separable closure of
K in L. Then L/F is purely inseparable.

Proof. If L/K is separable then L = F the theorem holds, so we assume otherwise, in
which case the characteristic p of K must be nonzero. Fix an algebraic closure K of K that
contains L. Let α ∈ L− F have minimal polynomial f over F . Use Corollary 4.5 to write
f(x) = g(xp

n
) with g ∈ F [x] irreducible and separable, and n ≥ 0. We must have deg g = 1,

since otherwise the roots of g would be separable over F , and therefore over K, but not lie
in in the separable closure F of K in L. Thus f(x) = xp

n − a for some a ∈ F (since f is
monic and deg g = 1). Since we are in characteristic p > 0, we can factor f in F (α)[x] as

f(x) = xp
n − αpn = (x− α)p

n
.

There is thus only one F -homomorphism from F (α) to K. The same statement applies to
any extension of F obtained by adjoining any set of elements of L (even an infinite set).
Therefore # HomF (L,K) = 1, so [L : F ]s = 1 and L/F is purely inseparable.

Corollary 4.27. Every algebraic extension L/K can be uniquely decomposed into a tower
of algebraic extensions L/F/K with F/K separable and L/F purely inseparable.

Proof. By Theorem 4.26, we can take F to be the separable closure of K in L, and this is
the only possible choice, since we must have [L : F ]s = 1.

Corollary 4.28. The inseparable degree of any finite extension of fields is a power of the
characteristic.

Proof. This follows from the proof of Theorem 4.26.

4.2 Étale algebras

We now want to generalize the notion of a separable field extension. By Theorem 4.12,
every finite separable extension L/K can be explicitly represented as L = K[x]/(f) for
some separable irreducible f ∈ K[x]. If f is not irreducible then we no longer have a field,
but we do have a ring K[x]/(f) that is also a K vector space, in which the ring multiplication
is compatible with scalar multiplication. In other words, L is a (unital) commutative K-
algebra whose elements are all separable over K. The notion of separability extends to
elements of a K-algebra (even non-commutative ones): an element is separable over K if
and only it is the root of some separable polynomial in K[x] (in which case its minimal
polynomial must be separable). Recall that the minimal polynomial of an element α of a
K-algebra A is the monic generator of the kernel of the K-algebra homomorphism K[x]→ A
defined by x 7→ α; note that if A is not a field, minimal polynomials need not be irreducible.
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It follows from the Chinese remainder theorem that if f is separable then the K-algebra
K[x]/(f) is isomorphic to a direct product of finite separable extensions of K. Indeed, if
f = f1 · · · fn is the factorization of f into irreducibles in K[x] then

K[x]

(f)
=

K[x]

(f1 · · · fn)
' K[x]

(f1)
× · · · × K[x]

(fn)
,

where the isomorphism is both a ring isomorphism and a K-algebra isomorphism. The
separability of f implies that the fi are separable and the ideals (fi) are pairwise coprime
(this justifies our application of the Chinese remainder theorem). We thus obtain a K-
algebra that is isomorphic to finite product of separable field extensions K[x]/(fi) of K.
Algebras of this form are called étale algebras (or separable algebras).

Definition 4.29. Let K be a field. An étale K-algebra is a K-algebra L that is isomorphic
to a finite product of separable field extensions of K. The dimension of an étale K-algebra
is its dimension as a K-vector space. When this dimension is finite we say that L is a finite
étale K-algebra. A homomorphism of étale K-algebras is a homomorphism of K-algebras
(which means a ring homomorphism that commutes with scalar multiplication).

Remark 4.30. One can define the notion of an étale A-algebra for any noetherian domain A
(we will consider this in a later lecture).

Example 4.31. If K is a separably closed field then every étale K-algebra A is isomorphic
to Kn = K × · · · ×K for some positive integer n (and therefore a finite étale K-algebra).

Étale algebras are semisimple algebras. Recall that a (not necessarily commutative) ring
R is simple if it is nonzero and has no nonzero proper (two-sided) ideals, and R is semisimple
if it is isomorphic to a nonempty finite product of simple rings

∏
Ri.

1 A commutative ring
is simple if and only if it is a field, and semisimple if and only if it is isomorphic to a finite
product of fields; this applies in particular to commutative semisimple K-algebras. Every
étale K-algebra is thus semisimple (but the converse does not hold).

The ideals of a semisimple commutative ring R =
∏n
i=1Ri are easy to describe; each

corresponds to a subproduct. To see this, note that the projection maps R → Ri are
surjective homomorphisms onto a simple ring, thus for any R-ideal I, its image in Ri is
either the zero ideal or the whole ring (note that the image of an ideal under a surjective
ring homomorphism is an ideal). In particular, for each index i, either every (r1, . . . , rn) ∈ I
has ri = 0 or some (r1, . . . , rn) ∈ I has ri = 1; it follows that I is isomorphic to the product
of the Ri for which I projects onto Ri.

Proposition 4.32. Let A =
∏
Ki be a K-algebra written that is a product of field exten-

sions Ki/K. Every surjective homomorphism ϕ : A → B of K-algebras corresponds to the
projection of A on to a subproduct of its factors.

Proof. The ideal kerϕ is a subproduct of
∏
Ki, thus A ' kerϕ × imϕ and B = imϕ is

isomorphic to the complementary subproduct.

Proposition 4.32 can be viewed as a generalization of the fact that every surjective
homomorphism of fields is an isomorphism.

Corollary 4.33. The decomposition of an étale algebra into field extensions is unique up
to permutation and isomorphisms of factors.

1There are many equivalent (and a few inequivalent) definitions, but this is the simplest.
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Proof. Let A be an étale K-algebra and suppose A is isomorphic (as a K-algebra) to two
products of field extensions of K, say

m∏
i=1

Ki ' A '
n∏
j=1

Lj .

Composing with isomorphisms yields surjective K-algebra homomorphisms πi :
∏
Lj → Ki

and πj :
∏
Ki → Lj . Proposition 4.32 then implies that each Ki must be isomorphic to one

of the Lj and each Lj must be isomorphic to one of the Ki (and m = n).

Our main interest in étale algebras is that they naturally arise from (and are stable
under) base change, a notion we now recall.

Definition 4.34. Let ϕ : A → B be a homomorphism of rings (so B is an A-module),
and let M be any A-module. The tensor product of A-modules M ⊗A B is a B-module
(with multiplication defined by b(m⊗ b′) := m⊗ bb′) called the base change (or extension of
scalars) of M from A to B. If M is an A-algebra then its base change to B is a B-algebra.

We have already seen one example of base change: if M is an A-module and p is a prime
ideal of A then Mp = M ⊗AAp (this is another way to define the localization of a module).

Remark 4.35. Each ϕ : A → B determines a functor from the category of A-modules to
the category of B-modules via base change. It has an adjoint functor called restriction of
scalars that converts a B-module M into an A-module by the rule am = ϕ(a)m (if ϕ is
inclusion this amounts to restricting the scalar multiplication by B to the subring A).

The ring homomorphism ϕ : A→ B will often be an inclusion, in which case we have a
ring extension B/A (we may also take this view whenever ϕ is injective, which is necessarily
the case if A is a field). We are specifically interested in the case where B/A is a field
extension and M is a finite étale A-algebra.

Proposition 4.36. Suppose L is a finite étale K-algebra and K ′/K is any field extension.
Then L⊗K K ′ is a finite étale K ′-algebra of the same dimension as L.

Proof. Without loss of generality we assume that L is actually a field; if not L is a product
of fields and we can apply the following argument to each of its factors.

By Theorem 4.12, L ' K[x]/(f) for some separable f ∈ K[x], and if f = f1f2 · · · fm is
the factorization of f in K ′[x], we have isomorphisms of K ′-algebras

L⊗K K ′ ' K ′[x]/(f) '
∏
i

K ′[x]/(fi),

in which each factor K ′[x]/(fi) is a finite separable extension of K ′ (as discussed above, this
follows from the CRT because f is separable). Thus L ⊗K K ′ is a finite étale K ′-algebra,
and dimK L = deg f = dimK′ K

′[x]/(f), so the dimension is preserved.

Example 4.37. Any finite dimensional real vector space V is a finite étale R-algebra (with
coordinate-wise multiplication with respect to some basis); the complex vector space V ⊗RC
is then a finite étale C-algebra of the same dimension.

Note that even when an étale K-algebra L is a field, the base change L⊗KK ′ will often
not be a field. For example, if K = Q and L 6= Q is a number field, then L⊗K C will never
be a field, it will be isomorphic to a C-vector space of dimension [L : K] > 1.
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Remark 4.38. In the proof of Proposition 4.36 we made essential use of the fact that the
elements of an étale K-algebra are separable. Indeed, the proposition does not hold if L is
a finite semisimple commutative K-algebra that contains an inseparable element.

Corollary 4.39. Let L ' K[x]/(f) be a finite separable extension of a field K defined by
an irreducible separable polynomial f ∈ K[x]. Let K ′/K be any field extension, and let
f = f1 · · · fm be the factorization of f into distinct irreducible polynomials fi ∈ K ′[x]. We
have an isomorphism of finite étale K ′-algebras

L⊗K K ′ '
∏
i

K ′[x]/(fi)

where each K ′[x]/(fi) is a finite separable field extension of K ′.

Proof. This follows directly from the proof of Proposition 4.36.

The following proposition gives several equivalent characterizations of finite étale alge-
bras, including a converse to Corollary 4.39 (provided the field K is not too small). Recall
that an element α of a ring is nilpotent if αn = 0 for some n, and a ring is reduced if it
contains no nonzero nilpotents.

Theorem 4.40. Let L be a commutative K-algebra of finite dimension and assume that
the dimension of L is less than the cardinality of K. The following are equivalent:

(a) L is a finite étale K-algebra.

(b) Every nonzero element of L is separable over K.

(c) L⊗K K ′ is reduced for every extension K ′/K.

(d) L⊗K K ′ is semisimple for every extension K ′/K.

(e) L = K[x]/(f) for some separable f ∈ K[x].

The implications (a)⇔ (b)⇔ (c)⇔ (d)⇐ (e) hold regardless of the dimension of L.

Proof. To show (a) ⇒ (b), let L =
∏n
i=1Ki with each Ki/K separable, and consider

α = (α1, . . . , αn) ∈ L =
∏n
i=1Ki. Each αi ∈ Ki is separable over K with separable minimal

polynomial fi ∈ K[x], and α is a root of f := lcm{f1, . . . , fn}, which is separable (the LCM
of a finite set of separable polynomials is separable), thus α is separable.

To show (b) ⇒ (c), note that if α ∈ L is nonzero and separable over K it cannot be
nilpotent (the minimal polynomial of a nonzero nilpotent is xn for some n > 1 and is
therefore not separable), and separability is preserved under base change.

The equivalence (c)⇔ (d) follows from Lemma 4.42 below.
To show (d)⇒ (a), we first note we can assume L is semisimple (take K ′ = K), and it

suffices to treat the case where L is a field. By base-changing to the separable closure of K
in L, we can further reduce to the case that L/K is a purely inseparable field extension. If
L = K we are done. Otherwise we may pick an inseparable α ∈ L, and, as in the proof of
Theorem 4.26, the minimal polynomial of α has the form f(x) = xp

n − a for some a ∈ K
and n ≥ 1. Now consider

γ := α⊗ 1− 1⊗ α ∈ L⊗K L

We have γ 6= 0, since γ /∈ K, but γp
n

= αp
n ⊗ 1 − 1 ⊗ αpn = a ⊗ 1 − 1 ⊗ a = 0, so γ is a

nonzero nilpotent and L⊗K L is not reduced, contradicting (c)⇔ (d).
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We have (e) ⇒ (a) form Corollary 4.39. For the converse, suppose L =
∏n
i=1 Li with

each Li/K a finite separable extension of K. Pick a monic irreducible separable polynomial
f1(x) so that L1 ' K[x]/(f1(x)), and then do the same for i = 2, . . . , n ensuring that each
polynomial fj we pick is not equal to fi for any i < j. This can be achieved by replacing
fj(x) with fj(x + a) for some a ∈ K× if necessary. Here we use the fact that there are at
least n distinct choices for a, under our assumption that the dimension of L is less than
the cardinality of K (note that if f(x) is irreducible then the polynomials f(x + a) are
irreducible and pairwise coprime as a ranges over K). The polynomials f1, . . . fn are then
coprime and separable, so their product f is separable and L = K[x]/(f), as desired.

Remark 4.41. K-algebras of the form L = K[x]/(f(x)) are monogenic (generated by one
element). Theorem 4.40 implies that finite étale K-algebras are monogenic whenever the
base field K is big enough. This always holds if K is infinite, but if K is a finite field then
not every finite étale K-algebra is monogenic. The recent preprint [5] gives exact bounds
on the maximal number of generators needed for a finite étale K-algebra over a finite field.

The following lemma is a standard exercise in commutative algebra that we include for
the sake of completeness.

Lemma 4.42. Let K be a field. A commutative K-algebra of finite dimension is semisimple
if and only if it is reduced.

Proof. IfA is semisimple it is clearly reduced (otherwise we could project a nonzero nilpotent
of A to a nonzero nilpotent in a field); we only need to prove the converse. Every ideal of a
commutative K-algebra A is also a K-vector space; this implies that when dimK A is finite
A satisfies both the ascending and descending chain conditions and is therefore noetherian
and artinian. This implies that A has finitely many maximal ideals M1, . . .Mn and that
the intersection of these ideals (the radical of A) is equal to the set of nilpotent elements
of A (the nilradical of A); see Exercises 19.12 and 19.13 in [1], for example.

Taking the product of the projection maps A � A/Mi yields a surjective ring ho-
momorphism ϕ : A �

⊕n
i=1A/Mi from A to a product of fields. If A is reduced then

kerϕ = ∩Mi = {0} and ϕ is an isomorphism, implying that A is semismiple.

Proposition 4.43. Suppose L is a finite étale K-algebra and Ω is a separably closed field
extension of K. There is an isomorphism of finite étale Ω-algebras

L⊗K Ω
∼−→

∏
σ∈HomK(L,Ω)

Ω

that sends β ⊗ 1 to the vector (σ(β))σ for each β ∈ L.

Proof. We may reduce to the case that L = K[x]/(f) is a separable field extension, and
we may then factor f(x) = (x− α1) · · · (x− αn) over Ω, with the αi are distinct. We have
a bijection between HomK(K[x]/(f),Ω) and the set {αi}: each σ ∈ HomK(K[x]/(f),Ω)
is determined by σ(x) ∈ {αi}, and for each αi, the map x 7→ αi determines a K-algebra
homomorphism σi ∈ HomK(K[x]/(f),Ω). As in the proof of Proposition 4.36 we have
Ω-algebra isomorphisms

K[x]

(f)
⊗K Ω

∼→ Ω[x]

(f)

∼→
n∏
i=1

Ω[x]

(x− αi)
∼→

n∏
i=1

Ω.
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which map
x⊗ 1 7→ x 7→ (α1, . . . , αn) 7→ (σ1(x), . . . , σn(x)).

The element x⊗ 1 generates L⊗K Ω as an Ω-algebra, and it follows that β ⊗ 1 7→ (σ(β))σ
for every β ∈ L.

Remark 4.44. The proof of Proposition 4.43 does not require Ω to be separably closed,
we could replace Ω with the compositum of the normal closure of the field extensions Li/K
in the decomposition of L =

∏
Li into separable extensions of K (in the proof above we

just needed f to split into linear factors).

Example 4.45. Let L/K = Q(i)/Q and Ω = C. We have Q(i) ' Q[x]/(x2 + 1) and

Q(i)⊗Q C ' Q[x]

(x2 + 1)
⊗Q C ' C[x]

(x2 + 1)
' C[x]

(x− i)
× C[x]

(x+ i)
' C× C.

As C-algebra isomorphisms, the corresponding maps are determined by

i⊗ 1 7→ x⊗ 1 7→ x 7→ (x, x) ≡ (i,−i) 7→ (i,−i).

Taking the base change of Q(i) to C lets us see the two distinct embeddings of Q(i) in C,
which are determined by the image of i. Note that Q(i) is canonically embedded in its base
change Q(i)⊗Q C to C via α 7→ α⊗ 1. We have

−1 = i2 = (i⊗ 1)2 = i2 ⊗ 12 = −1⊗ 1 = −(1⊗ 1)

Thus as an isomorphism of C-algebras, the basis (1⊗ 1, i⊗ 1) for Q(i)⊗Q C is mapped to
the basis

(
(1, 1), (i,−i)

)
for C× C. For any (α, β) ∈ C× C, the inverse image of

(α, β) =
α+ β

2
(1, 1) +

α− β
2i

(i,−i)

in Q(i)⊗ C under this isomorphism is

α+ β

2
(1⊗ 1) +

α− β
2i

(i⊗ 1) = 1⊗ α+ β

2
+ i⊗ α− β

2i
.

Now R/Q is an extension of rings, so we can also consider the base change of the Q-algebra
Q(i) to R. But note that R is not separably closed and in particular, it does not contain a
subfield isomorphic to Q(i), thus Proposition 4.43 does not apply. Indeed, as an R-module,
we have Q(i)⊗Q R ' R2, but as an R-algebra, Q(i)⊗Q R ' C 6' R2.

4.3 Norms and traces

We now introduce the norm and trace map associated to a finite free ring extension B/A.
These are often defined only for field extensions, but in fact the same definition works
without modification whenever B is a free A-module of finite rank. One can generalize
further to projective modules (with some restrictions), but we will not need this.

Definition 4.46. Let B/A be a (commutative) ring extension in which B is a free A-module
of finite rank. The (relative) norm NB/A(b) and trace TB/A(b) of b (down to A) are the
determinant and trace of the A-linear multiplication-by-b map B → B defined by x 7→ bx.

18.785 Fall 2019, Lecture #4, Page 10



As a special case, note that if A is a field and B is a finite A-algebra (a field extension,
for example) then B is an A-vector space of finite dimension, hence a free A-module of finite
rank. In practice one computes the norm and trace by picking a basis for B as an A-module
and computing the matrix of the multiplication-by-b map with respect to this basis; this is
an n× n matrix with entries in A whose determinant and trace are basis independent.

It follows immediately from the definition that NB/A is multiplicative, TB/A is additive,
we have group homomorphisms

NB/A : B× → A× and TB/A : B → A,

and if B1/A and B2/A are two ring extensions that are free A-modules of finite rank then

NB1×B2/A(x) = NB1/A(x1)NB2/A(x2) and TB1×B2/A = TB1/A(x1) + TB2/A(x2)

for all x = (x1, x2) ∈ B1 ×B2.

Example 4.47. Consider A = R and B = C, which has the A-module basis (1, i). For

b = 2 + 3i the matrix of B
×b→ B with respect to this basis can be written as

(
2 −3
3 2

)
, thus

NC/R(2 + 3i) = det

(
2 −3
3 2

)
= 13,

TC/R(2 + 3i) = tr

(
2 −3
3 2

)
= 4.

Warning 4.48. In order to write down the matrix of an A-linear transformation B → B
with respect to basis for B as a free A-module of rank n, we not only need to pick a basis,
we need to decide whether to represent elements of B ' An as row vectors with linear
transformations acting via matrix multiplication on the right, or as column vectors with
linear transformations acting via matrix multiplication on the left. The latter convention is
often implicitly assumed in the literature (as in the example above), but the former is often
used in computer algebra systems (such as Magma).

We now verify that the norm and trace are well behaved under base change.

Lemma 4.49. Let B/A be ring extension with B free of rank n over A, and let ϕ : A→ A′

be a ring homomorphism. The base change B′ = B ⊗A A′ of B to A′ is a free A′-module of
rank n and we for every b ∈ B

ϕ(NB/A(b)) = NB′/A′(b⊗ 1) and ϕ(TB/A(b)) = TB′/A′(b⊗ 1).

Proof. Let b ∈ B, let (b1, . . . , bn) be a basis forB as anA-module, and letM = (mij) ∈ An×n

be the matrix of B
×b→ B with respect to this basis. Then (b1 ⊗ 1, . . . , bn ⊗ 1) is a basis for

B′ as an A′-module (thus B′ is free of rank n over A′) and M ′ = (ϕ(mij)) ∈ A′n×n is the

matrix of B′
×b⊗1→ B′, and we have

ϕ(NB/A(b)) = ϕ(detM) = detM ′ = NB′/A′(b⊗ 1)

ϕ(TB/A(b)) = ϕ(trM) = trM ′ = NB′/A′(b⊗ 1)

Theorem 4.50. Let K be a field with separable closure Ω and let L be a finite étale K-
algebra. For all α ∈ L we have

NL/K(α) =
∏

σ∈HomK(L,Ω)

σ(α) and TL/K(α) =
∑

σ∈HomK(L,Ω)

σ(α).
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Proof. Let n be the rank of L as a K-module. By the previous lemma and Proposition 4.43,

NL/K(α) = N(L⊗KΩ)/Ω(α⊗ 1) = NΩn/Ω(σ1(α), . . . , σn(α)) =
n∏
i=1

σi(α).

The isomorphism L ⊗K Ω →
∏
σ Ω = Ωn of Prop. 4.43 sends α ⊗ 1 to (σ1(α), . . . , σn(α)).

Using the standard basis for Ωn, the matrix of multiplication-by-(σ1(α), . . . , σn(α)) is just
the diagonal matrix with σi(α) in the ith diagonal entry. Similarly,

TL/K(α) = T(L⊗KΩ)/Ω(α⊗ 1) = TΩn/Ω(σ1(α), . . . , σn(α)) =

n∑
i=1

σi(α).

The proof above demonstrates a useful trick: when working over a field that is not
algebraically/separably closed, base change to an algebraic/separable closure. This often
turns separable field extensions into étale algebras that are no longer fields.

Proposition 4.51. Let L/K be a (not necessarily separable) finite extension, let K be an
algebraic closure of K containing L. Let α ∈ L× have minimal polynomial f ∈ K[x] with
factorization f(x) =

∏d
i=1(x− αi) in K[x], and let e = [L : K(α)]. We have

NL/K(α) =

d∏
i=1

αei and TL/K(α) = e

d∑
i=1

αi.

In particular, if f(x) =
∑d

i=0 aix
i, then NL/K(α) = (−1)deae0 and TL/K(α) = −ead−1.

Proof. See Problem Set 2.

Corollary 4.52. Let M/L/K be a tower of finite extensions. Then

NM/K = NL/K ◦NM/L and TM/K = TL/K ◦ TM/L.

Proof. Fix a separable closure Ω of K that contains M . As in the proof of Lemma 4.10,
each σ ∈ HomK(M,Ω) can be identified with a pair (σ1, σ2) with σ1 ∈ HomL(M,Ω) and
σ2 ∈ HomK(L,Ω). We then note that for any α ∈M×,

NM/K(α) =
∏

σ∈HomK(M,Ω)

σ(α) =
∏

σ2∈HomK(L,Ω)

σ2

 ∏
σ1∈HomL(M,Ω)

σ1(α)

 = NL/K(NM/L(α)),

and TM/K(α) = TL/K(TM/L(α)) follows similarly by replacing products with sums.

Corollary 4.53. Let A be an integrally closed domain with fraction field K and let L/K
be a finite extension. if α ∈ L is integral over A then NL/K(α) ∈ A and TL/K(α) ∈ A.

Proof. This follows immediately from Propositions 1.28 and 4.51.

Corollary 4.52 actually holds in much greater generality.

Theorem 4.54 (Transitivity of Norm and Trace). Let A ⊆ B ⊆ C be rings with C
free of finite rank over B and B free of finite rank over A. Then C is free of finite rank
over A and

NC/A = NB/A ◦NC/B and TC/A = TB/A ◦ TC/B.

Proof. See [3, §III.9.4].
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5 Dedekind extensions

In this lecture we prove that the integral closure of a Dedekind domain in a finite extension
of its fraction field is also a Dedekind domain; this implies, in particular, that the ring of
integers of a number field is a Dedekind domain. We then consider the factorization of
prime ideals in Dedekind extensions.

5.1 Dual modules, pairings, and lattices

In this section we work in a more general setting, where A is any commutative (unital) ring.

Definition 5.1. Let A be a commutative ring and M an A-module. The dual module M∨

is the A-module HomA(M,A) with scalar multiplication (af)(m) = af(m), where a ∈ A,
f ∈ HomA(M,A), and m ∈ M . If ϕ : M → N is an A-module homomorphism, the dual
homomorphism ϕ∨ : N∨ →M∨ is defined by ϕ∨(g)(m) = g(ϕ(m)), for g ∈ N∨ and m ∈M .

It is easy to check that taking duals preserves identity maps and is compatible with
composition: if ϕ1 : M → N and ϕ2 : N → P are A-module homomorphisms, then
(ϕ2ϕ1)

∨ = ϕ∨1ϕ
∨
2 . We thus have a contravariant functor from the category of A-modules to

itself. This functor is compatible with (finite) direct sums, (M ⊕N)∨ 'M∨ ⊕N∨.

Lemma 5.2. Let A be a commutative ring. For all A-modules M and N the A-modules
(M ⊕N)∨ and M∨ ⊕N∨ are canonically isomorphic.

Proof. We have inverse A-module homomorphisms ϕ 7→ (m 7→ ϕ(m, 0), n 7→ ϕ(0, n)) and
(φ, ψ) 7→ ((m,n) 7→ φ(m) + ψ(n)).

If A is a field and M is finitely generated, then M is a vector space of finite dimension,
M∨ is its dual space and we have M∨∨ 'M . In general not every A-module is isomorphic
to its double dual; those that are are said to be reflexive.

We have already seen examples of reflexive modules: every invertible fractional ideal is
isomorphic to the dual of its inverse, hence to its double dual, and is thus reflexive.

Proposition 5.3. Let A be an integral domain with fraction field K and let M be a nonzero
A-submodule of K. Then M∨ ' (A : M) := {x ∈ K : xM ⊆ A}; in particular, if M is an
invertible fractional ideal then M∨ 'M−1 and M∨∨ 'M .

Proof. For any x ∈ (A : M) the map m 7→ xm is an A-linear map from M to A, hence an
element of M∨, and this defines an A-module homomorphism ϕ : (A : M)→M∨, since the
map x 7→ (m 7→ xm) is itself A-linear. Since M ⊆ K is a nonzero A-module, it contains
some nonzero a ∈ A (if a/b ∈M , so is ba/b = a). If f ∈M∨ and m = b/c ∈M then

f(m) = f

(
b

c

)
=
ac

ac
f

(
b

c

)
=

b

ac
f
(ac
c

)
=

b

ac
f(a) =

f(a)

a
m,

where we have used the fact that a1f(a2/a3) = a2f(a1/a3) for any a1, a2, a3 ∈ A with
a1/a3, a2/a3 ∈ M , by the A-linearity of f . It follows that f corresponds to multiplication
by x = f(a)/a, which lies in (A : M) since xm = f(m) ∈ A for all m ∈ M . The map
f 7→ f(a)/a defines an A-module homomorphism M∨ → (A : M) inverse to ϕ, so ϕ is an
isomorphism. When M is an invertible fractional ideal we have M∨ ' (A : M) = M−1, by
Lemma 2.20, and M∨∨ ' (M−1)−1 = M follows.
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Example 5.4. As a Z-module, we have Q∨ = {0} because there are no non-trivial Z-linear
homomorphisms from Q to Z; indeed, Q is a divisible group and Z contains no non-trivial
divisible subgroups. It follows that Q∨∨ = {0} (but as Q-modules we have Q ' Q∨ ' Q∨∨).
Similarly, the dual of any finite Z-module (any finite abelian group) is the zero module, as
is the double dual. More generally, if A is an integral domain every dual (and double dual)
A-module must be torsion free, but not all A-modules are torsion free.

One situation where we can recover many of the standard results that hold for vector
spaces of finite dimension (with essentially the same proofs), is when M is a free module of
finite rank. In particular, not only is M reflexive, we have M 'M∨ (non-canonically) and
may explicitly construct a dual basis.

Theorem 5.5. Let A be a commutative ring and let M be a free A-module of rank n. Then
M∨ is also a free A-module of rank n, and each basis (e1, . . . , en) of M uniquely determines
a dual basis (e∨1 , . . . e

∨
n) of M∨ with the property

e∨i (ej) = δij :=

{
1 i = j,

0 i 6= j.

Proof. If n = 0 then M = M∨ = {0} and the theorem holds. Now assume n ≥ 1 and fix an
A-basis e := (e1, . . . , en) for M . For each a := (a1, . . . , an) ∈ An, define fa ∈M∨ by setting
fa(ei) = ai and extending A-linearly. The map a 7→ fa gives an A-module homomorphism
An → M∨ with inverse f 7→ (f(e1), . . . , f(en)) and is therefore an isomorphism. It follows
that M∨ ' An is a free A-module of rank n.

Now let e∨i := fι̂, where ι̂ := (0, . . . , 0, 1, 0, . . . , 0) ∈ An has a 1 in the ith position. Then
e∨ := (e∨1 , . . . , e

∨
n) is a basis for M∨, since (1̂, . . . , n̂) is a basis for An, and e∨i (ej) = δij .

The basis e∨ is uniquely determined by e: it must be the image of (1̂, . . . , n̂) under the
isomorphism a 7→ fa determined by e.

Definition 5.6. Let A be a commutative ring and M an A-module. A (bilinear) pairing
on M is an A-linear map 〈·, ·〉 : M ×M → A. Explicitly, this means that for all u, v, w ∈M
and λ ∈ A we have

〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉,
〈u, v + w〉 = 〈u, v〉+ 〈u,w〉,
〈λu, v〉 = 〈u, λv〉 = λ〈u, v〉.

If 〈v, w〉 = 〈w, v〉 then 〈·, ·〉 is symmetric, if 〈v, w〉 = −〈w, v〉 then 〈·, ·〉 is skew-symmetric,
and if 〈v, v〉 = 0 then 〈·, ·〉 is alternating (the last two are equivalent provided char(A) 6= 2).
The pairing 〈·, ·〉 induces an A-module homomorphism

ϕ : M →M∨

m 7→ (n 7→ 〈m,n〉)

If kerϕ = {0} then 〈·, ·〉 is nondegenerate, and if ϕ is an isomorphism then 〈·, ·〉 is perfect.

Every perfect pairing is necessarily nondegenerate. If M is a vector space of finite
dimension the converse holds, but this is not true in general, not even for free modules of
finite rank: consider the pairing 〈x, y〉 := 2xy on Z, which is non-degenerate but not perfect.
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If M is a free A-module with basis (e1, . . . , en) and 〈·, ·〉 is a perfect pairing, we can
apply the inverse of the isomorphism ϕ : M

∼−→ M∨ induced by the pairing to the dual
basis (e∨1 , . . . , e

∨
n) given by Theorem 5.5 to obtain a basis (e′1, . . . , e

′
n) for M that satisfies

〈e′i, ej〉 = δij .

When 〈·, ·〉 is symmetric we can similarly recover (e1, . . . , en) from (e′1, . . . , e
′
n) in the same

way. We record this fact in the following proposition.

Proposition 5.7. Let A be a commutative ring and let M be a free A-module of rank n with
a perfect pairing 〈·, ·〉. For each A-basis (e1, . . . , en) of M there is a unique basis (e′1, . . . , e

′
n)

for M such that 〈e′i, ej〉 = δij.

Proof. Existence follows from the discussion above: apply the inverse of the isomorphism
ϕ : V → V ∨ induced by 〈·, ·〉 to the dual basis (e∨1 , . . . , e

∨
n) given by Theorem 5.5 to obtain

a basis (e′1, . . . , e
′
n) for M with e′i = ϕ−1(e∨i ). We then have e∨i = ϕ(e′i) = m 7→ 〈e′i,m〉 and

〈e′i, ej〉 = ϕ(e′i)(ej) = e∨i (ej) = δij

for 1 ≤ i, j ≤ n. If (f ′1, . . . , f
′
n) is another basis for M with the same property then for

each i we have 〈e′i − f ′i , ej〉 = δij − δij = 0 for every ej , and therefore 〈e′i − f ′i ,m〉 = 0 for
all m ∈M , but then e′i − f ′i ∈ kerϕ = {0}, since the perfect pairing 〈·, ·〉 is nondegenerate,
and therefore f ′i = e′i for each i; uniqueness follows.

Remark 5.8. In what follows the commutative ring A in Proposition 5.7 will typically
be a field K and the free A-module M will be a K-vector space that we will denote V .
We may then use A to denote a subring of K and M to denote an A-submodule of V . A
perfect paring 〈·, ·〉 on the K-vector space V will typically not restrict to a perfect pairing
on the A-module M . For example, the perfect pairing 〈x, y〉 = xy on Q does not restrict
to a perfect pairing on the Z-module 2Z because the induced map ϕ : 2Z→ 2Z∨ defined by
ϕ(m) = (n 7→ mn) is not surjective: the map x 7→ x/2 lies in 2Z∨ = HomZ(2Z,Z) but it is
not in the image of ϕ.

We now introduce the notion of a lattice in a vector space.

Definition 5.9. Let A be an integral domain with fraction field K and let V be a K-vector
space of finite dimension. A (full) A-lattice in V is a finitely generated A-submodule M
of V that spans V as a K-vector space.

Remark 5.10. Some authors require A-lattices to be free A-modules. When A = Z (or any
PID) this is not a restriction because M is necessarily torsion-free (it lies in a vector space)
and any finitely generated torsion-free module over a PID is free (by the structure theorem
for finitely generated modules over a PID). But when A is not a PID, finitely generated
torsion-free A-modules will typically not be free. We do not want to exclude this case! In
particular if L/K is an extension of number fields the ring of integers OL will typically not
be a free OK-module (even though it is a free Z-module, as we shall shortly prove), but we
still want to treat OL as an OK-lattice in L (this will be important in later lectures when
we define the different ideal DL/K).

Definition 5.11. Let A be a noetherian domain with fraction field K, and let V be a
K-vector space of finite dimension with a perfect pairing 〈·, ·〉. If M is an A-lattice in V ,
its dual lattice (with respect to the perfect pairing 〈·, ·〉 on V ) is the A-module

M∗ := {x ∈ V : 〈x,m〉 ∈ A for all m ∈M}.
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It is clear that M∗ is an A-submodule of V , but it is not clear that it is an A-lattice in V
(it must be finitely generated and span V ), nor is it obvious that it is isomorphic to the
dual module M∨. In order to justify the term dual lattice, let us now prove both facts. We
will need to use the hypothesis that A is noetherian, since in general the dual of a finitely
generated A-module need not be finitely generated. Notice that 〈·, ·〉 is a perfect pairing on
the K-module V that need not restrict to a perfect pairing on the A-module M .

Theorem 5.12. Let A be a noetherian domain with fraction field K, let V be a K-vector
space with a perfect pairing 〈·, ·〉, and let M be an A-lattice in V . The dual lattice M∗ is
an A-lattice in V isomorphic to M∨.

Proof. Let e := (e1, . . . , en) be a K-basis for V that lies in M , and let e′ := (e′1, . . . , e
′
n) be

the unique K-basis for V given by Proposition 5.7 that satisfies 〈e′i, ej〉 = δij .
To show that M∗ spans V we write a finite set S of generators for M in terms of the

basis e with coefficients in K and let d be the product of all denominators that appear. We
claim that de′ lies in M∗: for each e′i and generator m ∈ S, if we put m =

∑
jmjej then

〈de′i,m〉 = d〈e′i,
∑

jmjej〉 = d
∑

jmj〈e′i, ej〉 = d
∑

jmjδij = dmi ∈ A,

by our choice of d, and this implies de′i ∈M∗. Thus M∗ contains a basis de′ for V .
We now show M∗ is finitely generated. Let

N := {a1e1 + · · ·+ anen : a1, . . . , an ∈ A} ' An

be the free A-submodule of M spanned by e. The A-module N contains a basis for V
and is finitely generated, so it is an A-lattice in V . The K-basis e′ for V lies in N∗, since
〈e′i, ej〉 = δij ∈ A, and we claim it is an A-basis for N∗. Given x ∈ N∗, if we write
x =

∑
i xie

′
i then 〈x, ei〉 = xi〈e′i, ei〉 = xi lies in A, since x ∈ N∗, so x lies in the A-

span of e′. It follows that N∗ is a free A-module of rank n, and in particular, a finitely
generated module over a noetherian ring and therefore a noetherian module (a module
whose submodules are all finitely generated); see [1, Thm. 16.19]. From the definition of the
dual lattice we have N ⊆ M ⇒ M∗ ⊆ N∗, so M∗ is a submodule of a noetherian module,
hence finitely generated.

We now show M∗ 'M∨. We have an obvious A-module homomorphism ϕ : M∗ →M∨

given by x 7→ (m 7→ 〈x,m〉), and the A-module homomorphism ψ : M∨ → M∗ defined by
f 7→

∑
i f(ei)e

′
i is the inverse of ϕ. Indeed, for any x =

∑
i xie

′
i ∈M∗ we have

ψ(ϕ(x)) =
∑
i

ϕ(x)(ei)e
′
i =

∑
i

〈x, ei〉e′i =
∑
i

∑
j

xj〈e′j , ei〉e′i =
∑
i

xie
′
i = x,

and for any f ∈M∨ and each generator mj =
∑
mjej for M we have

ϕ(ψ(f))(m) = ϕ(
∑

i f(ei)e
′
i)(m) =

∑
i ϕ(f(ei)e

′
i)(m) =

∑
i〈f(ei)e

′
i,
∑

jmjej〉 = f(m),

which implies ϕ(ψ(f)) = f and ϕ−1 = ψ; thus ϕ is an isomorphism from M∗ to M∨.

Corollary 5.13. Let A be a noetherian domain with fraction field K. If M1, M2 are A-
lattices in K-vector spaces V1, V2 with perfect pairings 〈·, ·〉1, 〈·, ·〉2 (resp.), then 〈·, ·〉1+〈·, ·〉2
defines a perfect pairing on V1 ⊕ V2 and (M ⊕N)∗ 'M∗ ⊕N∗.

Proof. This follows from Lemma 5.2 and Theorem 5.12.
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Corollary 5.14. Let A be a noetherian domain with fraction field K, let V be a K-vector
space with a perfect pairing 〈·, ·〉, and let M be a free A-lattice in V with A-basis (e1, . . . , en).
The dual lattice M∗ is a free A-lattice in V that has a unique A-basis (e∗1, . . . , e

∗
n) that

satisfies 〈e∗i , ej〉 = δij.

Proof. This follows from the proof of Theorem 5.12 with N = M and e∗i = e′i.

You might wonder whether M∗∗ = M for an A-lattice M in a vector space V . This
is false in general, but it is true when A is a Dedekind domain and we have a symmetric
perfect pairing on V . To prove this we first show that the dual lattice respects localization.

Lemma 5.15. Let A be a noetherian domain with fraction field K, let V be a K-vector
space of finite dimension with a perfect pairing 〈·, ·〉, let M be an A-lattice in V , and let S
be a multiplicative subset of A. Then S−1M and S−1M∗ are (S−1A)-lattices in V satisfying
(S−1M)∗ = S−1M∗.

Proof. It is clear that S−1M are S−1M∗ are both S−1A-lattices: each contains a basis for
V (since M and M∗ do), and both are finitely generated as S−1A-modules (since M and
M∗ are finitely generated as A-modules).

Let m1, . . .mn be A-module generators for M (and therefore S−1A-module generators
for S−1M). If x is an element of (S−1M)∗ then for each mi we have 〈x,mi〉 = ai/si for
some ai ∈ A and si ∈ S, and if we put s = s1 · · · sn then 〈sx,mi〉 ∈ A for every mi, hence for
all m ∈M ; thus sx ∈M∗ and x ∈ S−1M∗. Conversely, if x = y/s is an element of S−1M∗

with y ∈M∗ and s ∈ S, then 〈y,mi〉 ∈ A for every mi and 〈x,mi〉 = 〈y,mi〉/s ∈ S−1A for
every mi, hence for all m ∈ S−1M , and it follows that x ∈ (S−1M)∗.

Proposition 5.16. Let A be a Dedekind domain with fraction field K, let V be a K-vector
space of finite dimension with a symmetric perfect pairing 〈·, ·〉, and let M be an A-lattice
in V . Then M∗∗ = M .

Proof. By Proposition 2.6, it suffices to show (M∗∗)p = Mp for each maximal ideal p of A.
By Lemma 5.15 we have (M∗∗)p = M∗∗p , so it is enough to show that the proposition holds
when A is replaced by one of its localizations Ap (a DVR, since A is a Dedekind domain).

So let us assume A that is a DVR. Then A is a PID and M and M∗ are both torsion-free
modules over a PID, hence free A-modules. So let us choose an A-basis (e1, . . . , en) for M ,
and let (e∗1, . . . , e

∗
n) be the unique dual A-basis for M∗ that satisfies 〈e∗i , ej〉 = δij (given

by Corollary 5.14). If we now let (e∗∗1 , . . . , e
∗∗
n ) be the unique A-basis for M∗∗ that satisfies

〈e∗∗i , e∗j 〉 = δij and note that 〈ei, e∗j 〉 = δij (since 〈·, ·〉 is symmetric), by uniqueness, we must
have e∗∗i = ei for all i, and therefore M∗∗ = M .

5.2 Extensions of Dedekind domains

Let A be a Dedekind domain with fraction field K, let L/K be a finite extension, and let
B be the integral closure of A in L. We wish to prove that B is a Dedekind domain, which
we will do by showing that it is an A-lattice in L; this will imply, in particular, that B is
finitely generated, which is really the only difficult thing to show. Let us first show that B
spans L as a vector space (and in fact L is its fraction field).

Proposition 5.17. Let A be a Dedekind domain with fraction field K, let L/K be a finite
extension, and let B be the integral closure of A in L. Every element of L can be written
as b/a with a ∈ A and b ∈ B. In particular, B spans L as a K-vector space and L is the
fraction field of B.
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Proof. Let α ∈ L. By multiplying the minimal polynomial of α in K[x] by the product of
the denominators of its coefficients, we obtain a polynomial in A[x]:

g(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

with an 6= 0, that has α as a root. We can make this polynomial monic by replacing x with
x/an and multiplying through by an−1n to obtain

an−1n g(x/an) = xn + an−1x
n−1 + anan−2x

n−2 · · ·+ an−2n a1x+ an−1n a0.

This is a monic polynomial with coefficients in A that has anα ∈ L as a root. Therefore
anα ∈ B, since B is the integral closure of A in L, and α = b/an for some b ∈ B and an ∈ A
as claimed. It follows that B generates L as a K-vector space (we have α = b · 1

an
with

1
an
∈ K), and B ⊆ L ⊆ FracB implies L = FracB (no smaller field can contain B).

Proposition 5.18. Let A be a Dedekind domain with fraction field K, let L/K be a finite
extension of fields, and let B be the integral closure of A in L. Then NL/K(b) ∈ A and
TL/K(b) ∈ A for all b ∈ B.

Proof. The minimal polynomial f =
∑d

i=0 aix
i ∈ K[x] of b has coefficients in A, by Propo-

sition 1.28, and it then follows from Proposition 4.51 that NL/K(b) = (−1)deae0 ∈ A and
TL/K(b) = −ead−1 ∈ A (where e = [L : K(b)] ∈ Z).

Definition 5.19. Let B/A be a ring extension with B a free A-module of finite rank. The
trace pairing on B is the map B ×B → A defined by

〈x, y〉B/A := TB/A(xy).

Theorem 5.20. Let L be a commutative K-algebra of finite dimension. The trace pairing
〈·, ·〉L/K is a symmetric bilinear pairing. It is a perfect pairing if and only if L is a finite
étale K-algebra.

Proof. Bilinearity follows from the K-linearity of the trace map TL/K , and symmetry is
immediate. The fact that L is a K-vector space implies that the trace pairing is perfect if
and only if it is nondegenerate.

If L is not reduced then the proposition holds, since it is not étale (by Theorem 4.40),
and the trace pairing is degenerate: for any nonzero nilpotent x the map y 7→ TL/K(xy)
must be the zero map, since every xy is also nilpotent and the trace of any nilpotent element
z is zero (the matrix of the multiplication-by-z map is nilpotent, so its trace is zero).

We now assume L is reduced, hence semisimple (by Lemma 4.42) and thus a product
of fields. It suffices to consider the case that L is a field, since the trace pairing on a
product of field extensions is nondegenerate if and only if the trace pairing on each factor is
nondegenerate, and a product of field extensions is ètale if and only if each factor is ètale.

As proved on Problem Set 2, TL/K is the zero map if and only if the field extension
L/K is inseparable. If TL/K is the zero map then the trace pairing is clearly degenerate,
and otherwise we may pick z ∈ L for which TL/K(z) 6= 0. Then for every x ∈ L× we have
〈x, z/x〉L/K = TL/K(z) 6= 0, so x 7→ 〈x, y〉L/K is not the zero map, and it follows that the
trace pairing is nondegenerate.

Remark 5.21. Theorem 5.20 gives another equivalent definition of a finite étale K-algebra
in addition to the six listed in Theorem 4.40: a finite étale K-algebra is a commutative
K-algebra of finite dimension for which the trace pairing is a perfect pairing.
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We now assume that L/K is separable. For the next several lectures we will be working
in the following setting: A is a Dedekind domain with fraction field K, the extension L/K
is finite separable, and B is the integral closure of A in L (which we will shortly prove is a
Dedekind domain). As a convenient shorthand, we will write “assume AKLB” to indicate
that we are using this setup.

Proposition 5.22. Assume AKLB. Then B is an A-lattice in L, and in particular, B is
finitely generated as an A-module.

Proof. By Proposition 5.17, B spans L as a K-vector space, so it contains a basis (e1, . . . , en)
for L as a K-vector space. Let M ⊆ B be the A-span of (e1, . . . , en). Then M is an A-lattice
in L contained in B, and it has a dual lattice M∗ that contains the A-module

B∗ := {x ∈ L : 〈x, b〉L/K ∈ A for all b ∈ B}.

Proposition 5.18 implies that B ⊆ B∗, and we thus have inclusions

M ⊆ B ⊆ B∗ ⊆M∗.

By Theorem 5.12, M∗ is an A-lattice in L, hence finitely generated, hence noetherian. It
follows that its A-submodule B is finitely generated and thus an A-lattice in L.

Remark 5.23. When L/K is inseparable, B need not be finitely generated as an A-module,
not even when A is a PID; see [2, Ex. 11, p. 205]. We used the separability hypothesis in
order to get a perfect pairing, which plays a crucial role in the proof of Theorem 5.12.

Lemma 5.24. Let B/A be an extension of domains with B integral over A, and let q0 ( q1
be primes of B. Then q0 ∩A ( q1 ∩A and dimA ≥ dimB.

Proof. We first replace B with B/q0 and replace A, q0, and q1 with their images in B/q0
(the new B is integral over the new A, since the image of a monic polynomial in A[x] is a
monic polynomial in (A/(q0 ∩ A))[x]). Then q0 = (0) and q1 is a nonzero prime ideal. Let
α ∈ q1 be nonzero. Its minimal polynomial xn+an−1x

n−1 + · · ·+a0 over K has coefficients
in A (since α ∈ q1 ⊆ B is integral over A), with a0 6= 0 (otherwise divide by x). We have
a0 = −a1α − · · · − αn ∈ q1, thus 0 6= a0 ∈ q1 ∩ A. So q1 ∩ A is not the zero ideal and
therefore properly contains q0 ∩A = {0}. We can apply this result repeatedly to any chain
of distinct prime ideals in B to get a corresponding chain of distinct prime ideals in A. It
follows that dimA ≥ dimB.

Theorem 5.25. Let A be a Dedekind domain with fraction field K, let L/K be a finite
separable extension, and let B be the integral closure of A in L. Then B is a Dedekind
domain.

Proof. Recall that we defined a Dedekind domain as an integrally closed noetherian domain
of dimension at most one. Let us verify that each of these conditions holds:

• B is an integrally closed domain (by definition);
• B is finitely generated over the noetherian ring A (by Prop. 5.22), hence noetherian;
• B has dimension at most 1, since dimB ≤ dimA ≤ 1, by Lemma 5.24.

Thus B is a Dedekind domain.

Remark 5.26. Theorem 5.25 holds without the assumption that L/K is separable. This
follows from the Krull-Akizuki Theorem, see [4, Thm. 11.7] or [3, §VII.2.5], which is used
to prove that B is noetherian even when it is not finitely generated as an A-module.

Corollary 5.27. The ring of integers of a number field is a Dedekind domain.
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5.3 Splitting primes in Dedekind extensions

We continue in the AKLB setup, in which A is a Dedekind domain, K is its fraction field,
L/K is a finite separable1 extension, and B is the integral closure of A, which we now know
is a Dedekind domain with fraction field L. As we proved in earlier lectures, every nonzero
ideal in a Dedekind domain can be uniquely factored into prime ideals. Understanding the
ideal structure of a Dedekind domain thus boils down to understanding its prime ideals. In
order to simplify the language, whenever we have a Dedekind domain A, by a prime of A
(or of its fraction field K), we always mean a nonzero prime ideal of A.

If A has dimension zero then so does B, in which case there are no primes to consider,
so we may as well assume dimA = 1, in which case dimB = 1 as well (if B is a field then
so is B ∩K = A). Henceforth our AKLB setup will include the assumption that A 6= K.

Given a prime p of A, we can consider the ideal pB it generates in B (its extension to B
under the inclusion map). The ideal pB need not be prime, but it can be uniquely factored
into nonzero prime ideals in the Dedekind domain B. We thus have

pB =
∏
q

qeq ,

where q ranges over primes of B and the exponents eq ≥ 0 are zero for all but finitely many
primes q. The primes q for which eq > 0 are said to lie over or above the prime ideal p.
As an abuse of notation, we will often write q|p to indicate this relationship (there is little
risk of confusion, the prime ideal p is maximal hence not divisible by any prime ideals of A
other than itself).

Lemma 5.28. Let A be a ring of dimension one contained in a Dedekind domain B. Let p
be a prime of A and let q be a prime of B. Then q|p if and only if q ∩A = p.

Proof. If q divides pB then it contains pB (to divide is to contain), and therefore q ∩ A
contains pB ∩ A which contains p; the ideal p is maximal and q ∩ A 6= A (since 1 6∈ q), so
q ∩ A = p. Conversely, if q ∩ A = p then q = qB certainly contains (q ∩ A)B = pB, and B
is a Dedekind domain, so q divides pB (in a Dedekind domain to contain is to divide).

Lemma 5.28 implies that contraction gives us a surjective map SpecB → SpecA defined
by q 7→ q ∩ A; to see why it is surjective, note that (0) ∩ A = (0), and if p is a nonzero
element of SpecA then pB is nonzero and not the unit ideal, and therefore divisible by at
least one q ∈ SpecB. The fibers of this map are finite; we use {q|p} to denote the fiber
above a prime p of A.

The primes p of A are all maximal ideals (since dimA = 1), so each has an associated
residue field A/p, and similarly for primes q of B. If q lies above p then we may regard
the residue field B/q as a field extension of A/p: the kernel of the map A ↪→ B → B/q is
p = A∩ q, and the induced map A/p = A/(q∩A)→ B/q is a ring homomorphism of fields,
hence injective.

Definition 5.29. Assume AKLB, and let p be a prime of A. The exponent eq in the
factorization pB =

∏
q|p q

eq is the ramification index of q, and the degree fq = [B/q : A/p]

1Most of our proofs will not actually use the separability hypothesis (and even when they do, there may
be another way to prove the same result, as with Theorem 5.25). In order to simplify the presentation we
will use the separability assumption whenever it would be awkward not to. The cases we are most interested
in (extensions of local and global fields) are going to be separable in any event.
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of the corresponding residue field extension is the residue degree (or inertia degree) of q. In
situations where more than one extension of Dedekind domains is under consideration, we
may write eq/p for eq and fq/p for fq.

Lemma 5.30. Let A be a Dedekind domain with fraction field K, let M/L/K be a tower
of finite separable extension, and let B and C be the integral closures of A in L and M
respectively. Then C is the integral closure of B in M , and if r is a prime of M lying above
a prime q of L lying above a prime p of K then er/p = er/qeq/p and fr/p = fr/qfq/p.

Proof. It follows from Proposition 1.20 that the integral closure of B in M lies in C, and it
contains C, since A ⊆ B. We thus have a tower of Dedekind extensions C/B/A. If r|q|p then
the factorization of pC in C refines the factorization of pB in B, so er/p = er/qeq/p, and the
residue field embedding A/p ↪→ C/r factors as A/p ↪→ B/q ↪→ C/r, so fr/p = fr/qfq/p.

Example 5.31. Let A := Z, with K := FracA = Q, and let L := Q(i) with [L : K] = 2.
The prime (5) factors in B = Z[i] into two distinct prime ideals:

5Z[i] = (2 + i)(2− i).

The prime (2 + i) has ramification index e(2+i) = 1, and e(2−i) = 1 as well. The residue
field Z/(5) is isomorphic to the finite field F5, and we also have Z[i]/(2 + i) ' F5 (this
can be determined by counting the Z[i]-lattice points in a fundamental parallelogram of the
sublattice (2 + i) in Z[i]), so f(2+i) = 1; we similarly have f(2−i) = 1.

The prime (7) remains prime in B = Z[i]; its prime factorization is simply

7Z[i] = (7),

where the (7) on the RHS denotes a principal ideal in B (this is clear from context). The
ramification index of (7) is thus e(7) = 1, but its residue field degree is f(7) = 2, because
Z/(7) ' F7, but Z[i]/(7) ' F49 has dimension 2 has an F7-vector space.

The prime (2) factors as
(2) = (1 + i)2,

since (1 + i)2 = (1 + 2i− 1) = (2i) = (2) (note that i is a unit). You might be thinking that
(2) = (1 + i)(1− i) factors into distinct primes, but note that (1 + i) = −i(1 + i) = (1− i).
Thus e(1+i) = 2, and f(1+i) = 1 because Z/(2) ' F2 ' Z[i]/(1 + i).

Let us now compute the sum
∑

q|p eqfq for each of the primes p we factored above:∑
q|(2)

eqfq = e(1+i)f(1+i) = 2 · 1 = 2,

∑
q|(5)

eqfq = e(2+i)f(2+i) + e(2−i)f(2−i) = 1 · 1 + 1 · 1 = 2,

∑
q|(7)

eqfq = e(7)f(7) = 2 · 1 = 2.

In all three cases we obtain 2 = [Q(i) : Q]; as we shall shortly prove, this is not an accident.

Example 5.32. Let A := R[x], with K := FracA = R(x), and let L := R(
√
x3 + 3x).

The integral closure of A in L is the Dedekind domain B = R[x, y]/(y2 − x3 − 3x). Then
[L : K] = 2.
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The prime (x− 1) factors in B into two distinct prime ideals:

(x− 1) = (x− 1, y − 2)(x− 1, y + 2) (since y2 − 4 = x3 + 3x− 4 ∈ (x− 1)).

We thus have e(x−1,y−2) = 1, and f(x−1,y−2) = [B/(x− 1, y − 2) : A/(x− 1)] = [R : R] = 1.
Similarly, e(x−1,y+2) = 1 and f(x−1,y+2) = 1.

The prime (x + 1) remains prime in B (because y2 = −1 has no solutions in R), thus
e(x+1) = 1, and f(x+1) = [B/(x+ 1) : A/(x+ 1)] ' [C : R] = 2.

The prime (x) factors in B as
(x) = (x, y)2,

and we have e(x,y) = 2 and f(x,y) = 1.
As in the previous example,

∑
q|p eqfq = [L : K] in every case:∑

q|(x−1)

eqfq = e(x−1,y−2)f(x−1,y+2) + e(x−1,y+2)f(x−1,y+2) = 1 · 1 + 1 · 1 = 2,

∑
q|(x+1)

eqfq = e(x+1)f(x+1) = 1 · 2 = 2.

∑
q|(x)

eqfq = e(x,y)f(x,y) = 2 · 1 = 2,

Before proving that
∑

q|p eqfq = [L : K] always holds, let us consider the quotient ring
B/pB. The ring B/pB is typically not a field, so it is not a field extension of A/p, but it
is an A/p-algebra. This follows from the fact that B contains A and pB contains p: given
ā ∈ A/p and x̄ ∈ B/pB, if we choose lifts a ∈ A of ā and x ∈ B of x̄ then āx̄ = ax ∈ B/pB
is the reduction of ax ∈ b and does not depend on the choice of a and x since any other
choices would be congruent modulo pB.

Lemma 5.33. Assume AKLB and let p be a prime of A. The dimension of B/pB as an
A/p-vector space is equal to the dimension of L as a K-vector space.

Proof. Let Ap := S−1A and Bp := S−1B be localizations of A and B (as A-modules), where
S = A−p. Then Ap/pAp = S−1A/(pS−1A) ' A/p and Bp/pBp ' S−1B/(pS−1B) ' B/pB.
It follows that if the lemma is true when A is a DVR then it is true in general, so we may
assume that A is a DVR, and in particular, a PID.

By Proposition 5.22, B is finitely generated as an A module, and as an integral domain
containing A, it must be torsion free. It follows from the structure theorem for finitely
generated modules over a PID that B is free of finite rank over A. By Proposition 5.17, B
spans L as a K-vector space, so any A-basis for B is a K-basis for L. It follows that B has
rank n := [L : K] as a free A-module, that is, B ' An. We then have pB ' pAn = (pA)n,
so B/pB ' An/(pA)n ' (A/p)n is a free A/p-module of dimension n.

Example 5.34. Let A = Z, B = Z[i], and consider p = (2). We have pB = 2Z[i] = (1+ i)2,
and B/pB = Z[i]/2Z[i] = Z[i]/(1 + i)2 is an F2-algebra of dimension 2 = [Q(i) : Q]. It
contains a nonzero nilpotent (the image of i+ 1), so it is not a finite étale F2-algebra. It is
a ring of cardinality 4 and characteristic 2 isomorphic to F2[x]/(x2).

Theorem 5.35. Assume AKLB. For each prime p of A we have∑
q|p

eqfq = [L : K].
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Proof. We have

B/pB '
∏
q|p

B/qeq

Applying the previous proposition gives

[L : K] = [B/pB : A/p]

=
∑
q|p

[B/qeq : A/p]

=
∑
q|p

eq[B/q : A/p]

=
∑
q|p

eqfq.

The second equality comes from the Chinese Remainder Theorem, and the third uses the
fact that B/qeq has dimension eq as a B/q-vector space. Indeed, we have

qeq = {x ∈ B : vq(x) ≥ eq},

and if π ∈ q is a uniformizer for Bq (a generator qBq that we can force to lie in q by clearing
denominators), the images of (π0, π1, . . . , πeq−1) in B/qeq are a B/q-basis for B/qeq .

For each prime p of A, let gp := #{q|p} denote the cardinality of the fiber above p.

Corollary 5.36. Assume AKLB and let p be a prime of A. Then gp is an integer in the
interval [1, n], where n = [L : K], as are eq and fq for each q|p.

We now define some standard terminology that we may use in the AKLB setting to
describe how a prime p of K splits in L (that is, for a nonzero prime ideal p of A, how the
ideal pB factors into nonzero prime ideals q of B).

Definition 5.37. Assume AKLB, let p be a prime of A.

• L/K is totally ramified at q if eq = [L : K] (equivalently, fq = 1 = gp = 1).

• L/K is unramified at q if eq = 1 and B/q is a separable extension of A/p.

• L/K is unramified above p if it is unramified at all q|p, equivalently, if B/pB is a finite
étale algebra over A/p.

When L/K is unramified above p we say that

• p remains inert in L if q = pB is prime (equivalently, eq = gp = 1, and fq = [L : K]).

• p splits completely in L if gp = [L : K] (equivalently, eq = fq = 1 for all q|p).

In Example 5.34 above for the extension Q(i)/Q, the prime p = (2) is ramified and the
quotient ring B/pB is not an étale A/p algebra, even though the residue field A/p ' F2 is
a perfect field (note that B/pB is not a field). But when A/p is a finite field (or any perfect
field), for any prime q|p the residue field B/q is necessarily a finite étale (A/p)-algebra, since
it must be a separable field extension, and in this case q is unramified whenever eq = 1.
This applies to our primary case of interest, where L/K is an extension of global fields.
However, we will occasionally want to consider Dedekind domains A whose residue fields
need not be perfect, in which case eq = 1 does not imply that q is unramified.
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6 Ideal norms and the Dedekind-Kummer theorem

In order to better understand how ideals split in Dedekind extensions we want to extend
our definition of the norm map to ideals. Recall that for a ring extension B/A in which B
is a free A-module of finite rank, we defined the norm map NB/A : B → A as

NB/A(b) := det(B
×b−→ B),

the determinant of the multiplication-by-b map with respect to an A-basis for B. If B is
a free A-module we could define the norm of a B-ideal to be the A-ideal generated by the
norms of its elements, but in the case we are most interested in (our “AKLB” setup) B is
typically not a free A-module (even though it is finitely generated as an A-module).

To get around this limitation, we introduce the notion of the module index, which we
will use to define the norm of an ideal. In the special case where B is a free A-module, the
norm of a B-ideal will be equal to the A-ideal generated by the norms of elements.

6.1 The module index

Our strategy is to define the norm of a B-ideal as the intersection of the norms of its
localizations at maximal ideals of A (note that B is an A-module, so we can view any ideal
of B as an A-module). Recall that by Proposition 2.6 any A-module M in a K-vector space
is equal to the intersection of its localizations at primes of A; this applies, in particular,
to ideals (and fractional ideals) of A and B. In order to do this we first define the module
index of two A-lattices, as originally introduced by Fröhlich [3].

Recall that an A-lattice M in a K-vector space V is a finitely generated A-submodule
of V that spans V as a K-vector space (Definition 5.9). If M is a free A-module, then any
A-basis for M is also a K-basis for V , and we must have M ' An, where n = dimK V . If A
is a Dedekind domain, even when M is not free, its localization Mp at any prime p of A will
be a free Ap-module. This follows from the following facts: (a) Ap is a DVR and therefore
a PID, (b) Mp is a torsion-free Ap-module, since it lies in a K-vector space and Ap ⊆ K,
and (c) any finitely generated torsion-free module over a PID is free.

Definition 6.1. Let A be a Dedekind domain with fraction field K, let V be an n-
dimensional K-vector space, let M and N be A-lattices in V , and let p be a prime of A.
Then Ap is a PID and we must have Mp ' Anp ' Np, as explained above. Choose an

Ap-module isomorphism φp : Mp
∼→ Np and let φ̂p denote the unique K-linear map V → V

extending φp. The linear map φ̂p is an isomorphism and therefore has nonzero determinant.

The module index [Mp : Np]Ap is the principal fractional Ap-ideal generated by det φ̂p:

[Mp : Np]Ap :=
(
det φ̂p

)
.

This ideal does not depend on our choice of φp because any other choice can be written
as φ1φpφ2 for some Ap-module automorphisms φ1 : Mp

∼−→ Mp and φ2 : Np
∼−→ Np that

necessarily have unit determinants. The module index [M : N ]A is the A-module

[M : N ]A :=
⋂
p

[Mp : Np]Ap ,

where p ranges over primes of A and the intersection takes place in K. Each [Mp : Np]Ap is
an A-submodule of K (which need not be finitely generated), so their intersection is clearly
an A-submodule of K, but it is not immediately clear that it finitely generated (or nonzero).
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We claim that in fact [M : N ]A is a nonzero fractional ideal of A whose localizations
agree with all the local module indexes, that is for every prime p of A we have(

[M : N ]A
)
p

= [Mp : Np]Ap .

This is obvious when M and N are free A-modules: fix a global A-module isomorphism
φ : M

∼→ N so that (det φ̂)p = (det φ̂p) for all primes p (where φp is just the Ap-module iso-
morphism induced by φ). To prove the general case we apply a standard “gluing” argument
that will be familiar to those who have studied algebraic geometry.

Proposition 6.2. Let A be a Dedekind domain with fraction field K and let M and N be
A-lattices in a K-vector space of finite dimension. The module index [M : N ]A is a nonzero
fractional ideal of A whose localization at each prime p of A is equal to the local module
index [Mp :Np]Ap.

Proof. The finitely generated A-module M is locally free in the sense that the module
Mp is a free Ap-module for every prime p. It follows from [2, Thm. 19.2] that there exist
nonzero a1, . . . , ar ∈ A generating the unit ideal such that each M [1/ai] is a free A[1/ai]-
module (here M [1/ai] denotes the localization of M with respect to the multiplicative set
{ani : n ∈ Z≥0}). We similarly have nonzero b1, . . . , bs ∈ A generating the unit ideal such
that each N [1/bj ] is a free A[1/bj ]-module. For any pair ai and bj , if we localize at the
multiplicative set Sij := {ami bnj : m,n ∈ Z≥0} then S−1

ij M and S−1
ij N will both be free

S−1
ij A-modules and we will have(

[S−1
ij M : S−1

ij N ]S−1
ij A

)
p

= [Mp : Np]Ap ,

for all primes p of A that do not contain either ai or bj , since we can fix a global S−1
ij A-module

isomorphism φ : S−1
ij M → S−1

ij N that induces Ap-module isomorphisms φp : Mp → Np with

(det φ̂)p = (det φ̂p); note that if p contains either ai or bj then pS−1
ij A is the unit ideal (not

a prime ideal of S−1
ij A), thus [S−1

ij M : S−1
ij N ]S−1

ij A is equal to the intersection ∩p[Mp : Np]Ap

over primes p that do not contain ai or bj .
We now observe that since the sets {ai} and {bj} both generate the unit ideal, for every

prime p there is a choice of ai and bj that do not lie in p. It follows that

[M : N ]A =
⋂
p

[Mp : Np]Ap =
⋂
ij

[S−1
ij M : S−1

ij N ]S−1
ij A.

Moreover, [M :N ]A is a nonzero fractional ideal. To see this, let Iij := [S−1
ij M : S−1

ij N ]S−1
ij A.

Each Iij is a nonzero principal fractional S−1
ij A-ideal, and we can choose a single α ∈ K×

so that each αIij is an S−1
ij A-ideal. The intersection of the αIij lies in ∩ijS−1

ij A = A and is
thus an A-submodule of A, hence an ideal, and finitely generated because A is noetherian.
It follows that [M : N ]A is a fractional ideal of A, and it is nonzero, since it contains the
product of the the generators of the Iij , for example. The localization of the intersection of
a finite set of A-modules is equal to the intersection of their localizations, thus

([M : N ]A)p =
(
∩ij [S−1

ij M : S−1
ij N ]S−1

ij A

)
p

= ∩ij
(
[S−1
ij M : S−1

ij N ]S−1
ij A

)
p

= [Mp : Np]Ap

as claimed.
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Proposition 6.2 implies that the module index [M : N ]A is an element of the ideal
group IA. If M,N,P are A-lattices in V then

[M : N ]A[N : P ]A = [M : P ]A, (1)

since for each prime p we can write any isomorphism Mp
∼→ Pp as a composition of iso-

morphisms Mp
∼→ Np

∼→ Pp; we then note that the determinant map is multiplicative with
respect to composition and multiplication of fractional ideals is compatible with localization.
Taking P = M yields the identity

[M : N ]A[N : M ]A = [M : M ]A = A, (2)

thus [M : N ]A and [N : M ]A are inverses in the ideal group IA. We note that when N ⊆M
the module index [M : N ]A ⊆ A is actually an ideal (not just a fractional ideal), since in
this case we can express a basis for Np as Ap-linear combinations of a basis for Mp, and the

matrix for φ̂p will then have entries (and determinant) in Ap.

Remark 6.3. In the special case V = K, an A-lattice in V is simply a fractional ideal of A.
In this setting each module index [M : N ]A corresponds to a colon ideal

[M : N ]A = (N : M). (3)

Note that the order of M and N is reversed. This unfortunate conflict of notation arises
from the fact that the module index is generalizing the notion of an index (for example,
[Z : 2Z]Z = ([Z : 2Z]) = (2)), whereas colon ideals are generalizing the notion of a ratio
(for example, (Z : 2Z) = (1 : 2) = (1/2)). To see why (3) holds, let π be a uniformizer
for Ap. Then Mp = (πm) and Np = (πn) for some m,n ∈ Z, and we may take φp to be the
multiplication-by-πn−m map. We then have

[Mp : Np]Ap = (det φ̂p) = (πn−m) = (πn/πm) = (Np : Mp).

It follows from the remark that if M and N are nonzero fractional ideals of A then

M [M : N ]A = M(N : M) = N.

(note we are using the fact that A is a Dedekind domain; we always have M(N : M) ⊆ N
but equality does not hold in general), and if N ⊆M then I := [M : N ]A ⊆ A is an ideal and
we have MI = N = NA and therefore M/N ' A/I as quotients of A-modules. It follows
that I = {a ∈ A : aM ⊆ N} is the annihilator of M/N , which is a cyclic A-module (has a
single generator), since A/I is clearly cyclic (generated by the image of 1). Conversely, if
we know that M/N ' A/I for nonzero fractional ideals N ⊆ M , then we necessarily have
I = [M : N ]A. The following theorem generalizes this observation.

Theorem 6.4. Let A be a Dedekind domain with fraction field K, and let N ⊆ M be
A-lattices in a K-vector space V of dimension r for which the quotient module M/N is a
direct sum of cyclic A-modules:

M/N ' A/I1 ⊕ · · · ⊕A/In,

where I1, . . . , In are ideals of A. Then

[M : N ]A = I1 · · · In.
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Proof. Let p be a prime of A, let π be a uniformizer for Ap, and let ej = vp(Ij) for 1 ≤ j ≤ n.
Pick a basis for Mp and an isomorphism φp : Mp → Np so that Mp/Np = cokerφp. The
matrix of φp is an r × r matrix over the PID Ap with nonzero determinant. It therefore
has Smith normal form UDV , with U, V ∈ GLr(Ap) and D = diag(πd1 , . . . , πdr) for some
uniquely determined nonnegative integers d1 ≤ · · · ≤ dr. We then have

Ap/(π
e1)⊕ · · · ⊕Ap/(π

en) 'Mp/Np = cokerφ ' Ap/(π
d1)⊕ · · · ⊕Ap/(π

dr).

It follows from the structure theorem for modules over a PID that the non-trivial summands
on each side are precisely the invariant factors of Mp/Np, possibly in different orders. We
therefore have

∑n
j=1 ej =

∑r
i=1 di, and applying the definition of the module index yields

[Mp : Np]Ap = (detφp) = (detD) = (π
∑
di) = (π

∑
ej ) = (πe1p ) · · · (πenp ) = (I1 · · · In)p.

It follows that [M : N ]A = I1 · · · In, since the localizations ([M : N ]A)p = [Mp : Np]Ap and
(I1 · · · In)p coincide for every prime p.

6.2 The ideal norm

In the AKLB setup the inclusion A ⊆ B induces a homomorphism of ideal groups:

IA → IB
I 7→ IB.

We wish define a homomorphism NB/A : IB → IA in the reverse direction. As we proved
in the previous lecture, every fractional B-ideal I is an A-lattice in L, so let us consider

IB → IA
I 7→ [B : I]A.

Definition 6.5. Assume AKLB. The ideal norm NB/A : IB → IA is the map I 7→ [B : I]A.
We extend NB/A to the zero ideal by defining NB/A((0)) = (0).

We now show that the ideal norm NB/A is compatible with the field norm NL/K .

Proposition 6.6. Assume AKLB and let α ∈ L. Then NB/A((α)) =
(
NL/K(α)

)
.

Proof. The case α = 0 is immediate, so assume α ∈ L×. We have

NB/A((α)) = [B : αB]A =
⋂
p

[Bp : αBp]Ap =
(

det(L
×α−→ L)

)
=
(
NL/K(α)

)
,

since each Bp
×α−→ αBp is an isomorphism of free Ap-modules that are Ap-lattices in L.

Proposition 6.7. Assume AKLB. The map NB/A : IB → IA is a group homomorphism.

Proof. Let p be a maximal ideal of A. Then Ap is a DVR and Bp is a semilocal Dedekind
domain, hence a PID. Thus every element of IBp is a principal ideal (α) for some α ∈ L×,
and the previous proposition implies that NBp/Ap

: IBp → IAp is a group homomorphism,
since NL/K is. For any I, J ∈ IB we then have

NB/A(IJ) =
⋂
p

NBp/Ap
(IpJp) =

⋂
p

NBp/Ap
(Ip)NBp/Ap

(Jp) = NB/A(I)NB/A(J).
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Corollary 6.8. Assume AKLB. For all I, J ∈ IB we have

[I : J ]A = NB/A(I−1J) = NB/A((J : I))

Proof. The second equality is immediate: (J : I) = I−1J (because B is a Dedekind domain).
The first follows from (1), (2), and the previous proposition. Indeed, we have

[I : J ]A = [I : B]A[B : J ]A = [B : I]−1
A [B : J ]A = NB/A(I−1)NB/A(J) = NB/A(I−1J).

Corollary 6.9. Assume AKLB and let I be a fractional ideal of B. The ideal norm of I
is the fractional ideal of A generated by the image of I under the field norm NL/K , that is,

NB/A(I) =
(
NL/K(α) : α ∈ I

)
.

Proof. Let J denote the RHS. For any nonzero prime p of A, the localization of the ideal
NB/A(I) = [B : I]A at p is [Bp : Ip]Ap = NBp/Ap

(Ip). The fractional ideal NBp/Ap
(Ip) of Ap

is principal, so NBp/Ap
(Ip) = Jp follows from the proposition, and

NB/A(I) =
⋂
p

NBp/Ap
(Ip) =

⋂
p

Jp = J.

The corollary gives us an alternative definition of the ideal norm in terms of the field
norm. In view of this we extend our definition of the field norm NL/K to fractional ideals
of B, and we may write NL/K(I) instead of NB/A(I). We have the following pair of commu-
tative diagrams, in which the downward arrows map nonzero field elements to the principal
fractional ideals they generate. We know that composing the maps K× → L× → K× along
the top corresponds to exponentiation by n = [L : K] (see Problem Set 2); we now show
that this is also true for the composition of the bottom maps.

K× L× L× K×

IA IB IB IA

←↩ →

←→ (x) ←→ (y)

←→
NL/K

←→ (y) ←→ (x)

←→I 7→IB ←→
NB/A

Theorem 6.10. Assume AKLB and let q be a prime lying above p. Then NB/A(q) = pfq,
where fq = [B/q : A/p] is the residue field degree of q.

Proof. The (A/p)-vector space B/q has dimension fq (by definition); as a quotient of A-
modules, we have B/q ' A/p ⊕ · · · ⊕ A/p, an fq-fold direct sum of cyclic A-modules A/p,
and we may apply Theorem 6.4. Thus NB/A(q) = [B : q]A = p · · · p = pfq .

Corollary 6.11. Assume AKLB. For I ∈ IA we have NB/A(IB) = In, where n = [L : K].

Proof. Since NB/A and I 7→ IB are group homomorphisms, it suffices to consider the case
were I = p is a nonzero prime ideal. We then have

NB/A(pB) = NB/A

∏
q|p

qeq

 =
∏
q|p

NB/A(q)eq =
∏
q|p

peqfq = p
∑

q|p eqfq = pn.
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6.3 The ideal norm in algebraic geometry

The maps i : IA → IB and NB/A : IB → IA have a geometric interpretation that will
be familiar to those who have studied algebraic geometry: they are the pushforward and
pullback maps on divisors associated to the morphism of curves Y → X induced by the
inclusion A ⊆ B, where X = SpecA and Y = SpecB. For the benefit of those who have
not seen this before, let us briefly explain the connection (while glossing over some details).

Dedekind domains naturally arise in algebraic geometry as coordinate rings of smooth
curves (which for the sake of this discussion one can take to mean geometrically irreducible
algebraic varieties of dimension one with no singularities). In order to make this explicit,
let us fix a perfect field k and a polynomial f ∈ k[x, y] that we will assume is irreducible in
k̄[x, y]. The ring A = k[x, y]/(f) is a noetherian domain of dimension 1, and if we further
assume that the algebraic variety X defined by f(x, y) = 0 has no singularities, then A
is also integrally closed and therefore a Dedekind domain.1 We call A the coordinate ring
of X, denoted k[X], and its fraction field is the function field of X, denoted k(X).

Conversely, given a Dedekind domain A, we can regard X = SpecA as a smooth curve
whose closed points are the maximal ideals of A (all of SpecA except the zero ideal, which
is called the generic point). When the field of constants k is algebraically closed, Hilbert’s
Nullstellensatz gives a one-to-one correspondence between maximal ideals (x−x0, y−y0) and
points (x0, y0) in the affine plane, but in general closed points correspond to Gal(k̄/k)-orbits
of k̄-points.

Recall that the ideal group IA is isomorphic to the free abelian group generated by the
nonzero prime ideals p of A. The corresponding object in algebraic geometry is the divisor
group DivX, the free abelian group generated by the closed points P of X. The group
DivX is written additively, so its elements have the form D =

∑
nPP with all but finitely

many of the integers nP equal to 0.
A finite extension of Dedekind domains B/A induces a surjective morphism φ : Y → X

of the corresponding curves X = SpecA and Y = SpecB. Primes q of B in the fiber above
a prime p of A correspond to closed points Q of Y in the fiber of φ above a closed point P
of X. The map IA → IB defined by p 7→ pB =

∏
q|p q

eq corresponds to the pullback map
φ∗ : DivX → Div Y induced by φ, which is defined by

φ∗(P ) :=
∑

φ(Q)=P

eQQ

where eQ is the ramification index (one then extends Z-linearly: φ∗(
∑
nPP ) =

∑
nPφ

∗(P )).
Geometrically we think of eQ as the “multiplicity” of Q in the fiber above P , although eQ
is typically defined algebraically as the ramification index of the prime Q in the Dedekind
extension B/A as we have done (alternatively, as we shall see in later lectures, it can be
defined in terms of valuations on k(X) and k(Y ) associated to P and Q).

In the other direction, the norm map NB/A : IB → IA, which sends q to NB/A(q) = pfq ,
corresponds to pushforward map φ∗ : Div Y → DivX induced by φ, which is defined by

φ∗(Q) := fQφ(Q) = fQP,

1If A is not integrally closed, we can replace it by its integral closure, thereby obtaining the normalization
of the curve X. One typically also takes the projective closure of X in order to obtain a complete curve;
this corresponds to considering all absolute values (places) of the function field of X, not just those arising
from primes. This distinction does not affect our discussion here but will become relevant in later lectures.
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where fQ counts the number of k̄-points in the Gal(k̄/k)-orbit corresponding to the closed
point Q, equivalently, the degree of the field extension of k needed to split Q into fQ distinct
closed points after base extension (here we are using our assumption that k is perfect). This
is precisely the residue field degree of Q as a prime in the Dedekind extension B/A. Note
that when k = k̄ we always have fQ = 1 (so over algebraically closed fields one typically
omits fQ from the pushforward map and the degree formula below).

If we compose the pushforward and pullback maps we obtain

φ∗φ
∗(P ) =

∑
φ(Q)=P

eQfQP = deg(φ)P.

Here deg(φ) is the degree of the morphism φ : Y → X, which is typically defined as the
degree of the function field extension [k(Y ) : k(X)], but one can take the above formula
as an alternative definition (by Theorem 5.35). It is a weighted measure of the cardinality
of the fibers of φ that reflects both the ramification and degree of each closed point in the
fiber (and as a consequence, it is the same for every fiber and is an invariant of φ).

6.4 The ideal norm in number fields

We now consider the special case A = Z, K = Q, where B = OL is the ring of integers of
the number field L. In this situation we may simply write N in place of NB/A and call it
the absolute norm. If q is a nonzero prime ideal of OL then Theorem 6.10 implies

N(q) = (pfq),

where p ∈ Z is the unique prime in q ∩ Z, and f is the degree of the finite field B/q as an
extension of Fp ' Z/pZ. The absolute norm

N(q) = [OL :q]Z = ([OL :q])

is the principal ideal generated by the (necessarily finite) index [OL : q] ∈ Z of q in OL as
free Z-modules of equal rank; this is just the index of q in OL as additive groups. More
generally, we have the following.

Proposition 6.12. Let L be a number field with ring of integers OL. For any nonzero
OL-ideal a we have N(a) =

(
[OL : a]

)
. If b ⊆ a are nonzero fractional ideals of OL, then

[a :b]Z = ([a :b]).

Proof. The ring OL is a free Z module of rank n := [L : Q]. It is free because it is
torsion-free and Z is a PID, and it has rank n because it contains a Q-basis for L, by
Proposition 5.17. The same is true of any nonzero fractional ideal of OL: it is a torsion-free
Z-module, hence free, and it has the same rank n as OL because it contains some nonzero
principal fractional ideal αOL: the fact that OL spans L implies that αOL spans L, because

the multiplication-by-α map L
×α→ L is an invertible Q-linear transformation.

Let us now fix Z-bases for OL and the nonzero OL-ideal a. Let Φ ∈ Zn×n be the matrix
whose columns express each basis element for a in terms of our basis for OL. Multiplication
by Φ defines a Z-module isomorphism from OL to a, since it maps our basis for OL to our
basis for a. It follows that [OL : a]Z = (det Φ): for every prime p ∈ Z we can use the
matrix Φ to define a Z(p)-module isomorphism φ(p) : (OL)(p) → a(p) with det φ̂(p) = det Φ
(any Z-basis for a free Z-module M is also a Z(p)-basis for the free Z(p)-module M(p)).
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We now observe that the absolute value of the determinant of Φ is equal to the index
of a in OL: indeed, if we identify OL with Zn then |det Φ| is the volume of a fundamental
parallelepiped for a, viewed as a sublattice of Zn. We thus have

([OL : a]) = (det Φ) = [OL :a]Z = N(a),

which proves the first claim.
For any α ∈ L× we have [a : b] = [αa :αb] and [a : b]Z = [αa :αb]Z, so we can assume

without loss of generality that a and b are ideals in OL. We then have a tower of free
Z-modules b ⊆ a ⊆ OL, and therefore

[OL :a][a :b] = [OL :b].

Replacing both sides with the Z-ideals they generate, we have

N(a)
(
[a :b]

)
= N(b),

and therefore ([a :b]) = N(a−1b) = [a :b]Z, by Corollary 6.8, proving the second claim.

Remark 6.13. Since Z is a principal ideal domain whose only units are ±1, we can un-
ambiguously identify each fractional ideal with a positive rational number and view the
absolute norm N: IOL

→ IZ as a homomorphism N: IOL
→ Q×>0 from ideal group of OL to

the multiplicative group of positive rational numbers. If we write N(a) in contexts where an
element of Z or Q (or R) is expected, it is always with this understanding. When a = (a)
is a nonzero principal fractional ideal we may also write N(a) := N((a)) = |NL/Q(a)|; this
is a positive rational number, and for a ∈ OL, a positive integer.

6.5 The Dedekind-Kummer theorem

We now give a theorem that provides a practical method for factoring primes in Dedekind
extensions. This result was proved by Dedekind for number fields, building on earlier work of
Kummer, but we will give a version that works for arbitrary extensions of Dedekind domains
B/A whose fraction fields are a finite separable extensions L/K (the AKLB setup).

The primitive element theorem implies when L/K is a finite separable extension we can
always write L = K(α) for some α ∈ L, and in the AKLB setup we can assume α ∈ B,
by Proposition 5.17. This does not imply that B = A[α]; indeed, it may very will happen
that there is no α ∈ B for which B = A[α]. Extensions L/K for which B = A[α] for some
α ∈ B are said to be monogenic. This necessarily implies that B is a free A-module, hence
it has an integral basis {β1, . . . , βn} that is both an A-basis for B and a K-basis for L. But
monogenicity is a much stronger condition: it implies that B has an integral power basis,
one of the form {1, α, . . . , αn−1}. When A = Z every B has an integral basis, but very
few have an integral power basis. Examples of monogenic extensions include quadratic and
cyclotomic number fields (as extensions of Q); see Problem Set 3 for proofs of these facts
and some examples of non-monogenic number fields.

We will first prove the Dedekind-Kummer theorem assuming we have a monogenic ex-
tension; in the next section we will address the general case.

Theorem 6.14 (Dedekind-Kummer). Assume AKLB with L = K(α) and α ∈ B. Let
f ∈ A[x] be the minimal polynomial of α, let p be a prime of A, and let

f̄ = ḡe11 · · · ḡ
er
r
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be its factorization into monic irreducibles in (A/p)[x]. Let qi := (p, gi(α)), where gi ∈ A[x]
is any lift of ḡi in (A/p)[x] under the reduction map A[x]→ (A/p)[x]. If B = A[α] then

pB = qe11 · · · q
er
r ,

is the prime factorization of pB in B and the residue field degree of qi is deg ḡi.

Before proving the theorem, last us give an example to illustrate its utility.

Example 6.15. Let A = Z, K = Q, and L = Q(ζ5), where α = ζ5 is a primitive 5th root
of unity with minimal polynomial f(x) = x4 + x3 + x2 + x+ 1. Then B = OL = Z[ζ5] and
we can use the theorem to factor any prime of Z in OL:

• (2): f(x) is irreducible modulo 2, so 2Z[ζ5] is prime and (2) is inert in Q(ζ5).

• (5): f(x) ≡ (x−1)4 mod 5, so 5Z[ζ5] = (5, ζ5−1)4 and (5) is totally ramified in Q(ζ5).

• (11): f(x) ≡ (x− 4)(x− 9)(x− 5)(x− 3) mod 11, so

11Z[ζ5] = (11, ζ5 − 4)(11, ζ5 − 9)(11, ζ5 − 5)(11, ζ5 − 3),

and (11) splits completely in Q(ζ5).

• (19): f(x) ≡ (x2 + 5x+ 1)(x2 − 4x+ 1) mod 19, so

19Z[ζ5] = (19, ζ2
5 + 5ζ5 + 1)(19, ζ2

5 − 4ζ5 + 1).

The four cases above cover every possible prime factorization pattern in the cyclotomic
extension Q(ζ5)/Q (see Problem Set 3 for a proof).

Proof of the Dedekind-Kummer theorem. We have B = A[α] ' A[x]/(f(x)) and therefore

B

qi
=

A[α]

(p, gi(α))
' A[x]

(f(x), p, gi(x))
' (A/p)[x]

(f̄(x), ḡi(x))
' (A/p)[x]

(ḡi(x))
.

The polynomial ḡi(x) is by assumption irreducible, thus (ḡi(x)) is a maximal ideal (because
(A/p)[x] is a UFD of dimension 1), so the quotient (A/p)[x]/(ḡi(x)) is a field; indeed, it is
an extension of the residue field A/p of degree deg gi. It follows that qi is a prime above p
with residue field degree fqi = deg ḡi as claimed.

The ideal
∏
i q
ei
i =

∏
i(p, gi(α))ei =

∏
i(pB + (gi(α)))ei is divisible by pB, since if we

expand the ideal product every term is clearly divisible by pB, including∏
i

(gi(α)ei) ≡ (f(α)) ≡ (0) mod pB.

The ḡi(x) are distinct as elements of (A/p)[x]/(f(x)) ' A[x]/(p, f(x)) ' A[α]/pA[α], and
it follows that the gi(α) are distinct modulo pB. Therefore the prime ideals qi are distinct,
and we must then have ei ≥ eqi and {q|p} ⊆ {qi} in order for

∏
i q
ei
i to be divisible by pB;

we already showed that each qi is a prime above p, so we must have {qi} = {q|p}. Now

NB/A

(∏
i

qeii

)
=
∏
i

NB/A(qi)
ei =

∏
i

(pfqi )ei = pei deg ḡi = pdeg f = p[L:K],

so
∑

i eifqi = [L : K] =
∑

q|p eqfq. We must have ei = eqi and the theorem follows.

We now want to remove the monogenic hypothesis from Theorem 6.14 We can always
write L = K(α) for some α ∈ B (since L/K is separable), but in general the ring A[α] may
be a proper subring of B. The relationship between A[α] and B is characterized by the
conductor of the extension B/A[α].
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6.6 The conductor of a ring

We first give the general definition then specialize to subrings of Dedekind domains.

Definition 6.16. Let S/R be an extension of commutative rings. The conductor of R in
S is the largest S-ideal that is also an R-ideal; equivalently, it is the largest ideal of S
contained in R. It can be written as

c := {α ∈ S : αS ⊆ R} = {α ∈ R : αS ⊆ R}.

If R is an integral domain, the conductor of R is the conductor of R in its integral closure.

Example 6.17. The conductor of Z in Z[i] is (0). The conductor of Z[
√
−3] in Z[ζ3] is

(2, 1 +
√
−3) (these may be viewed as generators over Z[

√
−3] or Z[ζ3], or even just Z; note

that (2, 1 +
√
−3) = 2Z[ζ3] is principal in Z[ζ3] but not in Z[

√
−3]).

We are interested in the case where R is a noetherian domain.

Lemma 6.18. Let R be a noetherian domain. The conductor of R in its integral closure S
is nonzero if and only if S is finitely generated as an R-module.

Proof. This is a special case of Lemma 2.14.

Recall that we defined a fractional ideal of a noetherian domain R as a finitely generated
R-submodule of its fraction field. If R has nonzero conductor then its integral closure S is
a fractional ideal of R that is also a ring. This means we can write S as 1

r I for some r ∈ R
and R-ideal I, and the conductor c is precisely the set of denominators r ∈ R for which
S = 1

r I for some R-ideal I (note that the representation 1
r I is far from unique).

6.7 Orders in Dedekind domains

We now introduce the notion of an order (in a Dedekind domain). This should not be
confused with the notion of a reflexive, transitive, antisymmetric relation on a set, rather it
is a literal translation of the German Ordnung, which refers to a ring of algebraic integers.

Definition 6.19. An order O is a noetherian domain of dimension one whose conductor
is nonzero, equivalently, whose integral closure is finitely generated as an O-module.2

Every Dedekind domain that is not a field is also an order. The integral closure of an
order is always a Dedekind domain, but not every ring whose integral closure is a Dedekind
domain is an order: as shown by Nagata [5, p. 212], one can construct noetherian domains of
dimension one with zero conductor. But in the case of interest to us the conductor is auto-
matically nonzero: in the AKLB setup B is finitely generated over A (by Proposition 5.22),
hence over every intermediate ring between A and B, including all those whose integral clo-
sure is B. In particular, if A[α] and B have the same fraction field (so L = K(α)), then
A[α] is an order in B (assuming B 6= L).

There is an alternative definition of an order that coincides with our definition in the
case of interest to us. Recall that an A-lattice in a K-vector space L is a finitely generated
A-submodule of L that spans L as a K-vector space.

2Not all authors require an order to have nonzero conductor (e.g. Neukirch [6, §I.12]), but nearly all of
the interesting theorems about orders require this assumption, so we include it in the definition.
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Definition 6.20. Let A be a noetherian domain with fraction field K, and let L be a (not
necessarily commutative) K-algebra of finite dimension. An A-order in L is an A-lattice
that is also a ring.

Remark 6.21. In general the K-algebra L (and the order O) in Definition 6.20 need not
be commutative (even though A necessarily is). For example, the endomorphism ring of an
elliptic curve is isomorphic to a Z-order in a Q-algebra L of dimension 1, 2, or 4. This Z-
order is necessarily commutative in dimensions 1 and 2, where L is either Q or an imaginary
quadratic field, but it is non-commutative in dimension 4, where L is a quaternion algebra.

Proposition 6.22. Assume AKLB and let O be a subring of L. Then O is an A-order
in L if and only if it is an order with integral closure B.

Proof. We first recall that under our AKLB assumption, dimA = 1, hence dimB = 1,
since A = B ∩K, and O ⊆ L is an A-module containing 1, so it contains A.

Suppose O is an A-order in L. Then O is an A-lattice, hence finitely generated as an
A-module, and therefore integral over A (see [1, Thm. 10.8], for example). Thus O lies in
the integral closure B of A in L. The fraction field of O is a K-vector space spanning L,
hence equal to L, so O and B have the same fraction field and B is the integral closure of O.
Thus O is a domain of dimension 1 (since B is), and it is noetherian because it is a finitely
generated over the noetherian ring A. The integral closure B of O is finitely generated over
A, hence over O; therefore O is an order.

Now suppose O is an order with integral closure B. It is an A-submodule of the noethe-
rian A-module B, hence finitely generated over A. It contains a K-basis for L because L is
its fraction field (take any K-basis for L written as fractions over O and clear denominators).
Thus O is an A-lattice in L that is also a ring, hence it is an A-order in L.

Remark 6.23. There may be subrings O of L that are orders but not A-orders in L, but
these do not have B as their integral closure. Consider A = B = Z, K = L = Q, and
O = Z(2), for example. In this case O is a DVR, hence a Dedekind domain, hence an order,
but it is not an A-order in L, because it is is not finitely generated over A. But its integral
closure is not B (indeed, O 6⊆ B).

Remark 6.24. An A-order in L is a maximal order if it is not properly contained in any
other A-order in L. When A is a Dedekind domain one can show that every A-order in L lies
in a maximal order. Maximal orders are not unique in general, but in the AKLB setup B
is the unique maximal order.

As with Dedekind domains, we call a nonzero prime ideal p in an order O a prime of O,
and if q is a prime of the integral closure B of O lying above p (dividing pB) then we may
write q|p to indicate this. As in the AKLB setup, we have q|p if and only if q ∩ O = p, by
Lemma 5.28. The fact that B is integrally closed ensures that every prime p of O has at
least one prime q lying above it (this is a standard fact of commutative algebra). We thus
have a surjective map

SpecB � SpecO
q 7→ q ∩ O

If a prime q of B contains the conductor c, then so does p = q ∩ O (since c ⊆ O), and
conversely. It follows that the map is SpecB → SpecO is still well-defined if we restrict
to primes that do not contain c. In B we can factor c into a product of powers of finitely
many primes q; it follows that only finitely many primes p of O contain c.
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Proposition 6.25. In any order O, only finitely many primes contain the conductor.

We now show that when we restrict to primes that do not contain the conductor the
map SpecB → SpecO becomes a bijection.

Lemma 6.26. Let O be an order with integral closure B and conductor c and let p be a
prime of O not containing c. Then pB is prime of B.

Proof. Let q be a prime of B lying above p, so that p = q ∩ O, and pick an element s ∈ c
not in p (and hence not in q). Claim: Op = Bq. To see that Op ⊆ Bq, note that if a/b ∈ Op

with a ∈ O and b ∈ O− p, then b ∈ B− q, so a/b ∈ Bq. Conversely, if a/b ∈ Bq with a ∈ B
and b ∈ B − q then sa ∈ O and sb ∈ O − p, so (sa)/(sb) = a/b ∈ Op; here we have used
that sB ⊆ O (since s ∈ c) and sb 6∈ q (since s, b 6∈ q), so sb 6∈ p.

We now note that q′|p ⇒ Bq′ = Op = Bq ⇒ q′ = q, so there is only one prime q lying
above p. It follows that pB = qe for some e ≥ 1, and we claim that e = 1. Indeed, we must
have pOp = qBq (this is the unique maximal ideal of the local ring Op = Bq written in two
different ways), so qeBq = qBq and therefore e = 1.

Corollary 6.27. Let O be an order with integral closure B and conductor c. The restriction
of the map SpecB → SpecO defined by q 7→ q ∩ O to prime ideals not containing c is a
bijection with inverse p 7→ pB.

We now note several conditions on primes of O that are equivalent to not containing
the conductor; these notably include the property of being invertible.

Theorem 6.28. Let O be an order with integral closure B and conductor c, and let p be a
prime of O. The following are equivalent:

(a) p does not contain c;

(b) O = {x ∈ B : xp ⊆ p};
(c) p is invertible;

(d) Op is a DVR;

(e) pOp is principal.

If any of these equivalent properties hold, then pB is a prime of B.

Proof. See Problem Set 3.

Remark 6.29. Orders in Dedekind domains also have a geometric interpretation. If O is an
order, the curve X = SpecO will have a singularity at each closed point P corresponding to
a maximal ideal of O that contains the conductor. Taking the integral closure B of O yields
a smooth curve Y = SpecB with the same function field as X and a morphism Y → X
that looks like a bijection above non-singular points (a dominant morphism of degree 1).
The curve Y is called the normalization of X.

Recall that two ideals I and J in a ring A are said to be relatively prime or coprime
if I + J = A; we may also say that I is prime to J . When A is a noetherian domain this
is equivalent to requiring that Ip + Jp = Ap for every prime ideal p of A; this follows from
Proposition 2.6 and Lemma 3.5. For prime ideals p that do not contain J , we have Jp = Ap,
in which case Ip + Jp = Ap certainly holds, so we only need to consider the case where p
contains J . In this case Jp is contained in pAp and Ip + Jp = Ap if and only if Ip 6⊆ pAp, in
which case Ip = Ap, equivalently, IAp = Ap. This leads to the following definition.
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Definition 6.30. Let A be a noetherian domain and let J be an ideal of A. A fractional
ideal I of A is prime to J if IAp = Ap for all prime ideals p that contain J . The set of
invertible fractional ideals prime to J is denoted IJA; it is a subgroup of the ideal group IA.

To check that IJA is in fact a subgroup, we note that if p is any prime containing J
then (a) (1)Ap = Ap, (b) if IAp = Ap then I−1Ap = I−1IAp = Ap (c) if I1Ap = Ap and
I2Ap = Ap then I1I2Ap = I2Ap = Ap.

Theorem 6.31. Let O be an order with integral closure B. Let c be any ideal of B contained
in the conductor of O. The map q 7→ q ∩ O induces a group isomorphism from IcB to IcO
and both groups are isomorphic to the free abelian group generated by their prime ideals.
In particular, every fractional ideal of O prime to the conductor has a unique factorization
into prime ideals

∏
peii which matches the factorization IB =

∏
qeii with pi = qi ∩ O.

Proof. The B-ideal c lies in the conductor of O and is therefore also an O-ideal, so the
subgroups IcB and IcO are well defined and the map q→ q∩O gives a bijection between the
sets of prime ideals contained in these subgroups, by Corollary 6.27; the theorem follows.

We now return to the AKLB setup. Let O be an order in B with conductor c. For
example, we could take O = A[α], where L = K(α) with α ∈ B, as in the Dedekind-
Kummer Theorem. Theorem 6.31 implies that we can determine how primes of A split in B
by looking at their factorizations in O, provided we restrict to primes p that do not contain
c ∩ A. This restriction ensures that the primes q of B and q′ = q ∩ O lying above p are all
prime to c and hence to the conductor, so the factorizations of pB and pO will match up.
In order to complete the picture, we now show that the residue field degrees of the primes
in these factorizations also match.

Proposition 6.32. Assume AKLB and let O be an order with integral closure B. Let
c = (c′∩A)B, where c′ is the conductor of O. Then O is an A-lattice in L and the restrictions
of the norm maps NB/A and NO/A to IcB and IcO commute with the isomorphism IcB → IcO
defined by q 7→ q ∩ O. If q is a prime of B that does not contain c and q′ = q ∩ O and
p = q ∩A, then NB/A(q) = NO/A(q′) = pfq and [B/q : A/p] = [O/q′ : A/p].

Proof. We first note that (c′ ∩A)O ⊆ c′, so c = (c′ ∩A)B ⊆ c′B = c′, thus c is contained in
the conductor of O. That O is an A-lattice in L follows from Proposition 6.22. Let q be a
prime of B that does not contain c, and define q′ := q∩O and p := q∩A. If p′ is any prime
of A other than p, then the localization of q at p′ contains B and the localization of q′ at p′

contains O (pick a ∈ p− p′ and note that a/a = 1 lies in both q and q′); we thus have

NB/A(q)p′ = [Bp′ :qp′ ]Ap′ = [Bp′ :Bp′ ]Ap′ = Ap′ = [Op′ :Op′ ]Ap′ = [Op′ :q
′
p′ ]Ap′ = NO/A(q′)p′

For the prime p we proceed as in the proof of Lemma 6.26 and pick s ∈ (c ∩ A) − p. We
then find that Bp = Op and qp = q′p, and therefore

NB/A(q)p = [Bp :qp]Ap = [Op :q′p]Ap = NO/A(q′)p.

Thus NB/A(q)p = NB/A(q′)p for all primes p of A, and

NB/A(q) = ∩pNB/A(q)p = ∩pNO/A(q′)p = NO/A(q′).

The proof that NB/A(q) = pfq in Theorem 6.10 does not depend on the fact that B is

a Dedekind domain and applies equally to the order O. Thus NO/A(q′) = pfq′ , where
fq′ := [O/q′ : A/p]. We therefore have fq′ = fq and [B/q :A/p] = [O/q′ :A/p] as claimed.
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Corollary 6.33. The assumption B = A[α] in the Dedekind-Kummer theorem can be
replaced with the assumption that pB is prime to the conductor of A[α] in B.

Remark 6.34. In the special case where A = Z and L = Q(α) is a number field generated
by an algebraic integer α, for any prime number p, the ideal pOL is prime to the conductor
of A[α] if and only if p does not divide the index n of A[α] in OL, as we now explain. The
conductor c is an OL-ideal with absolute norm [OL : c], and it is also an A[α]-ideal, hence
contained in A[α], so [OL : c] = [OL :A[α]][A[α] : c] is divisible by n = [OL : A[α]]. If p|n
then p|[OL : c] and pOL must have a prime of OL above p that divides c. Conversely if pOL
is not prime to c then there is a prime q of OL above p that divides c, and it follows that
p = [OL : q] divides [OL : c], hence p divides either OL :A[α]] or [A[α] :c]. The latter cannot
hold because it would imply that q is an A[α]-ideal, hence divisible by the conductor c (and
therefore equal to c), but then [OL : c] = [OL : q] and [OL : A[α]] = 1 which is impossible
when A[α] has nontrivial conductor c = q.

For number fields L = Q[x]/(xn + axm + b) with m|n, the article [4] gives a precise
characterization of the primes p dividing [OL :A[α]] (equivalently, dividing the conductor of
A[α], as argued above), including necessary and sufficient criteria for L to be monogenic.
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7 Galois extensions, Frobenius elements, and the Artin map

In our standard AKLB setup, A is a Dedekind domain with fraction field K, and L/K is a
finite separable extension of its fraction field (and B is the integral closure of A in L, also a
Dedekind domain). We now consider the case where L/K is also normal, hence Galois, and
let G := Gal(L/K) to denote the Galois group; we will use AKLBG to denote this setup.

7.1 Splitting primes in Galois extensions

We begin by showing that the Galois group G acts on the ideal group IB (the invertible,
equivalently, nonzero, fractional ideals of B) and that this action is compatible with the
group structure of IB. More precisely, IB is a left G-module.

Definition 7.1. Let G be a group. A left G-module is an abelian group M equipped
with a left G-action that commutes with its group operation; in additive notation we have
σ(a+ b) = σ(a) + σ(b) for all σ ∈ G and a, b ∈ M . One similarly defines a right G-module
as an abelian group with a right G-action that commutes with the group operation.

Theorem 7.2. Assume AKLBG. For each fractional ideal I of B and σ ∈ G define

σ(I) := {σ(x) : x ∈ I}.

The set σ(I) is a fractional ideal of B, and this defines a group action on IB that makes it
a left G-module. Moreover, the restriction of this action to SpecB makes it a G-set.

Proof. We first show that σ(B) = B for all σ ∈ G. Each b ∈ B is integral over A, hence
f(b) = 0 for some monic polynomial f ∈ A[x], and we have

0 = σ(0) = σ(f(b)) = f(σ(b)),

so σ(b) is also integral over A, hence an element of B, since B is the integral closure of A
in L. This proves σ(B) ⊆ B, and the same argument shows σ−1(B) ⊆ B, hence B ⊆ σ(B)
and therefore σ(B) = B as claimed.

Each σ ∈ G = Gal(L/K) is a field automorphism of L and thus commutes with addition
and multiplication. It follows that if I ⊆ L is a finitely generated B-module (a fractional
ideal) then σ(I) is a finitely generated σ(B)-module, and σ(B) = B, so σ(I) is a finitely
generated B-module, hence a fraction ideal as claimed. We clearly have σ((0)) = (0) for all
σ ∈ G, so G permutes IB, the group of nonzero fractional ideals. We also have

(στ)(I) = {(στ)(x) : x ∈ I} = {σ(τ(x)) : x ∈ I} = {σ(y) : y ∈ τ(I)} = σ(τ(I)),

and the identity clearly acts trivially, so we have a left G-action on IB.
Now let I, J ∈ IB and σ ∈ G. Each x ∈ IJ has the form x = a1b1+· · ·+anbn with ai ∈ I

and bi ∈ J , and σ(x) = σ(a1)σ(b1) + · · ·+ σ(an)σ(bn) ∈ σ(I)σ(J). Thus σ(IJ) ⊆ σ(I)σ(J),
and applying the same argument to σ(I), σ(J), and σ−1 implies σ−1(σ(I)σ(J)) ⊆ IJ and
therefore σ(I)σ(J) ⊆ σ(IJ). Thus σ(IJ) = σ(I)σ(J) for all I, J ∈ IB, implying that IB is
a left G-module.

Let p be a prime of B and let σ(p) = qe11 · · · qenn be the unique factorization of σ(p)
in B. Applying σ−1 to both sides yields p = σ−1(q1)

e1 · · ·σ−1(qn)en , and therefore n = 1
and e1 = 1, since p is prime, thus σ(p) = q1 is prime and the G-action on IB restricts to a
G-action on MaxSpecB, and on SpecB, since G fixes {(0)} = SpecB −MaxSpecB.
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Recall that by a prime of A (or K) we mean a nonzero prime ideal of A, and similarly
for B (and L), and for any prime p of A we use {q|p} to denote the set of primes q that
lie above p (equivalently, for which q = A ∩ p); in other words, {q|p} is the fiber of the
contraction map MaxSpecB → MaxSpecA above p.

Corollary 7.3. Assume AKLBG. For each prime p of A the group G acts transitively
on the set {q|p}; in other words, the orbits of the G-action on SpecB are the fibers of the
contraction map SpecB → SpecA.

Proof. Consider any σ ∈ G. For q|p we have pB ⊆ q and σ(pB) ⊆ σ(q), so σ(q)|p (in a
Dedekind domain, to contain is to divide). Thus {q|p} is closed under the action of G, we
just need to show that it consists of a single orbit.

Let {q|p} = {q1, . . . , qn} and suppose that q1 and q2 lie in distinct G-orbits. The
primes q1, . . . , qn are maximal ideals, hence pairwise coprime, so by the CRT we have a ring
isomorphism

B

q1 · · · qn
' B

q1
× · · · × B

qn
,

and we may choose b ∈ B such that b ≡ 0 mod q2 and b ≡ 1 mod σ−1(q1) for all σ ∈ G (by
hypothesis, σ(q2) 6= q1 for all σ ∈ G, since q1, q2 lie in different G-orbits). Then b ∈ q2 and

NL/K(b) =
∏
σ∈G

σ(b) ≡ 1 mod q1,

hence NL/K(b) 6∈ A ∩ q1 = p. But NL/K(b) ∈ NL/K(q2) = pfq2 ⊆ p, a contradiction.

As shown in the proof of Theorem 7.2, we have σ(B) = B for all σ ∈ G = Gal(L/K),
thus each σ ∈ G restricts to a ring automorphism of B that fixes every element of the
subring A = B ∩ K, and thus every element of any prime p of A. It follows that σ
induces an isomorphism of residue field extensions σ̄ ∈ HomA/p(B/q, B/σ(q)) defined by

σ̄(x + q) := σ(x) + σ(q) for x ∈ B, which we may more compactly write as σ̄(x̄) := σ(x)
(but note that the x̄ and σ(x) are elements of different residue fields).

Corollary 7.4. Assume AKLBG and let p be a prime of A. The residue field degrees
fq := [B/q :A/p] are the same for every q|p, as are the ramification indices eq := vq(pB).

Proof. For each σ ∈ G we have an isomorphism of the residue fields B/q and B/σ(q) that
fixes A/p, so they clearly have the same degree fq = fσ(q), and G acts transitively on {q|p},
by Corollary 7.3, so the function q 7→ fq must be constant on {q|p}.

For each σ ∈ G we also have σ(p) = p and σ(B) = B, so σ(pB) = pB, and for each q|p,

eq = vq(pB) = vq(σ(pB)) = vq
(
σ
(∏
r|p

rer
))

= vq
(∏
r|p

σ(r)er
)

= vq
(∏
r|p

r
eσ−1(r)

)
= eσ−1(q).

The transitivity of the G-action on {q|p} again implies that q 7→ eq is constant on {q|p}.

Corollary 7.4 implies that whenever L/K is Galois, we may unambiguously write ep
and fp instead of eq and fq; recall that we previously defined gp := #{q|p}.

Corollary 7.5. Assume AKLBG. For each prime p of A we have epfpgp = [L :K].

Proof. This follows immediately from Theorem 5.35 and Corollary 7.4.
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Example 7.6. Assume AKLBG. When n := [L :K] is prime there are just three ways a
prime p of A can split in B:

• ep = n and fp = gp = 1, in which case p is totally ramified in L;

• fp = n and ep = gp = 1, in which case p remains inert in L if B/pB is finite étale;

• gp = n and ep = fp = 1, in which case p splits completely in L if B/pB is finite étale.

Recall from Definition 5.37 that we only defined the terms “remains inert” and “splits
completely” for unramified primes, which includes the condition that all the residue field
extensions B/q of A/p are separable, equivalently, that B/pB is finite ètale over A/p. This
will automatically hold in the primary case of interest to us, where the residue field A/p is
finite, hence perfect, and all residue field extensions are separable.

7.2 Decomposition and inertia groups

Definition 7.7. Assume AKLBG. For each prime q of B the decomposition group Dq

(also denoted Dq(L/K)) is the stabilizer of q in G.

Lemma 7.8. Assume AKLBG and let p be a prime of A. The decomposition groups Dq

for q|p are all conjugate in G, with #Dq = epfp and [G : Dq] = gp.

Proof. Points in an orbit of group action have conjugate stabilizers, so the Dq for q|p are all
conjugate, by Corollary 7.3. The orbit-stabilizer theorem implies [G :Dq] = #{q|p} = gp.
We have #G = [L :K] = epfpgp, by Corollary 7.5, so #Dq = #G/[G :Dq] = epfp.

Let us now consider a particular prime q|p of B (by writing q|p we define p as q∩A). As
noted above, each σ ∈ G induces a residue field isomorphism σ̄ ∈ HomA/p(B/q, B/σ(q)).
For σ ∈ Dq, we have σ(q) = q, in which case σ̄ ∈ AutA/p(B/q). Moreover, the map σ 7→ σ
defines a group homomorphism πq : Dq → AutA/p(B/q), since for any x ∈ B we have

στ(x̄) = στ(x) = σ(τ(x)) = σ(τ(x)) = σ(τ(x̄)).

Note that B/q need not be a Galois extension of A/p even when L is a Galois extension
of K, which is why we write AutA/p(B/q) and not Gal((B/q)/(A/p)).

Proposition 7.9. Assume AKLBG and let q|p be a prime of B. The group homomorphism
πq : Dq → AutA/p(B/q) defined by σ 7→ σ̄ is surjective and B/q is normal over A/p.

Proof. Let F be the separable closure of A/p in B/q and for b̄ ∈ F , pick b ∈ B such that
b ≡ b̄ mod q and b ≡ 0 mod σ−1(q) (so σ(b) ≡ 0 mod q) for all σ ∈ G−Dq; the CRT implies
that such an b exists, since for σ ∈ G−Dq the ideals q and σ(q) are distinct and therefore
coprime (since they are maximal ideals). Now define

g(x) :=
∏
σ∈G

(
x− σ(b)

)
∈ A[x],

and let g denote the image of g in (A/p)[x]. Observe that b̄ is the root of a polynomial
ḡ ∈ (A/p)[x] that splits completely in (B/q)[x], and our choice of b̄ was arbitrary, so this
applies to every b̄ ∈ F×. It follows that F is a normal (hence Galois) extension of A/p, and
we have Gal(F/(A/p)) ' AutA/p(B/q), since F is the separable closure of A/p in B/q.
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For each σ ∈ G − Dq we have σ(b̄) = 0 , so 0 is a root of g(x) with multiplicity at
least m = #(G − Dq), and the remaining roots are σ(b̄) for σ ∈ Dq, all of which are
Gal(F/(A/p))-conjugates of b̄. It follows that g(x)/xm divides a power of the minimal
polynomial f(x) of b̄, but f(x) is irreducible in (A/p)[x], so g(x)/xm is a power of f(x)
and every Gal(F/(A/p))-conjugate of b̄ has the form σ(b̄) for some σ ∈ Dq. Applying this
to b̄ chosen so that F = (A/p)(b̄) (by the primitive element theorem) shows that the map
πq : Dq → AutA/p(B/q) ' Gal(F/(A/p)) is surjective.

To show that B/q is a normal extension of A/p we proceed as we did for F : for each
b ∈ B define g ∈ A[x] and g ∈ (A/p)[x] as above to show that every b ∈ B/q is the root of
a polynomial in (A/p)[x] that splits completely in (B/q)[x].

Definition 7.10. Assume AKLBG, and let q|p be a prime of B. The kernel of the surjective
homomorphism πq : Dq → AutA/p(B/q) is the inertia group Iq of q.

Corollary 7.11. Assume AKLBG and let q|p be a prime of B. We have an exact sequence

1 −→ Iq −→ Dq −→ AutA/p(B/q) −→ 1,

and #Iq = ep[B/q : A/p]i.

We have shown that the residue field B/q is always a normal extension of the residue
field A/p. Let us now suppose that it is also separable, hence Galois; this holds, for example,
if A/p is a perfect field, and in particular, whenever A/p is a finite field. We then have

Dq/Iq ' AutA/p(B/q) = Gal((B/q)/(A/p)).

Proposition 7.12. Assume AKLBG, let q|p be a prime of B, and suppose B/q is a
separable extension of A/p. We have a tower of field extensions K ⊆ LDq ⊆ LIq ⊆ L with

ep = [L : LIq ] = #Iq;

fp = [LIq : LDq ] = #Dq/#Iq;

gp = [LDq : K] = #{q|p}.

The fields LDq and LIq are the decomposition field and inertia field associated to q.

Proof. The third equality follows immediately from Lemma 7.8. The second follows from
Proposition 7.9 and the separability of (B/q)/(A/p), since Dq/Iq ' Gal((B/q)/(A/p)) has
cardinality fp = [B/q :A/p]. We then have [L : LDq ] = #Dq = epfp and #Dq/#Iq = fp, so
#Iq = ep, so the first equality also holds.

We now consider an intermediate field E lying between K and L. Let us fix a prime q|p
of B, and let qE := q ∩E, so that q|qE and qE |p, and let us use Gq(L/K) := AutA/p(B/q),

Gq(L/E) := Aut(B∩E)/qE (B/q), GqE (E/K) := AutA/p((B ∩ E)/qE) to denote the auto-
morphism groups of the residue field extensions associated to the tower K ⊆ E ⊆ L. We
use the notation Dq(L/E) to denote the decomposition group of q relative to the exten-
sion L/E (note that L/E is Galois since L/K is), and similarly define Dq(L/K), as well as
Iq(L/E) and Iq(L/K). In the case that E/K is also Galois, we similarly use DqE (E/K) and
IqE (E/K) to denote the decomposition and inertia group of qE (subgroups of Gal(E/K)).
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Proposition 7.13. Assume AKLBG, let E be an intermediate field between K and L.
Let q be a prime of B and let qE = q ∩ E and p = q ∩K. Then

Dq(L/E) = Dq(L/K) ∩Gal(L/E) and Iq(L/E) = Iq(L/K) ∩Gal(L/E).

If E/K is Galois, then we have the following commutative diagram of exact sequences:

1 1 1

1 Iq(L/E) Iq(L/K) IqE (E/K) 1

1 Dq(L/E) Dq(L/K) DqE (E/K) 1

1 Gq(L/E) Gq(L/K) GqE (E/K) 1

1 1 1

←→ ←→ ←→

←→ ←→
←→

←→

←→

←→

←→

←→ ←→

←→

←→

←→

←→

←→

←→ ←→

←→

←→
←→

←→

←→

Proof. Note that Dq(L/E) ⊆ Gal(L/E) ⊆ Gal(L/K). An element σ of Gal(L/K) lies in
Dq(L/E) if and only if it fixes E (hence lies in Gal(L/E)) and satisfies σ(q) = q (hence
lies in Dq(L/K)), which proves the first claim. For the second claim, the restriction of
πq(L/K) : Dq(L/K) → Gq(L/K) to Dq(L/E) is the map πq(L/E) : Dq(L/E) → Gq(L/E),
hence the kernels agree after intersecting with Gal(L/E).

The exactness of the columns follows from Corollary 7.11; we now argue exactness of
the rows. Each row corresponds to an inclusion followed by a restriction in which the
inclusion is precisely the kernel of the restriction (for the first two rows this follows from the
two claims proved above and for the third row it follows from the main theorem of Galois
theory); exactness at the first two groups in each row follows. Surjectivity of the restriction
maps follows from the bijection used in the proof of Lemma 4.10. We have a bijection
HomK(L,Ω)→ HomE(L,Ω)×HomK(E,Ω) whose second factor is restriction, and we may
view this as a bijection φ : Gal(L/K)→ Gal(L/E)×Gal(E/K). If σ ∈ Gal(E/K) stabilizes
qE then φ−1(1, σ) ∈ Gal(L/K) stabilizes q and restricts to σ; this implies surjectivity of
the restriction maps in the first two rows, and for the third we replace L/E/K with the
corresponding tower of residue field extensions (and forget about stabilizing qE).

We now argue commutativity of the four corner squares which suffices to prove the
commutativity of the enitre diagram. The upper left square commutes because all the
maps are inclusions. The upper right square commutes because inclusion and restriction
commute. The lower left square commutes because the horizontal maps are inclusions and
the vertical maps coincide on Dq(L/E). The lower right square commutes because the
horizontal maps are restrictions and the vertical maps agree after restriction to E.

7.3 Frobenius elements

We now add the further assumption that the residue fields A/p (and therefore B/q) are
finite for all primes p of K.1 This holds, for example, whenever K is a global field (a finite

1There exist Dedekind domains A (PIDs even) with a mixture of finite and infinite residue fields; see [1].
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extension of Q or Fq(t)). In this situation B/q is necessarily a Galois extension of A/p
(we don’t need Proposition 7.9 for this, finite extensions of finite fields are always Galois).
Indeed, recall that every finite extension of a finite field F has a cyclic Galois group generated
by the #F-power Frobenius automorphism x 7→ x#F.

In order to simplify the notation, when working with finite residue fields we may write
Fq := B/q and Fp := A/p; these are finite fields of p-power order, where p is the charac-
teristic of Fp (and of Fq). Note that the field K (and L) need not have characteristic p
(consider the case of number fields), but if the characteristic of K is positive then it must
be p (consider the homomorphism A→ A/p from the integral domain A to the field A/p).

Let q|p be a prime of B. Corollary 7.11 gives us an exact sequence

1 −→ Iq −→ Dq
πq−→ Gal(Fq/Fp) −→ 1.

If p (equivalently, q) is unramified, then ep = eq = 1 and Iq is trivial. In this case we have
an isomorphism

πq : Dq
∼−→ Gal(Fq/Fp).

The Galois group Gal(Fq/Fp) is the cyclic group of order fp = [Fq : Fp] generated by the
Frobenius automorphism

x 7→ x#Fp .

Note that the cardinality of the finite field Fp is necessarily a power of its characteristic p.
If K = Q and p = (p) is a prime of Z, then Fp = Z/pZ is the field with p elements, but in
general the field Fp need not be a prime field (consider K = Q(i) and p = (7)).

Definition 7.14. Assume AKLBG with finite residue fields and q|p unramified. The
inverse image of the Frobenius automorphism of Gal(Fq/Fp) under πq : Dq

∼−→ Gal(Fq/Fp)
is the Frobenius element σq ∈ Dq ⊆ G (also called the Frobenius substitution [2, §8]).

Proposition 7.15. Assume AKLBG with finite residue fields and q|p unramified. The
Frobenius element σq is the unique σ ∈ G such that for all x ∈ B we have

σ(x) ≡ x#Fp mod q.

Proof. Clearly σq has this property, we just need to show uniqueness. Suppose σ ∈ G
has the desired property. For any x ∈ q we have x ≡ 0 mod q, and σ(x) ≡ x#Fp mod q
implies σ(x) ≡ 0 mod q, so σ(x) ∈ q; it follows that σ(q) = q, and therefore σ ∈ Dq. The
isomorphism πq : Dq → Gal(Fq/Fp) maps both σ and σq to the Frobenius automorphism
x 7→ x#Fp , so we must have σ = σq.

Proposition 7.16. Assume AKLBG with finite residue fields and q|p unramified. For all
q′|p the Frobenius elements σq and σq′ are conjugate in G.

Proof. By Corollary 7.3, G acts transitively on {q|p}, so let τ ∈ G be such that q′ = τ(q).
For any x ∈ B we have

σq(x) ≡ x#Fp mod q.

τ(σq(x)) ≡ τ
(
x#Fp

)
mod τ(q)

(τσq)(x) ≡ τ(x)#Fp mod q′

(τσq)(τ
−1(x)) ≡ τ(τ−1(x))#Fp mod q′

(τσqτ
−1)(x) ≡ x#Fp mod q′,
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where we applied τ to both sides in the second line and replaced x by τ−1(x) in the fourth
line. The uniqueness of σq′ given by Proposition 7.15 implies σq′ = τσqτ

−1.

Definition 7.17. Assume AKLBG with finite residue fields and q|p unramified. The
conjugacy class of the Frobenius element σq ∈ G is the Frobenius class of p, denoted Frobp.

It is common to abuse terminology and refer to Frobp as a Frobenius element σp ∈ G
representing its conjugacy class (so σp = σq for some q|p); there is little risk of confusion so
long as we remember that σp is only determined up to conjugacy (which usually governs all
the properties we care about). There is, however, one situation where this terminology is
entirely correct. If G is abelian then each conjugacy classes consists of a single element, in
which we case Frobp = {σq : q|p} is a singleton set and there is a unique choice for σp (note
that #{σq : q|p} = 1 does not imply #{q|p} = 1; the map q→ σq is need not be injective).

7.4 Artin symbols

There is another notation commonly used to denote Frobenius elements that includes the
field extension in the notation.

Definition 7.18. Assume AKLBG with finite residue fields. For each unramified prime q
of L we define the Artin symbol (

L/K

q

)
:= σq.

Proposition 7.19. Assume AKLBG with finite residue fields and q|p unramified. Then p

splits completely if and only if
(
L/K
q

)
= 1.

Proof. This follows directly from the definitions: if p splits completely then epfp = 1 and
Dq = 〈σq〉 = {1}. Conversely, if Dq = 〈σq〉 = {1} then epfp = 1 and p splits completely.

We will see later in the course that the extension L/K is completely determined by the
set of primes p that split completely in L. Thus in some sense the Artin symbol captures
the essential structure of L/K.

Proposition 7.20. Assume AKLBG with finite residue fields and let q|p be unramified.
Let E be an intermediate field between K and L, and define qE := q ∩ E. Then(

L/E

q

)
=

(
L/K

q

)[FqE
:Fp]

,

and if E/K is Galois then
(
E/K
qE

)
is the restriction of

(
L/K
q

)
to E.

Proof. For the first claim, note that #FqE = (#Fp)
[FqE

:Fp]. The second claim follows from
the commutativity of the lower right square in the commutative diagram of Proposition 7.13:
the Frobenius automorphism x 7→ x#Fp of Gal(FqE/Fp) is the restriction of the Frobenius
automorphism x 7→ x#Fp of Gal(Fq/Fp) to FqE .

When L/K is abelian, the Artin symbol takes the same value for all q|p and we may
instead write (

L/K

p

)
:= σp.
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In this setting we now view the Artin symbol as a function mapping unramified primes p to
Frobenius elements σp ∈ G. We wish to extend this map to a multiplicative homomorphism
from the ideal group IA to the Galois group G = Gal(L/K), but ramified primes q|p cause
problems: the homomorphism πq : Dq → Gal(Fq/Fp) is not a bijection when p is ramified
(it has nontrivial kernel Iq of order eq = ep > 1).

For any set S of primes of A, let ISA denote the subgroup of IA generated by the primes
of A that do not lie in S (a free abelian group).

Definition 7.21. Let A be a Dedekind domain with finite residue fields. Let L be a finite
abelian extension of K = FracA, and let S be the set of primes of A that ramify in L. The
Artin map is the homomorphism(

L/K

·

)
: ISA → Gal(L/K)

m∏
i=1

peii 7→
m∏
i=1

(
L/K

pi

)ei
.

Remark 7.22. We will prove in later lectures that the set S of ramified primes is finite,
but the definition makes sense in any case.

One of the main results of class field theory is that the Artin map is surjective (this is
part of what is known as Artin reciprocity). This is a deep theorem that we are not yet
ready to prove, but we can verify that it holds in some simple examples.

Example 7.23 (Quadratic fields). Let K = Q and L = Q(
√
d) for some square-free integer

d 6= 1. Then Gal(L/K) has order 2 and is certainly abelian. As you proved on Problem
Set 2, the only ramified primes p = (p) of A = Z are those that divide the discriminant

D := disc(L/K) =

{
d if d ≡ 1 mod 4,

4d if d 6≡ 1 mod 4.

If we identify Gal(L/K) with the multiplicative group {±1}, then(
L/K

p

)
=

(
Q(
√
d)/Q

(p)

)
=

(
D

p

)
= ±1,

where (Dp ) is the Kronecker symbol. For odd primes p 6 | D we have

(
D

p

)
=

{
+1 if D is a nonzero square modulo p,

−1 if D is not a square modulo p,

and for p = 2 not dividing D (in which case D = d ≡ 1 mod 4) we have(
D

2

)
=

{
+1 if D ≡ 1 mod 8,

−1 if D ≡ 5 mod 8.

The cyclotomic extensions Q(ζn)/Q provide another interesting example that you will
have an opportunity to explore on Problem Set 4.
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8 Complete fields and valuation rings

In order to make further progress in our investigation of how primes split in our AKLB
setup, and in particular, to determine the primes of K that ramify in L, we introduce a new
tool that allows us to “localize” fields. We have seen how useful it can be to localize the
Dedekind domain A at a prime ideal p: this yields a discrete valuation ring Ap, a principal
ideal domain with exactly one nonzero prime ideal, which is much easier to study than A,
and from Proposition 2.6 we know that the localizations of A at prime ideals collectively
determine the structure of A.

Localizing A does not change its fraction field K. But there is an operation we can
perform on K that is analogous to localizing A: we can construct the completion of K with
respect to one of its absolute values. When K is a global field, this yields a local field, a
term that we will define in the next lecture. At first glance taking completions might seem
to make things more complicated, but as with localization, it simplifies matters by allowing
us to focus on a single prime, and moreover, work in a complete field.

We begin by briefly reviewing some standard background material on completions, topo-
logical rings, and inverse limits.

8.1 Completions

Recall that an absolute value on a field K is a function | | : K → R≥0 for which

1. |x| = 0 if and only if x = 0;

2. |xy| = |x||y|;
3. |x+ y| ≤ |x|+ |y|.

If in addition the stronger condition

4. |x+ y| ≤ max(|x|, |y|)

holds, then | | is nonarchimedean. This definition does not depend on the fact that K
is a field, K could be any ring, but absolute values can exist only when K is an integral
domains, since a, b 6= 0 ⇒ |a|, |b| 6= 0 ⇒ |ab| = |a||b| 6= 0 ⇒ ab 6= 0; of course an absolute
value on an integral domain extends to an absolute value on its fraction field, but it will be
convenient to consider absolute values on integral domains as well as fields.

For a more general notion, we can instead consider a metric on a set X, which we recall
is a function d : X ×X → R≥0 that satisfies

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, z) ≤ d(x, y) + d(y, z).

A metric that also satisfies

4. d(x, z) ≤ max(d(x, y), d(y, z))

is an ultrametric and is said to be nonarchimedean. Every absolute value on a ring induces
a metric d(x, y) := |x− y|, but not every metric on a ring is induced by an absolute value.
The metric d defines a topology on X generated by open balls

B<r(x) := {y ∈ X : d(x, y) < r}.
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with r ∈ R>0 and x ∈ X, and we call X a metric space. It is a Hausdorff space, since distinct
x, y ∈ X have disjoint open neighborhoods B<r(x) and B<r(y) (take r = d(x, y)/2), and
we note that each closed ball

B≤r(x) := {y ∈ X : d(x, y) ≤ r}

is a closed set, since its complement is the union of B<(d(x,y)−r)(y) over y ∈ X −B≤r(x).

Definition 8.1. Let X be a metric space. A sequence (xn) of elements of X converges
(to x) if there is an x ∈ X such that for every ε > 0 there is an N ∈ Z>0 such that
d(xn, x) < ε for all n ≥ N ; the limit x is necessarily unique. The sequence (xn) is Cauchy
if for every ε > 0 there is an N ∈ Z>0 such that d(xm, xn) < ε for all m,n ≥ N . Every
convergent sequence is Cauchy, but the converse need not hold. A metric space in which
every Cauchy sequence converges is said to be complete.

When X is an integral domain with an absolute value | | that makes it a complete metric
space we say that X is complete with respect to | |. Which sequences converge and which
sequences are Cauchy depends very much on the absolute value | | that we use; for example,
every integral domain is complete with respect to its trivial absolute value, since then every
Cauchy sequence must be eventually constant and obviously converges. Equivalent absolute
values necessarily agree on which sequences are convergent and which are Cauchy, so if an
integral domain is complete with respect to an absolute value it is complete with respect to
all equivalent absolute values.

Definition 8.2. Let X be a metric space. Cauchy sequences (xn) and (yn) are equivalent if
d(xn, yn)→ 0 as n→∞; this defines an equivalence relation on the set of Cauchy sequences
in X and we use [(xn)] to denote the equivalence class of (xn). The completion of X is the
metric space X̂ whose elements are equivalence classes of Cauchy sequences with the metric

d([(xn)], [(yn)]) := lim
n→∞

d(xn, yn)

(this limit exists and depends only on the equivalence classes of (xn) and (yn)). We may
canonically embed X in its completion X̂ via the map x 7→ x̂ = [(x, x, . . .)].

When X is a ring we extend the ring operations to X̂ a ring by defining

[(xn)] + [(yn)] := [(xn + yn)] and [(xn)][(yn)] := [(xnyn)];

the additive and multiplicative identities 0 := [(0, 0, · · · )] and 1 := [(1, 1, . . . )]. When the
metric on X is induced by an absolute value | |, we extend | | to an absolute value on X̂ via∣∣[(xn)]

∣∣ := lim
n→∞

|xn|.

This limit exists and depends only on the equivalence of (xn), as one can show using the
triangle inequality and the fact that (xn) is Cauchy and R is complete. When X is a field
with a metric induced by an absolute value, the completion X̂ is also a field (this is false
in general, see Problem Set 4 for a counter example). Indeed, given [(xn)] 6= 0, we can
choose (xn) with xn 6= 0 for all n, and use the multiplicative property of the absolute value
(combined with the triangle inequality), to show that (1/xn) is Cauchy. We then have
1/[(xn)] = [(1/xn)], since [(xn)][(1/xn)] = [(1, 1, . . .)] = 1.
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If | | arises from a discrete valuation v on K (meaning |x| := cv(x) for some c ∈ (0, 1)),
we extend v to a discrete valuation on X̂ by defining

v([(xn)]) := lim
n→∞

v(xn) ∈ Z,

for [(xn)] 6= 0̂ and v(0̂) := ∞. Note that for [(xn)] 6= 0̂ the sequence (v(xn)) is eventually
constant (so the limit is an integer), and we have |[(xn)]| = cv([(xn)]).

8.1.1 Topological fields with an absolute value

Let K be a field with an absolute value | |. Then K is also a topological space under the
metric d(x, y) = |x− y| induced by the absolute value, and moreover it is a topological field.

Definition 8.3. An abelian group G is a topological group if it is a topological space in
which the map G × G → G defined by (g, h) 7→ g + h and the map G → G defined by
g 7→ −g are both continuous (here G×G has the product topology). A commutative ring R
is a topological ring if it is a topological space in which the maps R × R → R defined
by (r, s) 7→ r + s and (r, s) 7→ rs are both continuous; the additive group of R is then a
topological group, since (−1, s) 7→ −s is continuous, but the unit group R× need not be a
topological group, in general. A field K is a topological field if it is a topological ring whose
unit group is a topological group.

If R is a ring with an absolute value then it is a topological ring under the induced
topology, and its unit group is also a topological group ; in particular, if R is a field with an
absolute value, then it is a topological field under the induced topology. These facts follow
from the the triangle inequality and the multiplicative property of an absolute value.

Proposition 8.4. Let K be a field with an absolute value | | viewed as a topological field
under the induced topology, and let K̂ be the completion K. The field K̂ is complete, and has
the following universal property: every embedding of K as a topological field into a complete
field L can be uniquely extended to an embedding of K̂ into L which is an isomorphism
whenever K is dense in L. Up to a canonical isomorphism, K̂ is the unique topological field
with this property.

Proof. See Problem Set 4.

The proposition implies that the completion of K̂ is (isomorphic to) itself, since we
can apply the universal property of the completion of K̂ to the trivial embedding K̂ → K̂.
Completing a field that is already complete has no effect. In particular, the completion of K
with respect to the trivial absolute value is K, since every field is complete with respect to
the trivial absolute value.

Two absolute values on the same field induce the same topology if and only if they are
equivalent; this follows from the Weak Approximation Theorem.

Theorem 8.5 (Weak Approximation). Let K be a field and let | · |1, . . . , | · |n be pairwise
inequivalent nontrivial absolute values on K. Let a1, . . . , an ∈ K and let ε1, . . . , εn be positive
real numbers. Then there exists an x ∈ K such that |x− ai|i < εi for 1 ≤ i ≤ n.

Proof. See Problem Set 4.

Corollary 8.6. Let K be a field with absolute values | |1 and | |2. The induced topologies
on K coincide if and only if | |1 and | |2 are equivalent.
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Proof. See Problem Set 4.

The topology induced by a nonarchimedean absolute value has some features that may
be counterintuitive to the uninitiated. In particular, every open ball is also closed, so the
closure of B<r(x) is not B≤r(x) unless these two sets are already equal, which need not be
the case since the map | | : K → R≥0 need not be surjective; indeed, it will have discrete
image if | | arises from a discrete valuation. This means that is entirely possible to have
B<r(x) = B<s(x) for r 6= s; indeed occurs uncountably often when | | arises from a discrete
valuation. The reader may wish to verify that the following hold in any nonarchimedean
metric space X:

1. Every point in an open ball is a center: B<r(y) = B<r(x) for all y ∈ B<r(x).

2. Any pair of open balls are either disjoint or concentric (have a common center).

3. Every open ball is closed and every closed ball is open.

4. X is totally disconnected : every pair of distinct points have disjoint open neighbor-
hoods whose union is the whole space (every connected component is a point).

For any topological space X, the continuity of a map f : X ×X → X implies that for
every fixed x ∈ X the maps X → X defined by y 7→ f(x, y) and y 7→ f(y, x) are continuous,
since each is the composition f ◦φ of f with the continuous map φ : X → X×X defined by
y 7→ (x, y) and y 7→ (y, x), respectively. For an additive topological group G this means that
every translation-by-h map g 7→ g + h is a homeomorphism, since it is continuous and has
a continuous inverse (translate by −h); in particular, translates of open sets are open and
translates of closed sets are closed. Thus in order to understand the topology of a topological
group, we can focus on neighborhoods of the identity; a base of open neighborhoods about
the identity determines the entire topology. It also means that any topological property of
a subgroup (such as being open, closed, or compact) applies to all of its cosets.

If K̂ is the completion of a field K with respect to an absolute value | |, then K̂ is a
topological field with the topology induced by | |, and the subspace topology on K ⊆ K̂ is
the same as the topology on K induced by | |. By construction, K is dense in K̂; indeed,
K̂ is precisely the set of limit points of K. More generally, every open ball B<r(x) in K is
dense in the corresponding open ball B<r(x̂) in K̂.

8.1.2 Inverse limits

Inverse limits are a general construction that can be applied in any category with products,
but we will only be concerned with inverse limits in familiar concrete categories such as
groups, rings, and topological spaces, all of which are concrete categories whose objects
can be defined as sets (more formally, concrete categories admit a faithful functor to the
category of sets), which allows many concepts to be defined more concretely.

Definition 8.7. A directed set is a set I with a relation “≤” that is reflexive (i ≤ i),
anti-symmetric (i ≤ j ≤ i ⇒ i = j), and transitive (i ≤ j ≤ k ⇒ i ≤ k), in which every
finite subset has an upper bound (in particular, I is non-empty).

Definition 8.8. An inverse system (projective system) in a category is a family of objects
{Xi : i ∈ I} indexed by a directed set I and a family of morphisms {fij : Xi ← Xj : i ≤ j}
(note the direction) such that each fii is the identity and fik = fij ◦ fjk for all i ≤ j ≤ k.1

1Some (but not all) authors reserve the term projective system for cases where the fij are epimorphisms.
This distinction is not relevant to us, as our inverse systems will all use epimorphisms (surjections, in fact).
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Definition 8.9. Let (Xi, fij) be an inverse system in a concrete category with products.
The inverse limit (or projective limit) of (Xi, fij) is the object

X := lim←−Xi :=

{
x ∈

∏
i∈I

Xi : xi = fij(xj) for all i ≤ j

}
⊆
∏
i∈I

Xi

(whenever such an object X exists in the category). The restrictions πi : X → Xi of the
projections

∏
Xi → Xi satisfy πi = fij ◦ πj for i ≤ j.

The object X = lim←−Xi has the universal property that if Y is another object with
morphisms ψi : Y → Xi that satisfy ψi = fij ◦ψj for i ≤ j, then there is a unique morphism
Y → X for which all of the diagrams

Y

X

Xi Xj

←

→

ψi

←

→
ψj

←→ ∃!

←→

πi

←

→πj

←→

fij

commute (this universal property defines an inverse limit in any category with products).

As with other categorical constructions satisfying (or defined by) universal properties,
uniqueness is guaranteed, but existence is not. However, in any concrete category for which
the faithful functor to the category of sets has a left adjoint, inverse limits necessarily exist;
this applies to all the categories we shall consider, including the categories of groups, rings,
and topological spaces, all of which admit a “free object functor” from the category of sets.

Proposition 8.10. Let (Xi, fij) be an inverse system of Hausdorff topological spaces. Then
X := lim←−Xi is a closed subset of

∏
Xi, and if the Xi are compact then X is compact.

Proof. The set X is the intersection of the sets Yij := {x ∈
∏
Xi : xi = fij(xj)} with i ≤ j,

each of which can be written as Yij =
∏
k 6=i,j Xk × Zij , where Zij is the preimage of the

diagonal ∆i := {(xi, xi) : xi ∈ Xi} ⊆ Xi×Xi under the continuous map Xi×Xj → Xi×Xi

defined by (xi, xj) 7→ (xi, fij(xj)). Each ∆i is closed in Xi ×Xi (because Xi is Hausdorff),
so each Zij is closed in Xi×Xj , and each Yij is closed in

∏
Xi; it follows that X is a closed

subset of
∏
Xi. By Tychonoff’s theorem [1, Thm. I.9.5.3], if the Xi are compact then so is

their product
∏
Xi, in which case the closed subset X is also compact.

8.2 Valuation rings in complete fields

We now want to specialize to absolute values induced by a discrete valuation v : K× � Z.
If we pick a positive real number c < 1 and define |x|v := cv(x) for x ∈ K× and |0|v := 0
then we obtain a nontrivial nonarchimedean absolute value | |v. Different choices of c yield
equivalent absolute values and thus do not change the topology induced by | |v or the
completion Kv := K̂ of K with respect to | |v. We will see later that there is a canonical
choice for c when the residue field k of the valuation ring of K is finite (one takes c = 1/#k).

It follows from our discussion that the valuation ring

Av := {x ∈ Kv : v(x) ≥ 0} = {x ∈ Kv : |x|v ≤ 1}
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is a closed (and therefore open) ball in Kv; indeed, it is the closure of the valuation ring
A of K inside Kv. Note that Kv is the fraction field of Av, since we have x ∈ Kv − Av
if and only if 1/x ∈ Â; so rather than defining Av as the valuation ring of Kv we could
equivalently define Av as the completion of A (with respect to | |v) and then define Kv as
its fraction field.

We now give another characterization of Av as an inverse limit.

Proposition 8.11. Let K be a field with absolute value | |v induced by a discrete valua-
tion v, let A be the valuation ring of K, and let π be a uniformizer. The valuation ring of
the completion Kv of K with respect to | |v is a complete discrete valuation ring Av with
uniformizer π, and we have an isomorphism of topological rings

Av ' lim←−
n→∞

A

πnA
.

It is immediately clear that Av is a complete DVR with uniformizer π: it is complete
because it is a closed subset of the complete field Kv, it is a DVR with uniformizer π because
v extends to a discrete valuation on Av with v(π) = 1.

Before proving the non-trivial part of the proposition, let us check that we understand
the topology of the inverse limit X := lim←−nA/π

nA. The valuation ring A is a closed ball
B≤1(0) (hence an open set) in the nonarchimedean metric space K, and this also applies
to each of the sets πnA (they are closed balls of radius cn about 0). Each quotient A/πnA
therefore has the discrete topology, since the inverse image of any point under the quotient
map is a coset of the open subgroup πnA. The inverse limit X is a subspace of the product
space

∏
nA/π

nA, whose basic open sets project onto A/πnA for all but finitely many
factors (by definition of the product topology). It follows that every basic open subset U of
X is the full inverse image (under the canonical projection maps given by the inverse limit
construction) of a subset of A/πmA for some m ≥ 1; all open sets are unions of these basic
open sets. When this set is a point we can describe U as a coset a+ πmA, for some a ∈ A;
as a subset U =

∏
n Un of

∏
nA/π

nA each Un is the image of a+ πmA under the quotient
map A→ A/πnA. In general, U is a union of such sets (all with the same m).

We can alternatively describe the topology on X in terms of an absolute value: for
nonzero x = (xn) ∈ X = lim←−A/π

nA, let v(x) be the least n ≥ 0 for which xn+1 6= 0, and

define |x|v := cv(x). If we embed A in X in the obvious way, a 7→ (ā, ā, ā, . . .), the absolute
value on X restricts to the absolute value | |v on A, and the subspace topology A inherits
from X is the same as that induced by | |v. The open sets of X are unions of open balls
B<r(a), where we can always choose a ∈ A (because A is dense in X). If we let m ≥ 0 be
the least integer for which cm < r, where c ∈ (0, 1) is the constant for which |x| = cv(x) for
all x ∈ A, then B<r(a) corresponds to a coset a+ πmA as above.

Let us now prove the proposition.

Proof. The ring Av is complete and contains A. For each n ≥ 1 we define a ring homo-
morphism φn : Av → A/πnA as follows: for each â = [(ai)] let φn(â) be the limit of the
eventually constant sequence (ai) of images of ai in A/(πn). We thus obtain an infinite se-
quence of surjective maps φn : Av → A/πnA that are compatible in that for all n ≥ m > 0
and all a ∈ Av the image of φn(a) in A/πmA is φm(a). This defines a surjective ring
homomorphism φ : Av → lim←−A/π

nA. Now note that

kerφ =
⋂
n≥1

πnAv = {0}, (1)
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so φ is injective and therefore an isomorphism. To show that φ is also a homeomorphism, it
suffices to note that if a+ πmA is a coset of πmA in A and U is the corresponding open set
in lim←−A/π

nA, then φ−1(U) is the closure of a + πmA in Av, which is the coset a + πmAv,
an open subset in Av (as explained in the discussion above, every open set in the inverse
limit corresponds to a finite union of cosets a+πmA for some m). Conversely φ maps open
sets a+ πmAv to open sets in lim←−A/π

nA.

Remark 8.12. Given any ring R with an ideal I, one can define the I-adic completion of R
as the inverse limit of topological rings lim←−nR/I

n, where each R/In is given the discrete
topology. Proposition 8.11 shows that when R is a DVR with maximal ideal m, taking the
completion of R with respect to the absolute value | |m is the same thing as taking the
m-adic completion. This is not true in general. In particular, the m-adic completion of a
(not necessarily discrete) valuation ring R with respect to its maximal ideal m need not
be complete (either in the sense of Definition 8.1 or in the sense of being isomorphic to its
m-adic completion). The key issue that arises is that the kernel in (1) need not be trivial;
indeed, if m2 = m (which can happen) it certainly won’t be. This problem does not occur
for valuation rings that are noetherian, but these are necessarily DVRs.

Example 8.13. Let K = Q and let vp be the p-adic valuation for some prime p and let
|x|p := p−vp(x) denote the corresponding absolute value. The completion of Q with respect
to | |p is the field Qp of p-adic numbers. The valuation ring of Q corresponding to vp is the
local ring Z(p). Taking π = p as our uniformizer, we get

Ẑ(p) ' lim←−
n→∞

Z(p)

pnZ(p)
' lim←−

n→∞

Z
pnZ

' Zp,

the ring of p-adic integers (note that this example gives two equivalent definitions of Zp).

Example 8.14. Let K = Fq(t) be the rational function field over a finite field Fq and
let vt be the t-adic valuation and let |x|t := q−vt(x) be the corresponding absolute value.
with uniformizer π = t. The completion of Fq(t) with respect to | |t is isomorphic to the
field Fq((t)) of Laurent series over Fq. The valuation ring of Fq(t) with respect to vt is the
local ring Fq[t](t) consisting of rational functions whose denominators have nonzero constant
term. Taking π = t as our uniformizer, we get

F̂q[t](t) ' lim←−
n→∞

Fq[t](t)
tnFq[t](t)

' lim←−
n→∞

Fq[t]
tnFq[t]

' Fq[[t]],

where Fq[[t]] denotes the power series ring over Fq.

Example 8.15. The isomorphism Zp ' lim←−Z/pnZ gives us a canonical way to represent
elements of Zp: we can write a ∈ Zp as a sequence (an) with an+1 ≡ an mod pn, where each
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an ∈ Z/pnZ is uniquely represented by an integer in [0, pn − 1]. In Z7, for example:

2 = (2, 2, 2, 2, 2, . . .)

2002 = (0, 42, 287, 2002, 2002, . . .)

−2 = (5, 47, 341, 2399, 16805, . . .)

2−1 = (4, 25, 172, 1201, 8404, . . .)

√
2 =

{
(3, 10, 108, 2166, 4567 . . .)

(4, 39, 235, 235, 12240 . . .)

5
√

2 = (4, 46, 95, 1124, 15530, . . .)

While this representation is canonical, it is also redundant. The value of an constrains
the value of an+1 to just p possible values among the pn+1 elements of Z/pn+1Z, namely,
those that are congruent to an modulo pn. We can always write an+1 = an + pnbn for some
bn ∈ [0, p− 1], namely, bn = (an+1 − an)/pn.

Definition 8.16. Let a = (an) be a p-adic integer with each an uniquely represented by an
integer in ∈ [0, pn − 1]. The sequence (b0, b1, b2, . . .) with b0 = a1 and bn = (an+1 − an)/pn

is called the p-adic expansion of a.

Proposition 8.17. Every element of Zp has a unique p-adic expansion and every sequence
(b0, b1, b2, . . .) of integers in [0, p− 1] is the p-adic expansion of an element of Zp.

Proof. This follows immediately from the definition: we can recover (an) from its p-adic
expansion (b0, b1, b2, . . .) via a1 = b0 and an+1 = an + pbn for all n ≥ 1.

Thus we have a bijection between Zp and the set of all sequences of integers in [0, p− 1]
indexed by the nonnegative integers.

Example 8.18. We have the following p-adic expansion in Z7:

2 = (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

2002 = (0, 6, 5, 5, 0, 0, 0, 0, 0, 0, . . .)

−2 = (5, 6, 6, 6, 6, 6, 6, 6, 6, 6, . . .)

2−1 = (4, 3, 3, 3, 3, 3, 3, 3, 3, 3, . . .)

5−1 = (3, 1, 4, 5, 2, 1, 4, 5, 2, 1, . . .)

√
2 =

{
(3, 1, 2, 6, 1, 2, 1, 2, 4, 6 . . .)

(4, 5, 4, 0, 5, 4, 5, 4, 2, 0 . . .)

5
√

2 = (4, 6, 1, 3, 6, 4, 3, 5, 4, 6 . . .)

You can easily recreate these examples (and many more) in Sage. To create the ring of
7-adic integers, use Zp(7). By default Sage uses 20 digits of p-adic precision, but you can
change this to n digits using Zp(p,n).
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Performing arithmetic in Zp using p-adic expansions is straight-forward. One computes
a sum of p-adic expansions (b0, b1, . . .) + (c0, c1, . . .) by adding digits mod p and carrying
to the right (don’t forget to carry!). Multiplication corresponds to computing products of
formal power series in p, e.g. (

∑
bnp

n) (
∑
cnp

n), and can be performed by hand (or in Sage)
using the standard schoolbook algorithm for multiplying integers represented in base 10,
except now one works in base p. For more background on p-adic numbers, see [2, 3, 4, 5].

8.3 Extending valuations

Recall from Lecture 3 that each prime p of a Dedekind domain A determines a discrete
valuation (a surjective homomorphism) vp : IA → Z that assigns to a nonzero fractional
ideal I the exponent np appearing in the unique factorization of I =

∏
pnp into prime

ideals; equivalently, vp(I) is the unique integer n for which IAp = pnAp. This induces a
discrete valuation vp(x) := vp(xA) on the fraction field K, and a corresponding absolute
value |x|p := cvp(x) (with 0 < c < 1). In the AKLB setup, where L/K is a finite separable
extension and B is the integral closure of A in L, the primes q|p of B similarly give rise to
discrete valuations vq on L, each of which restricts to a valuation on K, but this valuation
need not be equal to vp. We want to understand how the discrete valuations vq relate to vp.

Definition 8.19. Let L/K be a finite separable extension, and let v and w be discrete
valuations on K and L respectively. If w|K = ev for some e ∈ Z>0, then we say that w
extends v with index e.

Theorem 8.20. Assume AKLB and let p be a prime of A. For each prime q|p, the discrete
valuation vq extends vp with index eq, and every discrete valuation on L that extends vp
arises in this way. In other words, the map q 7→ vq gives a bijection from {q|p} to the set
of discrete valuations of L that extend vp.

Proof. For each prime q|p we have vq(pB) = eq (by definition of the ramification index eq),
while vq(p

′B) = 0 for all primes p′ 6= p of A (since q lies above only the prime p = q ∩ A).
If I =

∏
p′(p
′)np′ is any nonzero fractional ideal of A then

vq(IB) = vq

∏
p′

(p′)np′B

 = vq(p
npB) = vq(pB)np = eqnp = eqvp(I),

so vq(x) = vq(xB) = eqvp(xA) = eqvp(x) for all x ∈ K×; thus vq extends vp with index eq.
If q and q′ are two distinct primes above p, then neither contains the other and for any

x ∈ q− q′ we have vq(x) > 0 ≥ vq′(x), thus vq 6= vq′ and the map q 7→ vq is injective.
Let w be a discrete valuation on L that extends vp, let W = {x ∈ L : w(x) ≥ 0} be the

associated DVR, and let m = {x ∈ L : w(x) > 0} be its maximal ideal. Since w|K = evp,
the discrete valuation w is nonnegative on A = {x ∈ K : w(x) ≥ 0} therefore A ⊆ W ,
and elements of A with nonzero valuation are precisely the elements of p, thus p = m ∩ A.
The discrete valuation ring W is integrally closed in its fraction field L, so B ⊆ W . Let
q = m ∩ B. Then q is prime (since m is), and p = m ∩ A = q ∩ A, so q lies over p. The
ring W contains Bq and is contained in FracBq = L. But there are no intermediate rings
between a DVR and its fraction field, so W = Bq and w = vq (and e = eq).
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9 Local fields and Hensel’s lemmas

In this lecture we introduce the notion of a local field ; these are precisely the fields that arise
as completions of a global field (finite extensions of Q or Fq(t)), but they can be defined in
a more intrinsic way. In later lectures we will see that global fields can also be defined in a
more intrinsic way, as fields whose completions are local fields and which admit a suitable
product formula.

9.1 Local fields

Definition 9.1. A local field is a field with a nontrivial absolute value | | that is locally
compact under the topology induced by | |.

Recall that a topological space is locally compact if every point has a compact neigh-
borhood.1 The topology induced by | | is given by the metric d(x, y) := |x − y|. A metric
space is locally compact if and only if every point lies in a compact closed ball.

Example 9.2. Under the standard archimedean absolute value both R and C are local
fields but Q is not. Indeed no closed ball in Q is compact, since it is missing limit points
(all irrational real numbers), and in a metric space a compact set must contains all its limit
points. Finite fields are not local fields because they have no nontrivial absolute values.

Our first goal is to classify local fields by showing that they are precisely the fields we get
by completing a global field. As in the previous lecture, we use B<r(x) := {y : |y − x| < r}
to denote the open ball of radius r ∈ R>0 about x, and B≤r(x) := {y : |y−x| ≤ r} to denote
a closed ball. Open balls are always open sets and closed balls are always closed sets, but
in a nonarchimedean metric space, open balls are both open and closed, as are closed balls.

Remark 9.3. For nonarchimedean metric spaces whose metric is induced by a discrete
valuation, every open ball of radius r is also a closed ball of some radius s ≤ r, but we need
not have s = r; in particular, the closure of B<r(x) (which is already closed) need not be
equal to B≤r(x), it could be strictly contained in B≤r(x). The key point is that not every
r ∈ R≥0 actually arises as a distance, only countably many do.

Lemma 9.4. Let K be a field with a nontrivial absolute value | |. Then K is a local field
if and only if every (equivalently, any) closed ball in K is compact.

Proof. Suppose K is a local field. Then 0 ∈ K lies in a compact closed ball B≤s(0). Let
us fix α ∈ K× with |α| > 1 (such an α exists because | | is nontrivial). The map x 7→ αx
is continuous and | | is multiplicative, so B≤|α|ns(0) is compact for every n ∈ Z>0 (recall
that the continuous image of a compact set is compact). We thus have compact balls
about 0 of arbitrarily large radii, implying that every closed ball B≤r(0) is a closed subset
of a compact set, hence compact. For every z ∈ K the translation map x 7→ x + z is
continuous, so every closed ball B≤r(z) is compact. This proves the forward implication,
and the reverse implication follows immediately from the definition of local compactness.
For the parenthetical, replace B≤s(0) in the argument above by any closed ball.

Corollary 9.5. Let K be a local field with absolute value | |. Then K is complete.

1Weaker definitions of locally compact are sometimes used, but they all imply this one, and for Hausdorff
spaces these weaker definitions are all equivalent to the one given here.
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Proof. Suppose not. Then there is a Cauchy sequence (xn) in K that converges to a limit
x ∈ K̂ − K. Pick N ∈ Z>0 so that |xn − x| < 1/2 for all n ≥ N (here we are using the
extension of | | to K̂), and consider the closed ball S := B≤1(xN ) in K, which is compact
by Lemma 9.4. The Cauchy sequence (xn)n≥N in S has a convergent subsequence whose
limit lies in S ⊆ K, since S is compact and therefore sequentially compact (because K is a
metric space). But this limit must be equal to x 6∈ K, a contradiction.

Proposition 9.6. Let K be a field with absolute value | |v induced by a discrete valuation v
with valuation ring A and uniformizer π. Then K is a local field if and only if K is complete
and the residue field A/πA is finite.

Proof. If K is a local field then K is complete, by Corollary 9.5, and the valuation ring

A = {x ∈ K : v(x) ≥ 0} = {x ∈ K : |x|v ≤ 1} = B≤1(0)

is a closed ball, hence compact, by Lemma 9.4. The cosets x+πA of the subgroup πA ⊆ A
are open balls B<1(x), since y ∈ x + πA if and only if |x − y|v ≤ |π|v < 1. The collection
{x+πA : x ∈ A} of cosets of πA is an open cover of A by disjoint sets which must be finite,
since A is compact; thus A/πA is finite.

Now suppose that K is complete and A/πA is finite. The valuation ring A ⊆ K is also
complete, and Proposition 8.11 gives an isomorphism of topological rings

A = Â ' lim←−
n

A

πnA
.

Each quotient A/πnA is finite, since A/πA is finite, and therefore compact; it follows that
the inverse limit, and therefore A, is compact, by Proposition 8.10. Lemma 9.4 implies that
K is a local field, since it contains a compact closed ball B≤1(0) = A and | |v is nontrivial
(recall that discrete valuations surject onto Z and are thus non-trivial by definition).

Corollary 9.7. Let L be a global field with a nontrivial absolute value | |v. Then the
completion Lv of L with respect to | |v is a local field.

Proof. Let L/K be a finite extension with K = Q or K = Fq(t) and A = Z or A = Fq[t],
so that K = FracA. Then A is a Dedekind domain, as is its integral closure B in L, by
Theorem 5.25 (and Remark 5.26 in the case that L/K is inseparable).2

If | |v is archimedean, then K = Q and the completion of L with respect to | |v must
contain the completion of Q with respect to the restriction of | |v to Q, which must be
isomorphic to R (as shown on Problem Set 1, every archimedean absolute value on Q is
equivalent to the usual Euclidean absolute value). Thus Lv is a finite extension of R and
must be isomorphic to either R or C (as a topological field), both of which are local fields.

We now assume that | |v is nonarchimedean. We claim that in this case | |v is induced
by a discrete valuation. Let C := {x ∈ L : |x|v ≤ 1} be the valuation ring of L with respect
to | |v, and let m := {x ∈ L : |x|v < 1} be its maximal ideal, which is nonzero because | |v
is nontrivial. The restriction of | |v to K is a nonarchimedean absolute value, and from the
classification of absolute values on Q and Fq(t) proved on Problem Set 1, we can assume it
is induced by a discrete valuation on A; in particular, |x|v ≤ 1 for all x ∈ A, and therefore

2In fact, we can always choose K so that L/K is separable: if L has positive characteristic p, let Fq be
the algebraic closure of Fp in L, choose a separating transcendental element t, and put K := Fq(t). Such a t
exists because Fq is perfect and L/Fq is finitely generated, see [3, Thm. 7.20].

18.785 Fall 2019, Lecture #9, Page 2

https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec8.pdf#theorem.2.11
https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec8.pdf#theorem.2.10
https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec5.pdf#theorem.2.25
https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec5.pdf#theorem.2.26


A ⊆ C. Like all valuation rings (discrete or not), C is integrally closed in its fraction field L,
and C contains A, so C contains B, since B is the integral closure of A in L. The ideal
q = m ∩ B is maximal, and the DVR Bq lies in C and must equal C, since there are no
intermediate rings between a DVR and its fraction field (we cannot have C = L because C
is not a field). It follows that the absolute value induced by vq is equivalent to | |v, since
they have the same valuation rings. By choosing 0 < c < 1 appropriately, we can assume
that | · |v = cvq(·) is induced by vq, which proves the claim.

The residue field Bq/qBq ' B/q is finite, since B/q is a finite extension of the finite
field A/p, where p = q ∩ A. If we now consider the completion Lv with valuation ring Bv,
we can take any uniformizer π for q ⊆ B ⊆ Bv as a uniformizer for Bv, and we have

B

q
' Bq

qBq
=

Bq

πBq
' Bv
πBv

,

so Bv/πBv is finite. Thus Lv is a complete field with an absolute value induced by a discrete
valuation and finite residue field, and therefore a local field, by Proposition 9.6.

In order to classify all local fields we require the following result from topology (here
nondiscrete simply means that not every set is open).

Proposition 9.8. A locally compact topological vector space over a nondiscrete locally com-
pact field has finite dimension.

Proof. See [4, Prop. 4-13.iv].

Theorem 9.9. Let L be a local field. If L is archimedean then it is isomorphic to R or C;
otherwise, L is isomorphic to a finite extension of Qp or Fq((t)).

Proof. Let L be a local field with nontrivial absolute value | |; then L is complete, by
Corollary 9.5. If L has characteristic zero then the prime field of L is Q, and L contains
the completion of Q with respect to the restriction of | | to Q. By Ostrowski’s theorem, the
restriction of | | to Q is equivalent to either the standard archimedean absolute value, in
which case the completion is R, or it is equivalent to a p-adic absolute value, in which case
the completion is Qp (which, by definition, is the completion of Q with respect to the p-adic
absolute value). Thus L contains a subfield K isomorphic to R or to Qp for some prime p.

If L has positive characteristic p then the prime field of L is Fp, and L must contain a
transcendental element s, since no algebraic extension of Fp has a nontrivial absolute value
(if |α| > 1 for some algebraic α ∈ L, then the restriction of | | to the finite field Fp(α) is
nontrivial, but this is impossible). It follows that L contains Fp(s) and therefore contains
the completion of Fp(s) with respect to | |. Every completion of Fp(s) is isomorphic to
Fq((t)) for some q a power of p and t transcendental over Fq (see Problem Set 5). Thus L
contains a subfield K isomorphic to Fq((t)).

If K is archimedean then K = R is a local field, and if K is nonarchimedean then
K = Qp or K = Fq((t)) is a complete field with a discrete valuation and finite residue field,
hence a local field by Proposition 9.6. The field K is therefore locally compact, and it is
nondiscrete because its absolute value is nontrivial. Proposition 9.8 implies that L has finite
degree over K. If K is archimedean then K = R, and L must be R or C; otherwise, L is a
finite extension of Qp or Fq((t)) as claimed.
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9.2 Hensel’s lemmas

Definition 9.10. Let R be a (commutative) ring, and let f(x) =
∑
fix

i ∈ R[x] be a
polynomial. The (formal) derivative f ′ of f is the polynomial f ′(x) :=

∑
ifix

i−1 ∈ R[x].

Note that the canonical ring homomorphism Z→ R defined by 1 7→ 1 allows us to view
the integers i = 1 + 1 + · · ·+ 1 as elements of R (the map Z→ R will be injective only when
R has characteristic zero, but it is well defined in any case). It is easy to verify that for all
a, b ∈ R and f, g ∈ R[x] the formal derivative satisfies the usual identities:

(af + bg)′ = af ′ + bg′, (linearity)

(fg)′ = f ′g + fg′, (Leibniz rule)

(f ◦ g)′ = (f ′ ◦ g)g′, (chain rule)

When the characteristic of R is positive, we may have deg f ′ < deg f − 1. Indeed, if R has
characteristic p > 0 and g(x) = f(xp) for some f ∈ R[x], then g′ = f ′(xp)pxp−1 = 0.

Lemma 9.11. Let R be a ring, let f =
∑
fix

i ∈ R[x] be a polynomial, and let a ∈ R. Then
f(x) = f(a) + f ′(a)(x− a) + g(x)(x− a)2 for a unique g ∈ R[x].

Proof. We have

f(x) = f(a+ (x− a)) =
∑
i≥0

fi(a+ (x− a))i =
∑
i≥0

fi
∑

0≤j≤i

(
i

j

)
aj(x− a)i−j

= f(a) +
∑
i≥1

fi
∑

0≤j<i

(
i

j

)
aj(x− a)i−j

= f(a) + f ′(a)(x− a) +
∑
i≥2

fi
∑

0≤j≤i−2

(
i

j

)
aj(x− a)i−j

= f(a) + f ′(a)(x− a) + g(x)(x− a)2,

where g(x) =
∑

i≥2 fi
∑

0≤j≤i−2
(
i
j

)
aj(x− a)i−2−j ∈ R[x].

Remark 9.12. The lemma can be viewed as giving the first two terms of a formal Taylor
expansion of f(x) about a. Note that the binomial coefficients

(
i
j

)
are integers, hence well

defined elements of R under the canonical homomorphism Z→ R, even when j! is divisible
by the characteristic of R. In the usual Taylor expansion

f(x) =

∞∑
i=0

f (i)(a)

i!
(x− a)i

used in characteristic zero, if f is a polynomial then f (i)(a) is necessarily a multiple of i!,
so f (i)(a)/i! is always a well defined element of R, even in positive characteristic.

Corollary 9.13. Let R be a ring, f ∈ R[x], and a ∈ R. Then f(a) = f ′(a) = 0 if and only
if a is (at least) a double root of f , that is, f(x) = (x− a)2g(x) for some g ∈ R[x].

Definition 9.14. Let f ∈ R[x] be a polynomial over a ring R and let a ∈ R. If f(a) = 0
and f ′(a) 6= 0 then a is a simple root of f .
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If R is a ring and I is an R-ideal, by a lift of an element r̄ of the quotient R/I, we mean
a preimage of r̄ under the quotient map R� R/I.

Lemma 9.15 (Hensel’s Lemma I). Let A be a complete DVR with maximal ideal p and
residue field k := A/p. Suppose f ∈ A[x] is a monic polynomial whose reduction to k[x] has
a simple root ā ∈ k. Then ā can be lifted to a root of f in A.

Proof. We work in the fraction field K of A. Let a0 be any lift of ā to A; the element a0
is not necessarily a root of f , but it is a root modulo p. We will show that a0 is the first
term of a Cauchy sequence (an) in which each an is a root of f modulo p2

n
. To simplify

the notation we fix 0 < c < 1 and define the absolute value | · | := cvp(·). The fact that ā is
a simple root implies that f(a0) ∈ p but f ′(a0) 6∈ p, so |f(a0)| ≤ c < 1 and |f ′(a0)| = 1. We
now define

ε :=
|f(a0)|
|f ′(a0)|2

< 1.

In what follows we will only use ε < 1, which will allow our proof to work in cases where ā
is not necessarily a simple root (in particular, we won’t assume |f ′(a0)| = 1).

For each n ≥ 0 we define

an+1 := an − f(an)/f ′(an).

We will prove by induction on n that

(a) |an| ≤ 1 (an ∈ A);

(b) |an − a0| ≤ ε < 1 (an ≡ a0 mod p, so an is a lift of ā);

(c) |f ′(an)| = |f ′(a0)| (with (d) this ensures f ′(an)|f(an), so an+1 is well defined);

(d) |f(an)| ≤ ε2n |f ′(a0)|2 (|f(an)| and therefore f(an) converges rapidly to 0).

The case n = 0 is clear. We now assume (a), (b), (c), (d) for n and prove them for n+ 1:

(a) |an+1−an| = |f(an)/f ′(an)| ≤ ε2n |f ′(a0)|2/|f ′(a0)| = ε2
n |f ′(a0)| ≤ ε2

n
, by (c) and (d),

therefore |an+1| = |an+1 − an + an| ≤ max(|an+1 − an|, |an|) ≤ 1, by (a).

(b) |an+1 − a0| ≤ max(|an+1 − an|, |an − a0|) ≤ max(ε2
n
, ε) = ε (as above and using (b)).

(c) Applying Lemma 9.11 to f ′(x) at an and substituting an+1 for x yields

f ′(an+1) = f ′(an)− f ′′(an)
f(an)

f ′(an)
+ g(an+1)

(
f(an)

f ′(an)

)2

,

where we have used an+1 − an = −f(an)/f ′(an). We have f ′′(an), g(an+1) ∈ A, so
|f ′′(an)|, |g(an+1)| ≤ 1, and |f(an)/f ′(an)| = |f(an)|/|f ′(a0)| ≤ ε2

n |f ′(a0)|, by (d), so
the absolute values of the last two terms on the RHS are strictly smaller than the first
term |f ′(an)| = |f ′(a0)|. Therefore |f ′(an+1)| = |f ′(an)| = |f ′(a0)|.

(d) Applying Lemma 9.11 to f(x) and substituting an+1 for x yields

f(an+1) = f(an)− f ′(an)
f(an)

f ′(an)
+ h(an+1)

(
f(an)

f ′(an)

)2

= h(an+1)

(
f(an)

f ′(an)

)2

,

for some h ∈ A[x]. We have |h(an+1)| ≤ 1, so (c) and (d) imply

|f(an+1)| ≤ |f(an)|2/|f ′(an)|2 = |f(an)|2/|f ′(a0)|2 ≤ ε2
n+1 |f ′(a0)|2.

which completes our inductive proof.
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We have |an+1 − an| ≤ ε2
n → 0 as n → ∞, and for a nonarchimedean absolute value

this implies that (an) is Cauchy. Thus a := limn→∞ an ∈ A, since A is complete. We have
f(a) = limn→∞ f(an) = 0, so a is a root of f , and |a − a0| = limn→∞ |an − a0| < 1, so
a ≡ a0 mod p is a lift of ā.

Our proof of Lemma 9.15 did not actually use the assumption that f is monic, nor did
it actually require ā to be a simple root. Let us record the (apparently stronger) form of
Hensel’s lemma that what we actually proved.

Lemma 9.16 (Hensel’s Lemma II). Let A be a complete DVR. Let f ∈ A[x], and suppose
a0 ∈ A satisfies

|f(a0)| < |f ′(a0)|2

(so in particular, f ′(a0) divides f(a0)), and for n ≥ 0 define

an+1 := an − f(an)/f ′(an).

The sequence (an) is well-defined and converges to the unique root a ∈ A of f for which

|a− a0| ≤ ε := |f(a0)|/|f ′(a0)|2.

Moreover, |f(an)| ≤ ε2n|f ′(a0)|2 for all n ≥ 0.

Lemma 9.16 can be viewed as a nonarchimedean version of Newton’s method for finding
(or more closely approximating) a root of a polynomial given an initial approximation. Like
Newton’s method, the recurrence in Lemma 9.16 converges quadratically, meaning that we
double the precision of our approximation with each iteration. But Lemma 9.16 is better
than Newton’s method, for two reasons: (1) in the most common scenario the residue field
is finite, which makes finding an initial approximation very easy, and (2) once we have an
initial approximation with ε < 1, convergence is guaranteed.

Remark 9.17. In Lemmas 9.15 and 9.16 it is not actually necessary for A to be complete
(or an integral domain). A local ring A for which Lemma 9.15 holds is called a henselian
ring (this is a definition). One can show that Lemma 9.16 necessarily also holds in any
henselian ring, as do many other forms of “Hensel’s Lemma”, including Lemma 9.19 below.
In general, any condition that holds for a local ring if and only if it is a henselian ring may
be called “Hensel’s Lemma”; see [5, Lemma 10.148.3] for more than a dozen candidates.
One can define the henselization of a noetherian local ring R as the minimal extension of R
that is henselian (as usual, it is minimal in the sense of satisfying a universal property, and
this forces it to be unique up to isomorphism). When R is a DVR its henselization is simply
R̂ ∩Ksep, where K is the fraction field of R. Loosely speaking, in henselian rings, Cauchy
sequences that converge (in the completion) to the root of a polynomial are required to
converge, but not every Cauchy sequence needs to converge.

Example 9.18. Let A = Z5 and f(x) = x2 − 6 ∈ Z5[x]. Then f̄(x) = x2 − 1 ∈ F5[x] has
ā = 1 as a simple root. By Lemma 9.15 there is a unique a ∈ Z5 such that a2 − 6 = 0 and
a ≡ 1 mod 5. We could also have chosen ā = −1, which would give another distinct root of
f(x), which must be −a. Thus Z5 contains two distinct square roots of 6.

Now let A = Z2 and f(x) = x2− 17. Then f̄(x) = x2− 1 = (x− 1)2 has no simple roots
(note f̄ ′ = 0). But if we let a0 = 1, then f(a0) = −16 and |f(a0)| = 1/16, while f ′(a0) = 2
and |f ′(a0)| = 1/2. We thus have |f(a0)| < |f ′(a0)|2 and can apply Lemma 9.16 to get a
square root of 17 in Z2.
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There is a another version of Hensel’s Lemma that we need, which is arguably the most
powerful (of course they are all equivalent by definition, but this version is most easily seen
to imply all the others).

Lemma 9.19 (Hensel’s lemma III). Let A be a complete DVR with maximal ideal p and
residue field k, let f ∈ A[x] have image f̄ in k[x], and suppose f̄ = ḡh̄ for some coprime
ḡ, h̄ ∈ k[x]. Then there exist polynomials g, h ∈ A[x] for which f = gh with g ≡ ḡ mod p
and h ≡ h̄ mod p such that deg g = deg ḡ.

Proof. See [2, Theorem II.4.6] or [5, Lemma 10.148.3].

This form of Hensel’s lemma has the following useful corollary, which is itself another
form Hensel’s lemma in the sense that it characterizes henselian fields (see Remark 9.17).3

Lemma 9.20 (Hensel-Kürschák lemma). Let A be a complete DVR with fraction field K,
and let f ∈ K[x] be an irreducible polynomial whose leading and constant coefficients lie
in A. Then f ∈ A[x].

Proof. Let p = (π) be the maximal ideal of A, let k := A/p, and write f =
∑n

i=0 fix
i with

fn 6= 0. We must have n > 0 and f0 6= 0, since f is irreducible. Let m := min{vp(fi)}.
Suppose for the sake of contradiction that m < 0, and let g := π−mf =

∑n
i=0 gix

i ∈ A[x].
Then g is an irreducible polynomial in A[x] with g0, gn ∈ p, since m < 0 and f0, fn ∈ A,
and gi is a unit for some 0 < i < n, by the minimality of m. The reduction ḡ of g to k[x]
has positive degree and constant term 0, and is therefore divisible by x. If we let ū := xd

be the largest power of x dividing ḡ, then 0 < d ≤ deg ḡ < n and v̄ := ḡ/xd ∈ k[x] is
coprime to ū (possibly deg v̄ = 0). Lemma 9.19 implies that g = uv for some u, v ∈ A[x]
with 0 < deg u = deg ū < n. But this means g is not irreducible, a contradiction.

Corollary 9.21. Let A be a complete DVR with fraction field K, and let L/K be a finite
extension of degree n. Then α ∈ L is integral over A if and only if NL/K(α) ∈ A.

Proof. Let f =
∑d

i=0 fix
i ∈ K[x] be the minimal polynomial of α. If α is integral over A

then f ∈ A[x], by Proposition 1.28, and NL/K(α) = (−1)nf(0)e ∈ A, where e = [L : K(α)],
by Proposition 4.51. Conversely, if NL/K(α) = (−1)nf(0)e ∈ A, then f(0) ∈ A, since
f(0) ∈ K is a root of xe − (−1)nNL/K(α) ∈ A[x] and A is integrally closed. The constant
coefficient of f thus lies in A, as does its leading coefficient (it is monic), so f ∈ A[x], by
Lemma 9.20, and α is therefore integral over A.
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10 Extensions of complete DVRs

Recall that in our AKLB setup, A is a Dedekind domain with fraction field K, the field L
is a finite separable extension of K, and B is the integral closure of A in L; as we proved in
Theorem 5.25, this implies that B is also a Dedekind domain (with L as its fraction field).
We now want to consider the special case where A is a complete DVR; in this case B is also
a complete DVR, but this will take a little bit of work to prove. We first show that B is a
DVR.

Theorem 10.1. Assume AKLB and that A is a complete DVR with maximal ideal p.
Then B is a DVR whose maximal ideal q is necessarily the unique prime above p.

Proof. We first show that #{q|p} = 1. At least one prime q of B lies above p, since the
factorization of pB ( B is non-trivial. Now suppose for the sake of contradiction that
q1, q2 ∈ {q|p} with q1 6= q2. Choose b ∈ q1 − q2 and consider the ring A[b] ⊆ B. The
ideals q1 ∩ A[b] and q2 ∩ A[b] are distinct prime ideals of A[b] containing pA[b], and both
are maximal, since they are nonzero and dimA[b] = dimA = 1 (note that A[b] is integral
over A and therefore has the same dimension). The quotient ring A[b]/pA[b] thus has at
least two maximal ideals. Let f ∈ A[x] be the minimal polynomial of b over K, and let
f̄ ∈ (A/p)[x] be its reduction to the residue field A/p.

(A/p)[x]

(f̄)
' A[x]

(p, f)
' A[b]

pA[b]
,

thus the ring (A/p)[x]/(f̄) has at least two maximal ideals, which implies that f̄ is divisible
by two distinct irreducible polynomials (because (A/p)[x] is a PID). We can thus factor
f̄ = ḡh̄ with ḡ and h̄ coprime. By Hensel’s Lemma 9.19, we can lift this to a non-trivial
factorization f = gh of f in A[x], contradicting the irreducibility of f .

Every maximal ideal of B lies above a maximal ideal of A, but A has only the maximal
ideal p and #{q|p} = 1, so B has a unique (nonzero) maximal ideal q. Thus B is a local
Dedekind domain, hence a local PID, and not a field, so B is a DVR, by Theorem 1.16.

Remark 10.2. The assumption that A is complete is necessary. For example, if A is the
DVR Z(5) with fraction field K = Q and we take L = Q(i), then the integral closure of A
in L is B = Z(5)[i], which is a PID but not a DVR: the ideals (1 + 2i) and (1− 2i) are both
maximal (and not equal). But if we take completions we get A = Z5 and K = Q5, and now
L = Q5(i) = Q5 = K, since x2 + 1 has a root in F5 ' Z5/5Z5 that we can lift to Z5 via
Hensel’s lemma; thus if we complete A then B = A is a DVR as required.

Definition 10.3. Let K be a field with absolute value | | and let V be a K-vector space.
A norm on V is a function ‖ ‖ : V → R≥0 such that

• ‖v‖ = 0 if and only if v = 0.

• ‖λv‖ = |λ| ‖v‖ for all λ ∈ K and v ∈ V .

• ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

Each norm ‖ ‖ induces a topology on V via the distance metric d(v, w) := ‖v − w‖.

Example 10.4. Let V be a K-vector space with basis (ei), and for v ∈ V let vi ∈ K denote
the coefficient of ei in v =

∑
i viei. The sup-norm ‖v‖∞ := sup{|vi|} is a norm on V (thus
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every vector space has at least one norm). If V is also a K-algebra, an absolute value ‖ ‖
on V (as a ring) is a norm on V (as a K-vector space) if and only if it extends the absolute
value on K (fix v 6= 0 and note that ‖λ‖ ‖v‖ = ‖λv‖ = |λ| ‖v‖ ⇔ ‖λ‖ = |λ|).

Proposition 10.5. Let V be a vector space of finite dimension over a complete field K.
Every norm on V induces the same topology, in which V is a complete metric space.

Proof. See Problem Set 5.

Theorem 10.6. Let A be a complete DVR with fraction field K, maximal ideal p, discrete
valuation vp, and absolute value |x|p := cvp(x), with 0 < c < 1. Let L/K be a finite extension
of degree n. The following hold.

(i) There is a unique absolute value |x| := |NL/K(x)|1/np on L that extends | |p;

(ii) The field L is complete with respect to | |, and its valuation ring {x ∈ L : |x| ≤ 1} is
equal to the integral closure B of A in L;

(iii) If L/K is separable then B is a complete DVR whose maximal ideal q induces

|x| = |x|q := c
1
eq

vq(x)
,

where eq is the ramification index of q, that is, pB = qeq.

Proof. Assuming for the moment that | | is actually an absolute value (which is not obvious!),
for any x ∈ K we have

|x| = |NL/K(x)|1/np = |xn|1/np = |x|p,

so | | extends | |p and is therefore a norm on L. The fact that | |p is nontrivial means that
|x|p 6= 1 for some x ∈ K×, and |x|a = |x|p = |x| only for a = 1, which implies that | | is the
unique absolute value in its equivalence class extending | |p. Every norm on L induces the
same topology (by Proposition 10.5), so | | is the only absolute value on L that extends | |p.

We now show | | is an absolute value. Clearly |x| = 0⇔ x = 0 and | | is multiplicative;
we only need to check the triangle inequality. It suffices to show |x| ≤ 1⇒ |x+ 1| ≤ |x|+ 1,
since we always have |y+ z| = |z||y/z+ 1| and |y|+ |z| = |z|(|y/z|+ 1), and without loss of
generality we assume |y| ≤ |z|. In fact the stronger implication |x| ≤ 1⇒ |x+ 1| ≤ 1 holds:

|x| ≤ 1 ⇐⇒ |NL/K(x)|p ≤ 1 ⇐⇒ NL/K(x) ∈ A ⇐⇒ x ∈ B ⇐⇒ x+1 ∈ B ⇐⇒ |x+1| ≤ 1.

The first biconditional follows from the definition of | |, the second follows from the definition
of | |p, the third is Corollary 9.21, the fourth is obvious, and the fifth follows from the first
three after replacing x with x+ 1. This completes the proof of (i), and also proves (ii).

We now assume L/K is separable. Then B is a DVR, by Theorem 10.1, and it is
complete because it is the valuation ring of L. Let q be the unique maximal ideal of B. The
valuation vq extends vp with index eq, by Theorem 8.20, so vq(x) = eqvp(x) for x ∈ K×.
We have 0 < c1/eq < 1, so |x|q := (c1/eq)vq(x) is an absolute value on L induced by vq. To
show it is equal to | |, it suffices to show that it extends | |p, since we already know that | |
is the unique absolute value on L with this property. For x ∈ K× we have

|x|q = c
1
eq

vq(x)
= c

1
eq

eqvp(x)
= cvp(x) = |x|p,

and the theorem follows.
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Remark 10.7. The transitivity of NL/K in towers (Corollary 4.52) implies that we can
uniquely extend the absolute value on the fraction field K of a complete DVR to an algebraic
closure K. In fact, this is another form of Hensel’s lemma in the following sense: one can
show that a (not necessarily discrete) valuation ring A is Henselian if and only if the absolute
value of its fraction field K can be uniquely extended to K; see [4, Theorem 6.6].

Corollary 10.8. Assume AKLB and that A is a complete DVR with maximal ideal p and
let q|p. Then vq(x) = 1

fq
vp(NL/K(x)) for all x ∈ L.

Proof. vp(NL/K(x)) = vp(NL/K((x))) = vp(NL/K(qvq(x))) = vp(p
fqvq(x)) = fqvq(x).

Remark 10.9. One can generalize the notion of a discrete valuation to a valuation, a
surjective homomorphism v : K× → Γ, in which Γ is a (totally) ordered abelian group and
v(x + y) ≥ min(v(x), v(y)); we extend v to K by defining v(0) = ∞ to be strictly greater
than any element of Γ. In the AKLB setup with A a complete DVR, one can then define
a valuation v(x) = 1

eq
vq(x) with image 1

eq
Z that restricts to the discrete valuation vp on K.

The valuation v then extends to a valuation on K with Γ = Q. Some texts take this
approach, but we will generally stick with discrete valuations (so our absolute value on L
restricts to K, but our discrete valuations on L do not restrict to discrete valuations on K,
they extend them with index eq).

Remark 10.10. Recall that a valuation ring is an integral domain A with fraction field K
such that for every x ∈ K× either x ∈ A or x−1 ∈ A (possibly both). As you will show on
Problem Set 6, if A is a valuation ring, then there exists a valuation v : K → Γ ∪ {∞} for
some totally ordered abelian group Γ such that A = {x ∈ K : v(x) ≥ 0} is the valuation
ring of K with respect to this valuation.

10.1 The Dedekind-Kummer theorem in a local setting

Recall that the Dedekind-Kummer theorem (Theorem 6.14) allows us to factor primes in
our AKLB setting by factoring polynomials over the residue field, provided that B is
monogenic (of the form A[α] for some α ∈ B), or the prime of interest does not contain the
conductor. We now show that in the special case where A and B are DVRs and the residue
field extension is separable, B is always monogenic; this holds, for example, whenever K is
a local field. To prove this, we first recall a form of Nakayama’s lemma.

Lemma 10.11 (Nakayama’s Lemma). Let A be a local ring with maximal ideal p, and
let M be a finitely generated A-module. If the images of x1, . . . , xn ∈ M generate M/pM
as an (A/p)-vector space then x1, . . . , xn generate M as an A-module.

Proof. See [1, Corollary 4.8b].

Before proving our theorem on local monogenicity, we record a few corollaries of Nakayama’s
Lemma that will be useful later.

Corollary 10.12. Let A be a local noetherian ring with maximal ideal p, let g ∈ A[x], and
let B := A[x]/(g(x)). Every maximal ideal m of B contains the ideal pB.

Proof. Suppose not. Then m+pB = B for some maximal ideal m of B. The ring B is finitely
generated over the noetherian ring A, hence a noetherian A-module, so its A-submodules
are all finitely generated. Let z1, . . . , zn be A-module generators for m. Every coset of pB
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in B can be written as z + pB for some A-linear combination z of z1, . . . , zn, so the images
of z1, . . . , zn generate B/pB as an (A/p)-vector space. By Nakayama’s lemma, z1, . . . , zn
generate B, in which case m = B, a contradiction.

As a corollary, we immediately obtain a local version of the Dedekind-Kummer theorem
that does not even require A and B to be Dedekind domains.

Corollary 10.13. Let A be a local noetherian ring with maximal ideal p, let g ∈ A[x]
be a polynomial with reduction ḡ ∈ (A/p)[x], and let α be the image of x in the ring
B := A[x]/(g(x)) = A[α]. The maximal ideals of B are (p, gi(α)), where g1, . . . , gm ∈ A[x]
are lifts of the distinct irreducible polynomials ḡi ∈ (A/p)[x] that divide ḡ.

Proof. By Corollary 10.12, the quotient map B → B/pB gives a one-to-one correspondence
between maximal ideals of B and maximal ideals of B/pB, and we have

B

pB
' A[x]

(p, g(x))
' (A/p)[x]

(ḡ(x))
.

Each maximal ideal of (A/p)[x]/(ḡ(x)) is the reduction of an irreducible divisor of ḡ, hence
one of the ḡi (because (A/p)[x] is a PID). The corollary follows.

Theorem 10.14. Assume AKLB, with A and B DVRs with residue fields k := A/p and
l := B/q. If l/k is separable then B = A[α] for some α ∈ B; if L/K is unramified this
holds for every lift α of any generator ᾱ for l = k(ᾱ).

Proof. Let pB = qe be the factorization of pB and let f = [l : k] be the residue field
degree, so that ef = n := [L : K]. The extension l/k is separable, so we may apply the
primitive element theorem to write l = k(α0) for some α0 ∈ l whose minimal polynomial ḡ
is separable of degree equal to f . Let g ∈ A[x] be a monic lift of ḡ, and let α0 be any lift
of ᾱ0 to B. If vq(g(α0)) = 1 then let α := α0. Otherwise, let π0 be any uniformizer for B
and let α := α0 + π0 ∈ B (so α ≡ ᾱ0 mod q) Writing g(x + π0) = g(x) + π0g

′(x) + π2
0h(x)

for some h ∈ A[x] via Lemma 9.11, we have

vq(g(α)) = vq(g(α0 + π0)) = vq(g(α0) + π0g
′(α0) + π2

0h(α0)) = 1,

so π := g(α) is also a uniformizer for B.
We now claim B = A[α], equivalently, that 1, α, . . . , αn−1 generate B as an A-module.

By Nakayama’s lemma, it suffices to show that the reductions of 1, α, . . . , αn−1 span B/pB
as an k-vector space. We have p = qe, so pB = (πe). We can represent each element of
B/pB as a coset

b+ pB = b0 + b1π + b2π · · ·+ be−1π
e−1 + pB,

where b0, . . . , be−1 are determined up to equivalence modulo πB. Now 1, ᾱ, . . . , ᾱf−1 are a
basis for B/πB = B/q as a k-vector space, and π = g(α), so we can rewrite this as

b+ pB = (a0 + a1α+ · · · af−1α
f−1)

+ (af + af+1α+ · · · a2f−1α
f−1)g(α)

+ · · ·
+ (aef−f+1 + aef−f+2α+ · · · aef−1α

f−1)g(α)e−1 + pB.
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Since deg g = f , and n = ef , this expresses b+pB in the form b′+pB with b′ in the A-span
of 1, . . . , αn−1. Thus B = A[α].

We now note that if L/K is unramified then l/k is separable (this is part of the definition
of unramified), and e = 1, f = n, in which case there is no need to require g(α) to be a
uniformizer and we can just take α = α0 to be any lift of any ᾱ0 that generates l over k.

In our AKLB setup, if A is a complete DVR with maximal ideal p then B is a complete
DVR with maximal ideal q|p and the formula [L : K] =

∑
q|p eqfq given by Theorem 5.35 has

only one term eqfq. We now simplify matters even further by reducing to the two extreme
cases fq = 1 (a totally ramified extension) and eq = 1 (an unramified extension, provided
that the residue field extension is separable).1

10.2 Unramified extensions of a complete DVR

Let A be a complete DVR with fraction field K and residue field k. Associated to any finite
unramified extension of L/K of degree n is a corresponding finite separable extension of
residue fields l/k of the same degree n. Given that the extensions L/K and l/k are finite
separable extensions of the same degree, we might wonder how they are related. More
precisely, if we fix K with residue field k, what is the relationship between finite unramified
extensions L/K of degree n and finite separable extensions l/k of degree n? Each L/K
uniquely determines a corresponding l/k, but what about the converse?

This question has a surprisingly nice answer. The finite unramified extensions L of K
form a category Cunr

K whose morphisms are K-algebra homomorphisms, and the finite sepa-
rable extensions l of k form a category Csep

k whose morphisms are k-algebra homomorphisms.
These two categories are equivalent.

Theorem 10.15. Let A be a complete DVR with fraction field K and residue field k := A/p.
The categories Cunr

K and Csep
k are equivalent via the functor F : Cunr

K → Csep
k that sends

each unramified extension L of K to its residue field l, and each K-algebra homomorphism
ϕ : L1 → L2 to the k-algebra homomorphism ϕ̄ : l1 → l2 defined by ϕ̄(ᾱ) := ϕ(α), where α
is any lift of ᾱ ∈ l1 := B1/q1 to B1 and ϕ(α) is the reduction of ϕ(α) ∈ B2 to l2 := B2/q2;
here q1, q2 are the maximal ideals of the valuation rings B1, B2 of L1, L2, respectively.

In particular, F gives a bijection between the isomorphism classes in Cunr
K and Csep

k , and
if L1, L2 and have residue fields l1, l2 then F induces a bijection of finite sets

HomK(L1, L2)
∼−→ Homk(l1, l2).

Proof. Let us first verify that F is well-defined. It is clear that it maps finite unramified
extensions L/K to finite separable extensions l/k, but we should check that the map on
morphisms does not depend on the lift α of ᾱ we pick. So let ϕ : L1 → L2 be a K-algebra
homomorphism, and for ᾱ ∈ l1, let α and α′ be two lifts of ᾱ to B1. Then α − α′ ∈ q1,
and this implies that ϕ(α − α′) ∈ ϕ(q1) = ϕ(B1) ∩ q2 ⊆ q2, and therefore ϕ(α) = ϕ(α′).
The identity ϕ(q1) = ϕ(B1) ∩ q2 ⊆ q2 follows from the fact that ϕ restricts to an injective
ring homomorphism B1 → B2 and B2/ϕ(B1) is a finite extension of DVRs in which q2 lies
over the prime ϕ(q1) of ϕ(B1). It’s easy to see that F sends identity morphisms to identity
morphisms and that it is compatible with composition, so we have a well-defined functor.

To show that F is an equivalence of categories we need to prove two things:

1Recall from Definition 5.37 that separability of the residue field extension is part of the definition of an
unramified extension. If the residue field is perfect (as when K is a local field, for example), the residue field
extension is automatically separable, but in general it need not be, even when L/K is unramified.
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• F is essentially surjective: each separable l/k is isomorphic to the residue field of some
unramified L/K

• F is full and faithful: the induced map HomK(L1, L2)→ Homk(l1, l2) is a bijection.

We first show that F is essentially surjective. Given a finite separable extension l/k, we
may apply the primitive element theorem to write

l ' k(ᾱ) =
k[x]

(ḡ(x))
,

for some ᾱ ∈ l whose minimal polynomial ḡ ∈ k[x] is necessarily monic, irreducible, separa-
ble, and of degree n := [l : k]. Let g ∈ A[x] be any monic lift of ḡ; then g is also irreducible,
separable, and of degree n. Now let

L :=
K[x]

(g(x))
= K(α),

where α is the image of x in K[x]/g(x). Then L/K is a finite separable extension, and by
Corollary 10.13, (p, g(α)) is the unique maximal ideal of A[α] (since ḡ is irreducible) and

B

q
' A[α]

(p, g(α))
' A[x]

(p, g(x))
' (A/p)[x]

(ḡ(x))
' l.

We thus have [L : K] = deg g = [l : k] = n, and it follows that L/K is an unramified
extension of degree n = f := [l :k]: the ramification index of q is necessarily e = n/f = 1,
and the extension l/k is separable by assumption (so in fact B = A[α], by Theorem 10.14).

We now show that the functor F is full and faithful. Given finite unramified extensions
L1, L2 with valuation rings B1, B2 and residue fields l1, l2, we have induced maps

HomK(L1, L2)
∼−→ HomA(B1, B2) −→ Homk(l1, l2).

The first map is given by restriction from L1 to B1, and since tensoring with K gives an
inverse map in the other direction, it is a bijection. We need to show that the same is
true of the second map, which sends ϕ : B1 → B2 to the k-homomorphism ϕ that sends
α ∈ l1 = B1/q1 to the reduction of ϕ(α) modulo q2, where α is any lift of ᾱ.

As above, use the primitive element theorem to write l1 = k(ᾱ) = k[x]/(ḡ(x)) for some
ᾱ ∈ l1. If we now lift ᾱ to α ∈ B1, we must have L1 = K(α), since [L1 : K] = [l1 : k] is
equal to the degree of the minimal polynomial ḡ of ᾱ which cannot be less than the degree
of the minimal polynomial g of α (both are monic). Moreover, we also have B1 = A[α],
since this is true of the valuation ring of every finite unramified extension in our category.

Each A-module homomorphism in

HomA(B1, B2) = HomA

(
A[x]

(g(x))
, B2

)
is uniquely determined by the image of x in B2. Thus gives us a bijection between
HomA(B1, B2) and the roots of g in B2. Similarly, each k-algebra homomorphism in

Homk(l1, l2) = Homk

(
k[x]

(ḡ(x))
, l2

)
is uniquely determined by the image of x in l2, and there is a bijection between Homk(l1, l2)
and the roots of ḡ in l2. Now ḡ is separable, so every root of ḡ in l2 = B2/q2 lifts to a unique
root of g in B2, by Hensel’s Lemma 9.15. Thus the map HomA(B1, B2) −→ Homk(l1, l2)
induced by F is a bijection.
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Remark 10.16. In the proof above we actually only used the fact that L1/K is unramified.
The map HomK(L1, L2)→ Homk(l1, l2) is a bijection even if L2/K is not unramified.

Let us note the following corollary, which follows from our proof of Theorem 10.15.

Corollary 10.17. Assume AKLB with A a complete DVR with residue field k. Then L/K
is unramified if and only if B = A[α] for some α ∈ L whose minimal polynomial g ∈ A[x]
has separable image ḡ in k[x].

Proof. The forward direction was proved in the proof of the theorem, and for the reverse
direction note that ḡ must be irreducible, since otherwise we could use Hensel’s lemma to
lift a non-trivial factorization of ḡ to a non-trivial factorization of g, so the residue field
extension is separable and has the same degree as L/K, so L/K is unramified.

Corollary 10.18. Let A be a complete DVR with fraction field K and residue field k, and
let ζn be a primitive nth root of unity in some algebraic closure of K, with n prime to the
characteristic of k. The extension K(ζn)/K is unramified.

Proof. The field K(ζn) is the splitting field of f(x) = xn − 1 over K. The image f̄ of f in
k[x] is separable when p - n, since gcd(f̄ , f̄ ′) 6= 1 only when f̄ ′ = nxn−1 is zero, equivalently,
only when p|n. When f̄ is separable, so are all of its divisors, including the reduction of
the minimal polynomial of ζn, which must be irreducible since otherwise we could obtain a
contradiction by lifting a non-trivial factorization via Hensel’s lemma. It follows that the
residue field of K(ζn) is a separable extension of k, thus K(ζn)/K is unramified.

When the residue field k is finite (always the case if K is a local field), we can give a
precise description of the finite unramified extensions L/K.

Corollary 10.19. Let A be a complete DVR with fraction field K and finite residue field Fq,
and let L be a degree n extension of K. Then L/K is unramified if and only if L ' K(ζqn−1).
When this holds, A[ζqn−1] is the integral closure of A in L and L/K is a Galois extension
with Gal(L/K) ' Z/nZ.

Proof. The reverse implication is implied by Corollary 10.18; note that K(ζqn−1) has de-
gree n over K because its residue field is the splitting field of xq

n−1 − 1 over Fq, which is
an extension of degree n (indeed, one can take this as the definition of Fqn).

Now suppose L/K is unramified. The residue field has degree n and is thus isomorphic
to Fqn , so its multiplicative group is a cyclic of order qn − 1 generated by some ᾱ. The
minimal polynomial ḡ ∈ Fq[x] of ᾱ divides xq

n−1−1, and since ḡ is irreducible, it is coprime
to the quotient (xq

n−1 − 1)/ḡ. By Hensel’s Lemma 9.19, we can lift ḡ to a polynomial
g ∈ A[x] that divides xq

n−1− 1 ∈ A[x], and by Hensel’s Lemma 9.15 we can lift ᾱ to a root
α of g, in which case α is also a root of xq

n−1 − 1; it must be a primitive (qn − 1)-root of
unity because its reduction ᾱ is.

Let B be the integral closure of A in L. We have B ' A[ζqn−1] by Theorem 10.14,
and L is the splitting field of xq

n−1 − 1, since its residue field Fqn is (we can lift the
factorization of xq

n−1−1 from Fqn to L via Hensel’s lemma). It follows that L/K is Galois,
and the bijection between (qn − 1)-roots of unity in L and Fqn induces an isomorphism
Gal(L/K) ' Gal(l/k) = Gal(Fqn/Fq) ' Z/nZ.

Corollary 10.20. Let A be a complete DVR with fraction field K and finite residue field
of characteristic p, and suppose that K does not contain a primitive pth root of unity. The
extension K(ζm)/K is ramified if and only if p divides m.
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Proof. If p does not divide m then Corollary 10.18 implies that K(ζm)/K is unramified. If p
divides m then K(ζm) contains K(ζp), which by Corollary 10.19 is unramified if and only if
K(ζp) ' K(ζpn−1) with n := [K(ζp) : K], which occurs if and only if p divides pn− 1 (since
ζp 6∈ K), which it does not; thus K(ζp) and therefore K(ζm) is ramified when p|m.

Example 10.21. Consider A = Zp, K = Qp, k = Fp, and fix Fp and Qp. For each positive

integer n, the finite field Fp has a unique extension of degree n in Fp, namely, Fpn . Thus
for each positive integer n, the local field Qp has a unique unramified extension of degree n;
it can be explicitly constructed by adjoining a primitive root of unity ζpn−1 to Qp. The
element ζpn−1 will necessarily have minimal polynomial of degree n dividing xp

n−1 − 1.

Another useful consequence of Theorem 10.15 that applies when the residue field is finite
is that the norm map NL/K restricts to a surjective map B× → A× on unit groups; in fact,
this property characterizes unramified extensions.

Theorem 10.22. Assume AKLB with A a complete DVR with finite residue field. Then
L/K is unramified if and only if NL/K(B×) = A×.

Proof. See Problem Set 6.

Definition 10.23. Let L/K be a separable extension. The maximal unramified extension
of K in L is the subfield ⋃

K⊆E⊆L
E/K fin. unram.

E ⊆ L

where the union is over finite unramified subextensions E/K. When L = Ksep is the
separable closure of K, this is the maximal unramified extension of K, denoted Kunr.

Example 10.24. The field Qunr
p is an infinite extension of Qp with Galois group

Gal(Qunr
p /Qp) ' Gal(Fp/Fp) = lim←−

n

Gal(Fpn/Fp) ' lim←−
n

Z/nZ =: Ẑ,

where the inverse limit is taken over positive integers n ordered by divisibility. The ring Ẑ
is the profinite completion of Z. The field Qunr

p has value group Z and residue field Fp.

Theorem 10.25. Assume AKLB with A a complete DVR and separable residue field exten-
sion l/k. Let eL/K and fL/K be the ramification index and residue field degrees, respectively.
The following hold:

(i) There is a unique intermediate field extension E/K that contains every unramified
extension of K in L and it has degree [E : K] = fL/K .

(ii) The extension L/E is totally ramified and has degree [L : E] = eL/K .

(iii) If L/K is Galois then Gal(L/E) = IL/K , where IL/K = Iq is the inertia subgroup of
Gal(L/K) for the unique prime q of B.

Proof. (i) Let E/K be the finite unramified extension of K in L corresponding to the finite
separable extension l/k given by Theorem 10.15; then [E : K] = [l : k] = fL/K as desired.
The maximal unramified extension E′ of K in L has the same residue field l as L, which
is also the residue field of E, and equivalence of categories given by Theorem 10.15 implies
that the trivial isomorphism ` ' ` corresponds to an isomorphism E ' E′ that allows us to
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view E as a subfield of L; the same applies to any unramified extension of K with residue
field l, so E is unique up to isomorphism.

(ii) We have fL/E = [l : l] = 1, so eL/E = [L : E] = [L : K]/[E : K] = eL/K .
(iii) By Proposition 7.13, we have IL/E = Gal(L/E) ∩ IL/K , and these three groups all

have the same order eL/K so they must coincide.
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11 Totally ramified extensions and Krasner’s lemma

In the previous lecture we showed that in the AKLB setup, if A is a complete DVR with
maximal ideal p then B is a complete DVR with maximal ideal q and [L : K] = n = eqfq; see
Theorem 10.6 (note that the AKLB setup includes the assumption that L/K is separable).
In this setting we may unambiguously write eL/K for eq and fL/K for fq, since q is the
unique prime of L. Provided the residue field extension is separable (always the case if K
is a local field), we can decompose the extension L/K as a tower of field extensions L/E/K
in which E/K is unramified (so eE/K = 1 and fE/K = fL/K) and L/E is totally ramified
(so eL/E = eL/K and fL/E = 1), by Theorem 10.25.

In the previous lecture we classified unramified extensions of (fraction fields of) complete
DVRs, and showed that when the residue field is finite (always true for local fields), unram-
ified extensions are all cyclotomic extensions of the form K(ζn)/K for some n coprime to
the residue field characteristic; see Corollary 10.19. In this lecture we will classify totally
ramified extensions of complete DVRs.

11.1 Totally ramified extensions of a complete DVR

Definition 11.1. Let A be a DVR with maximal ideal p. A monic polynomial

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ A[x]

is Eisenstein (or an Eisenstein polynomial) if ai ∈ p for 0 ≤ i < n and a0 6∈ p2; equivalently,
vp(ai) ≥ 1 for 0 ≤ i < n and vp(a0) = 1. Note that this means a0 is a uniformizer.

Lemma 11.2 (Eisenstein irreducibility). Let A be a DVR with fraction field K and let
f ∈ A[x] be Eisenstein. Then f is irreducible in both A[x] and K[x].

Proof. Suppose not. Then f = gh has degree n ≥ 2 for some non-constant monic g, h ∈ A[x].
Put f =

∑
i fix

i, g =
∑

i gix
i, h =

∑
i hix

i. Then vp(f0) = vp(g0h0) = vp(g0) + vp(h0) = 1,
where p is the maximal ideal of A, and without loss of generality we may assume vp(g0) = 0
and vp(h0) = 1. Let i > 0 be the least i for which vp(hi) = 0; such an i < n exists since h
is monic and deg h < n. We have

fi = g0hi + g1hi−1 + · · ·+ gi−1h1 + gih0,

with vp(fi) ≥ 1 since f is Eisenstein and i < n, but the valuation of the RHS is zero,
since vp(g0hi) = 0 and vp(gjhi−j) ≥ 1 for 0 ≤ j < i, by the minimality of i, which is a
contradiction. Thus f is irreducible in A[x], and since A is a DVR, and therefore a PID
and thus a UFD, f is irreducible in K[x], by Gauss’s Lemma [1].

Remark 11.3. We can apply Lemma 11.2 to any polynomial f(x) over a Dedekind do-
main A that is Eisenstein over a localization Ap; the rings Ap and A have the same fraction
field K and f is then irreducible in K[x], hence in A[x]; this gives the Eisenstein criterion
for irreducibility.

Lemma 11.4. Let A be a DVR and let f ∈ A[x] be an Eisenstein polynomial. Then
B = A[π] := A[x]/(f) is a DVR with uniformizer π, where π is the image of x in A[x]/(f).
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Proof. Let p be the maximal ideal of A. We have f ≡ xn mod p, so by Corollary 10.13 the
ideal q = (p, x) = (p, π) is the only maximal ideal of B. Let f =

∑
fix

i; then p = (f0)
and q = (f0, π), and f0 = −f1π − f2π2 − · · · − πn ∈ (π), so q = (π). The unique maximal
ideal (π) of B is nonzero and principal, so B is a DVR with uniformizer π.

Theorem 11.5. Assume AKLB with A a complete DVR and π a uniformizer for B. The
extension L/K is totally ramified if and only if B = A[π] and the minimal polynomial of π
is Eisenstein.

Proof. Let n = [L : K], let p be the maximal ideal of A, let q be the maximal ideal of B
(which we recall is a complete DVR, by Theorem 10.6), and let π be a uniformizer for B
with minimal polynomial f . If B = A[π] and f is Eisenstein, then as in Lemma 11.4 we
have p = qn, so vq extends vp with index eq = n and L/K is totally ramified.

We now suppose L/K is totally ramified. Then vq extends vp with index n, which
implies vq(K) = nZ. The set {π0, π1, π2, . . . , πn−1} is linearly independent over K, since
the valuations of π0, . . . πn−1 are distinct modulo vq(K) = nZ (if

∑n−1
i=0 aiπ

i = 0 we must
have vq(aiπ

i) = vq(ajπ
j) for some nonzero ai and aj with i 6= j, which is impossible). Thus

L = K(π).
Let f =

∑n
i=0 aix

i ∈ A[x] be the minimal polynomial of π. We have vq(f(π)) =∞ and
vq(aiπ

i) ≡ i mod n for 0 ≤ i ≤ n. This is possible only if

vq(a0) = vq(a0π
0) = vq(anπ

n) = vq(π
n) = n,

and vq(ai) ≥ n for 0 ≤ i < n. This implies that vp(a0) = 1, since vq extends vp with index n,
and vp(ai) ≥ 1 for 0 ≤ i < n. Thus f is Eisenstein and Lemma 11.4 implies that A[π] ⊆ B
is a DVR, hence maximal, so B = A[π].

Example 11.6. Let K = Q3. As shown in an earlier problem set, there are just three
distinct quadratic extensions of Q3: Q3(

√
2), Q3(

√
3), and Q3(

√
6). The extension Q3(

√
2)

is the unique unramified quadratic extension of Q3, and we note that it can be written as
a cyclotomic extension Q3(ζ8). The other two are both ramified, and can be defined by the
Eisenstein polynomials x2 − 3 and x2 − 6.

Definition 11.7. Assume AKLB with A a complete DVR and separable residue field
extension of characteristic p ≥ 0. The extension L/K is tamely ramified if p 6 | eL/K (always
true if p = 0); note that unramified extensions are tamely ramified. Otherwise L/K is wildly
ramified if p|eL/K . A totally ramified extension L/K is totally tamely ramified if p 6 | eL/K ,
and it is totally wildly ramified if eL/K is a power of p (a totally ramified extension that is
wildly ramified need not be totally wildly ramified).

Recall that ramification indices multiply in towers (Lemma 5.30), and separability is a
transitive in towers (Corollary 4.14). This yields the following proposition, which we note
applies to all nonarchimedean local fields.

Proposition 11.8. The properties of being unramified, tamely ramified, wildly ramified, to-
tally ramified, totally tamely ramified, and totally wildly ramified are all transitive in towers
of extensions of fraction fields of complete DVRs with separable residue field extensions.

Proof. This follows immediately from the transitivity of separability and the multiplicativity
of ramification indices and degrees in towers.
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Remark 11.9. A compositum of totally ramified extensions need not be totally ramified.
From Example 11.6 we see that the compositum of the totally ramified quadratic extensions
Q3(
√

3) and Q3(
√

6) of Q3 contains the unramified quadratic extension Q3(
√

2) of Q3.

Theorem 11.10. Assume AKLB with A a complete DVR and separable residue field ex-
tension of characteristic p ≥ 0 not dividing n := [L : K]. The extension L/K is totally

tamely ramified if and only if L = K(π
1/n
A ) for some uniformizer πA of A.

Proof. If L = K(π
1/n
A ) then π = π

1/n
A has minimal polynomial xn − πA, which is Eisenstein,

so A[π] is a DVR by Lemma 11.4. This implies B = A[π], since DVRs are maximal, and
Theorem 11.5 implies that L/K is totally tamely ramified, since p - n.

Now assume L/K is totally tamely ramified and let p and q be the maximal ideals of
A and B with uniformizers πA and πB respectively. Then vq extends vp with index eq = n
and vq(π

n
B) = n = vq(πA). This implies that πnB = uπA for some unit u ∈ B×. We have

fq = 1, so B and A have the same residue field, and if we lift the image of u in B/q ' A/p
to a unit uA in A and replace πA with u−1A πA, we can assume that u ≡ 1 mod q. Now define
g(x) := xn − u ∈ B[x] with reduction ḡ = xn − 1 in (B/q)[x]. We have ḡ′(1) = n 6= 0 (since
p 6 | n), so by Hensel’s Lemma 9.15 we can lift the root 1 of ḡ(x) in B/q to a root r of g(x)
in B. Now let π := πB/r. Then π is a uniformizer for B and B = A[π] by Theorem 11.5,

so L = K(π), and πn = πnB/r
n = πnB/u = πA, so L = K(π

1/n
A ) as desired.

Proposition 11.11. Let L be a totally ramified extension of the fraction field K of a
complete DV R. There is a unique intermediate field E such that E/K is totally tamely
ramified and L/E is totally wildly ramified.

Proof. Let e := eL/K be the ramification index and let p ≥ 0 be the characteristic of the
residue field. If p 6 | e then the proposition holds with E = L, so we assume p|e, and put
e = mpa with p - m (possibly m = 1).

Let A be the valuation ring of K with maximal ideal p, and let B be the valuation
ring of L (also a complete DVR) with maximal ideal q. As in the proof of Theorem 11.10,
we can choose uniformizers πA of A and πB of B such that πnB = uπA with u ∈ B× and
u ≡ 1 mod q. Let g(x) = xm − u ∈ B[x]; as in the proof of the theorem we can construct
a root r ∈ B of g(x) by Hensel lifting the root 1 of ḡ ∈ (B/q)[x]. Now consider the
field extension E := K(π), where π := πp

a

B /r. We have πm = πnB/r
m = πnB/u = πA, so

E = K(π
1/m
A ) with p - m. The polynomial xm−πA of π is Eisenstein, hence irreducible, and

has π as a root, so E/K has degree m. By Theorem 11.10, the extension E/K is totally
tamely ramified (the residue field extension is trivial, so it is certainly separable), and the
extension L/E has degree pa and is thus totally wildly ramified.

To see that E is unique, suppose E′ ⊆ L is another totally tamely ramified extensions of

K such that L/E′ is totally wildly ramified. Then E′ must also be of the form E′ = K(π
1/m
A ),

by Theorem 11.10 and its proof (we can use the same πA = u−1πnB for intermediate field),
in other words, E and E′ are both generated by (possibly different) roots of xm − πA. The
ratio of these roots is a (not necessarily primitive) mth root of unity ζ ∈ L that must lie in
K because L/K is totally ramified and the extension K(ζ)/K is necessarily unramified, by
Corollary 10.18, since p - m. It follows that E′ = E.

Corollary 11.12. Let L be a finite separable extension of the fraction field field K of a
complete DV R with separable residue field extension. There is a unique intermediate field E
such that E/K is tamely ramified and L/E is totally wildly ramified.
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Proof. Let F be the maximal unramified extension of K in L. By Corollary 10.17 we can
assume K = F (α) where α is an integral element whose minimal polynomial g has separable
image in k[x], where k is the residue field of K. Applying the previous proposition to the
totally ramified extension L/F yields a tamely ramified extension E/F with L/E totally
wildly ramified. Unramified extensions are tamely ramified, so E/F/K is a tower of tamely
ramified extensions, hence tamely ramified.

Any field E′ with L/E′ totally wildly ramified must contain α, otherwise E′(α) would
be a non-trivial unramified subextension L/E′ (here we are again applying Corollary 10.17
and the fact that the image of the minimal polynomial of α over E′ must divide g and thus
has separable image in k[x] and in k′[x], where k′ is the residue field of E′, since k′ is an
extension of k). Proposition 11.11 then implies E′ = E.

11.2 Krasner’s lemma

Let K be the fraction field of a complete DVR with absolute value | |. By Theorem 10.6
we can uniquely extend | | to any finite extension L/K by defining |x| := |NL/K(x)|1/n,

where n = [L : K]; as noted in Remark 10.7, this induces a unique absolute value on K
that restricts to the absolute value of K.

Lemma 11.13. Let K be the fraction field of a complete DVR with algebraic closure K and
absolute value | | extended to K. For all α ∈ K and σ ∈ AutK(K) we have |σ(α)| = |α|.

Proof. The elements α and σ(α) must have the same minimal polynomial f ∈ K[x], since
f(σ(α)) = σ(f(α)) = 0, so NK(α)/K(α) = f(0) = NK(σ(α))/K(σ(α)), by Proposition 4.51.

It follows that |σ(α)| = |NK(σ(α))/K(α)|1/n = |NK(α)/K(α)|1/n = |α|, where n = deg f .

Definition 11.14. Let K be the fraction field of a complete DVR with absolute value | |
extended to an algebraic closure K. For α, β ∈ K, we say β belongs to α if |β−α| < |β−σ(α)|
for all σ ∈ AutK(K) with σ(α) 6= α, that is, β is strictly closer to α than it is to any of
its conjugates. This is equivalent to requiring that |β − α| < |α − σ(α)| for all σ(α) 6= α,
since every nonarchimedean triangle is isosceles (if one side is shorter than another, it is
the shortest of all three sides).

Lemma 11.15 (Krasner’s lemma). Let K be the fraction field of a complete DVR and
let α, β ∈ K, with α separable over K. If β belongs to α then K(α) ⊆ K(β).

Proof. Suppose not. Then β belongs to α but α 6∈ K(β). The extension K(α, β)/K(β) is
separable and non-trivial, so there is an automorphism σ ∈ AutK(β)(K/K(β)) for which
σ(α) 6= α (let σ send α to a different root of the minimal polynomial of α over K(β)).
Applying Lemma 11.13 to β − α ∈ K, for any σ ∈ AutK(β)(K/K(β)) we have

|β − α| = |σ(β − α)| = |σ(β)− σ(α)| = |β − σ(α)|,

since σ fixes β. But this contradicts the hypothesis that β belongs to α, since σ(α) 6= α.

Remark 11.16. Krasner’s lemma is another “Hensel’s lemma” in the sense that it char-
acterizes Henselian fields (fraction fields of Henselian rings); although the lemma is named
after Krasner [2], it was proved earlier by Ostrowski in [3].
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Definition 11.17. For a field K with absolute value | | the L1-norm of f ∈ K[x] is defined
by.

‖f‖1 :=
∑
i

|fi|,

where f =
∑

i fix
i ∈ K[x]; it is easily verified that ‖ ‖1 satisfies all the properties of

Definition 10.3 and is thus a norm on the K-vector space K[x].

Lemma 11.18. Let K be a field with absolute value | | and let f :=
∏n
i=1(x−αi) ∈ K[x] be

a monic polynomial with roots α1, . . . , αn ∈ L, where L/K is a field with an absolute value
that extends | |. Then |α| < ‖f‖1 for every root α of f .

Proof. The lemma is clear for n ≤ 1, so assume n ≥ 2. If ‖f‖1 = 1 then we must have
f = xn and α = 0, in which case |α| = 0 < 1 = ‖f‖1 and the lemma holds. Otherwise
‖f‖1 > 1, and if |α| ≤ 1 the lemma holds, so let α is a root of f with |α| > 1. We have

0 = |f(α)| =

∣∣∣∣∣αn +

n−1∑
i=0

fiα
i

∣∣∣∣∣ ≥ |α|n −
n−1∑
i=0

|fi||α|i ≥ |α|n − |α|n−1
n−1∑
i=0

|fi| ≥ |α| − (‖f‖1 − 1),

where we have used |a| = |a + b − b| ≤ |a + b| + | − b| = |a + b| + |b| to get the general
inequality |a + b| ≥ |a| − |b| which we applied repeatedly to get the first inequality above,
we used |α| > 1 to get the second (replacing |α|i with |α|n−1 in each term) and the third
(dividing by |α|n−1 ≥ 1). Thus ‖f‖1 − 1 ≥ |α|, and therefore ‖f‖1 ≥ |α|+ 1 > |α|.

Theorem 11.19 (Continuity of roots). Let K be the fraction field of a complete DVR
and f ∈ K[x] a monic irreducible separable polynomial. There exists δ = δ(f) ∈ R>0 such
that for every monic polynomial g ∈ K[x] with ‖f − g‖1 < δ the following holds:

Every root β of g belongs to a root α of f for which K(β) = K(α).

In particular, every such g is separable, irreducible, and has the same splitting field as f .

Proof. We first note that we can always pick δ < 1, in which case any monic g ∈ K[x] with
‖f − g‖1 < δ must have the same degree as f , so we can assume deg g = deg f . Let us fix
an algebraic closure K of K with absolute value | | extending the absolute value on K. Let
α1, . . . , αn be the roots of f in K, and write

f(x) =
∏
i

(x− αi) =

n∑
i=0

fix
i.

Let ε be the lesser of 1 and the minimum distance |αi − αj | between any two distinct roots
of f . We now define

δ := δ(f) :=

(
ε

2(‖f‖1 + 1)

)n
> 0,

and note that δ < 1, since ‖f‖1 ≥ 1 and ε ≤ 1. Let g(x) =
∑

i gix
i be a monic polynomial

of degree n with ‖f − g‖1 < δ. We then have

‖g‖1 ≤ ‖f‖1 + ‖g − f‖1 = ‖f‖1 + ‖f − g‖1 < ‖f‖1 + δ,

and for any root β ∈ K of g we have

|f(β)| = |f(β)− g(β)| = |(f − g)(β)| =

∣∣∣∣∣
n∑
i=0

(fi − gi)βi
∣∣∣∣∣ ≤

n∑
i=0

|fi − gi||β|i.
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We have |β| < ‖g‖1 by Lemma 11.18, and ‖g‖1 ≥ 1, so |β|i < ‖g‖i1 ≤ ‖g‖n1 . Thus

|f(β)| < ‖f − g‖1 · ‖g‖n1 < δ(‖f‖1 + δ)n < δ(‖f‖1 + 1)n ≤ (ε/2)n,

and therefore
n∏
i=1

|β − αi| = |f(β)| < (ε/2)n.

It follows that |β − αi| < ε/2 for at least one αi, and the triangle inequality implies that
this αi must be unique since |αi − αj | ≥ ε for i 6= j. Therefore β belongs to α := αi.

By Krasner’s lemma, K(α) ⊆ K(β), and we have n = [K(α) : K] ≤ [K(β) : K] ≤ n, so
K(α) = K(β). It follows that g is the minimal polynomial of β, since deg(g) = [K(β) : K].
Thus g is irreducible, and it is also separable, since β ∈ K(β) = K(α) lies in a separable
extension of K. We now observe that if a root β of g belongs to a root α of f , then for any
τ ∈ AutK(K) and all σ ∈ AutK(K) such that σ(α) 6= α we have

|τ(β)− τ(α)| = |τ(β − α)| = |β − α| < |α− σ(α)| = |τ(α− σ(α))| = |τ(α)− τ(σ(α))|.

Noting that σ(α) 6= α ⇐⇒ τ(σ(α)) 6= τ(α), this implies that τ(β) belongs to τ(α). Now
AutK(K) acts transitively on the roots of f and g, so every root β of g belongs to a distinct
root α of f for which K(β) = K(α). Therefore g has the same splitting field as f .

11.3 Local extensions come from global extensions

Let L̂ be a local field. From our classification of local fields (Theorem 9.9), we know that L̂
is (isomorphic to) a finite extension of K̂ = Qp (some p ≤ ∞) or K̂ = Fq((t)) (some q).
We also know that the completion of a global field at any of its nontrivial absolute values
is a local field (Corollary 9.7). It thus reasonable to ask whether L̂ is the completion of a
corresponding global field L that is a finite extension of K = Q or K = Fq(t).

More generally, for any fixed global field K and local field K̂ that is the completion of K
with respect to one of its nontrivial absolute values | |, we may ask whether every finite
extension of local fields L̂/K̂ necessarily corresponds to an extension of global fields L/K,
where L̂ is the completion of L with respect to one of its absolute values (whose restriction
to K must be equivalent to | |). The answer is yes. In order to simplify matters we restrict
our attention to the case where L̂/K̂ is separable, but this is true in general.

Theorem 11.20. Let K be a global field with a nontrivial absolute value | |, and let K̂
be the completion of K with respect to | |. Every finite separable extension L̂ of K̂ is the
completion of a finite separable extension L of K with respect to an absolute value that
restricts to | |. One can choose L so that [L :K] = [L̂ :K̂], in which case L̂ = K̂ · L.

Proof. Let L̂/K̂ be a separable extension of degree n. If | | is archimedean then K is a
number field and K̂ is either R or C; the only nontrivial case is K̂ ' R and n = 2, and
we may then assume that L̂ = K̂(

√
d) ' C where d ∈ Z<0 is any nonsquare in K (such

a d exists because K/Q is finite). We may assume without loss of generality that | | is the
Euclidean absolute value on K̂ ' R (it must be equivalent to it), and uniquely extend | |
to L := K(

√
d) by requiring |

√
d| =

√
−d. Then L̂ is the completion of L with respect to

| |, and clearly [L :K] = [L̂ :K̂] = 2, and L̂ is the compositum of K̂ and L.
We now suppose that | | is nonarchimedean, in which case the valuation ring of K̂ is a

complete DVR and | | is induced by its discrete valuation. By the primitive element theorem
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(Theorem 4.12), we may assume L̂ = K̂[x]/(f) where f ∈ K̂[x] is monic, irreducible, and
separable. The field K is dense in its completion K̂, so we can find a monic g ∈ K[x] ⊆ K̂[x]
such that ‖g−f‖1 < δ for any δ > 0. It then follows from Theorem 11.19 that L̂ = K̂[x]/(g)
(and that g is separable). The field L̂ is a finite separable extension of the fraction field of
a complete DVR, so by Theorem 10.6 it is itself the fraction field of a complete DVR and
has a unique absolute value that extends the absolute value | | on K̂.

Now let L := K[x]/(g). The polynomial g is irreducible in K̂[x], hence in K[x], so
[L : K] = deg g = [L̂ : K̂]. The field L̂ contains both K̂ and L, and it is clearly the smallest
field that does (since g is irreducible in K̂[x]), so L̂ is the compositum of K̂ and L. The
absolute value on L̂ restricts to an absolute value on L extending the absolute value | |
on K, and L̂ is complete, so L̂ contains the completion of L with respect to | |. On the
other hand, the completion of L with respect | | contains L and K̂, so it must be L̂.

In the preceding theorem, when the local extension L̂/K̂ is Galois one might ask whether
the corresponding global extension L/K is also Galois, and whether Gal(L̂/K̂) ' Gal(L/K).
As shown by the following example, this need not be the case.

Example 11.21. Let K = Q, K̂ = Q7 and L̂ = K̂[x]/(x3 − 2). The extension L̂/K̂ is
Galois because K̂ = Q7 contains ζ3 (we can lift the root 2 of x2 + x + 1 ∈ F7[x] to a root
of x2 + x + 1 ∈ Q7[x] via Hensel’s lemma), and this implies that x3 − 2 splits completely
in L̂. But L = K[x]/(x3 − 2) is not a Galois extension of K because it contains only
one root of x3 − 2. However, we can replace K with Q(ζ3) without changing K̂ (take the
completion of K with respect to the absolute value induced by a prime above 7) or L̂, but
now L = K[x]/(x3 − 2) is a Galois extension of K.

In the example we were able to adjust our choice of the global field K without changing
the local fields extension L̂/K̂ in a way that ensures that L̂/K̂ and L/K have the same
automorphism group. Indeed, this is always possible.

Corollary 11.22. For every finite Galois extension L̂/K̂ of local fields there is a finite
Galois extension of global fields L/K and an absolute value | | on L such that L̂ is the
completion of L with respect to | |, K̂ is the completion of K with respect to the restriction
of | | to K, and Gal(L/K) ' Gal(L̂/K̂).

Proof. The archimedean case is already covered by Theorem 11.20 (take K = Q), so we
assume L̂ is nonarchimedean and note that we may take | | to be the absolute value on
both K̂ and on L̂, by Theorem 10.6. The field K̂ is an extension of either Qp or Fq((t)),
and by applying Theorem 11.20 to this extension we may assume K̂ is the completion of
a global field K with respect to the restriction of | |. As in the proof of the theorem, let
g ∈ K[x] be a monic separable polynomial irreducible in K̂[x] such that L̂ = K̂[x]/(g) and
define L := K[x]/(g) so that L̂ is the compositum of K̂ and L.

Now let M be the splitting field of g over K, the minimal extension of K that contains
all the roots of g (which are distinct because g is separable). The field L̂ also contains these
roots (since L̂/K̂ is Galois) and L̂ contains K, so L̂ contains a subextension of K isomorphic
to M (by the universal property of a splitting field), which we now identify with M ; note
that L̂ is also the completion of M with respect to the restriction of | | to M .

We have a group homomorphism ϕ : Gal(L̂/K̂) → Gal(M/K) induced by restriction,
and ϕ is injective (each σ ∈ Gal(L̂/K̂) is determined by its action on any root of g in M). If
we now replace K by the fixed field of the image of ϕ and replace L with M , the completion
of K with respect to the restriction of | | is still equal to K̂, and similarly for L and L̂, and
now Gal(L/K) ' Gal(L̂/K̂) as desired.
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11.4 Completing a separable extension of Dedekind domains

We now return to our general AKLB setup: A is a Dedekind domain with fraction field
K with a finite separable extension L/K, and B is the integral closure of A in L, which is
also a Dedekind domain. Recall from Theorem 8.20 that if p is a prime of K (a nonzero
prime ideal of A), each prime q|p induces a valuation vq of L that extends the valuation
vp of K with index eq, meaning that vq|K = eqvp (and every valuation of L that extends
vp arises in this way). We now want to look at what happens when we complete K with
respect to the absolute value | |p induced by vp to obtain a complete field Kp, and similarly
complete L with respect to | |q for some q|p to obtain Lq. This includes the case where
L/K is an extension of global fields, in which case we get a corresponding extension Lq/Kp

of local fields for each q|p; as proved below, the embedding K ↪→ L induces an embedding
Kp ↪→ Lq of topological fields in which the absolute value | |p on Kp is equivalent to the
restriction of | |q to Kp (if we define | |q as in Theorem 10.6 then | |p will be the restriction
of | |q).

In general the extension Lq/Kp may have smaller degree than L/K. If L ' K[x]/(f),
the irreducible polynomial f ∈ K[x] need not be irreducible over Kp. Indeed, this will
necessarily be the case if there is more than one prime q lying above p; the Dedekind-
Kummer theorem gives a one-to-one correspondence between irreducible factors of f inKp[x]
and primes q|p (via Hensel’s Lemma). The following theorem gives a complete description
of the situation.

Theorem 11.23. Assume AKLB, let p be a prime of A, and let pB =
∏

q|p q
eq be the

factorization of pB in B. Let Kp be the completion of K with respect to | |p, and let p̂ be
the maximal ideal of its valuation ring. For each q|p, let Lq denote the completion of L with
respect to | |q, and q̂ the maximal ideal of its valuation ring. The following hold:

(1) Each Lq is a finite separable extension of Kp with [Lq :Kp] ≤ [L : K].

(2) Each q̂ is the unique prime of Lq lying over p̂.

(3) Each q̂ has ramification index eq̂ = eq and residue field degree fq̂ = fq.

(4) [Lq : Kp] = eqfq;

(5) The map L ⊗K Kp →
∏

q|p Lq defined by ` ⊗ x 7→ (`x, . . . , `x) is an isomorphism of
finite étale Kp-algebras.

(6) If L/K is Galois then each Lq/Kp is Galois and we have isomorphisms of decompo-
sition groups Dq ' Dq̂ = Gal(Lq/Kp) and inertia groups Iq ' Iq̂.

Proof. We first note that the Kp and the Lq are all fraction fields of complete DVRs; this
follows from Proposition 8.11 (note that we are not assuming they are local fields).

(1) For each q|p the embedding K ↪→ L induces an embedding Kp ↪→ Lq via the map
[(xn)] 7→ [(xn)] on equivalence classes of Cauchy sequences; a sequence (xn) that is Cauchy
in K with respect to | |p, is also Cauchy in L with respect to | |q because vq extends vp. We
may thus view Kp as a topological subfield of Lq, and it is clear that [Lq :Kp] ≤ [L :K], since
any K-basis b1, . . . , bm for L ⊆ Lq spans Lq as a Kp-vector space: given a Cauchy sequence
y := (yn) of elements in L, if we write each yn as x1,nb1+· · ·+xm,nbm with xi,n ∈ K we obtain
Cauchy sequences x1 := (x1,n), · · · , xm := (xm,n) of elements in K (linear maps of finite
dimensional normed spaces are uniformly continuous and thus preserves Cauchy sequences),
and we can write [y] = [x1]b1 + · · · [xm]bm as a Kp-linear combination of b1, . . . , bm.
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The field L is a finite étale K-algebra, since L/K is a separable extension, so its base
change L⊗KKp to Kp is a finite étale Kp-algebra, by Proposition 4.36. Let us now consider
the Kp-algebra homomorphism φq : L ⊗K Kp → Lq defined by ` ⊗ x 7→ `x. We have
φq(bi ⊗ 1) = bi for each of our K-basis elements bi ∈ L, and as noted above, b1, . . . bm
span Lq as Kp-vector space, thus φq is surjective. As a finite étale Kp-algebra, L ⊗K Kp

is by definition isomorphic to a finite product of finite separable extensions of Kp; by
Proposition 4.32, Lq is isomorphic to a subproduct and thus also a finite étale Kp-algebra;
in particular, Lq/Kp is separable.

(2) As noted above, the valuation rings of Kp and the Lq are complete DVRs, so this
follows immediately from Theorem 10.1.

(3) The valuation vq̂ extends vq with index 1, which in turn extends vp with index eq.
The valuation vp̂ extends vp with index 1, and it follows that vq̂ extends vp̂ with index eq
and therefore eq̂ = eq. The residue field of p̂ is the same as that of p: for any Cauchy
sequence (an) over K the an will eventually all have the same image in the residue field at p
(since vp(an − am) > 0 for all sufficiently large m and n). Similar comments apply to each
q̂ and q, and it follows that fq̂ = fq.

(4) It follows from (2) that [Lq : Kp] = eq̂fq̂, since q̂ is the only prime above p̂, and (3)
then implies [Lq : Kp] = eqfq, by Theorem 5.35.

(5) Let φ :=
∏

q|p φq, where φq : L ⊗K Kp → Lq is the surjective Kp-algebra homomor-
phisms defined in the proof of (1). Then φ : L⊗K Kp →

∏
q|p Lq is a Kp-algebra homomor-

phism. Applying (4) and the fact that taking the base change of a finite étale algebra does
not change its dimension (see Proposition 4.36), we have

dimKp (L⊗K Kp) = dimK L = [L : K] =
∑
q|p

eqfq =
∑
q|p

[Lq : Kp] = dimKp

∏
q|p

Lq.

Pick a Kp-basis {βi} for
∏

q|p Lq, fix ε > 0, and for each basis element βi = (βi,q)q|p use
the weak approximation theorem proved in Problem Set 4 to construct αi ∈ L such that
|αi − βi,q|q < ε for all q|p. In the metric space

∏
q|p Lq (with the sup norm), each φ(αi ⊗ 1)

is close to βi. The Kp-matrix whose jth column expresses φ(αj ⊗ 1) in terms of the basis
{βi} is then close to the identity matrix (with respect to | |p), and the determinant D of
this matrix is close to 1 (the determinant is continuous). For sufficiently small ε we must
have D 6= 0, and then {φ(αi ⊗ 1)} is a basis for

∏
q|p Lq. It follows that φ is surjective and

therefore an isomorphism, since its domain and codomain have the same dimension.
(6) We now assume L/K is Galois. Each σ ∈ Dq acts on L and respects the valuation vq,

since it fixes q (if x ∈ qn then σ(x) ∈ σ(qn) = σ(q)n = qn). It follows that if (xn) is a Cauchy
sequence in L, then so is (σ(xn)), thus σ is an automorphism of Lq, and it fixes Kp. We
thus have a group homomorphism ϕ : Dq → AutKp(Lq).

If σ ∈ Dq acts trivially on Lq then it acts trivially on L ⊆ Lq, so kerϕ is trivial. Also,

eqfq = |Dq| ≤ #AutKp(Lq) ≤ [Lq : Kp] = eqfq,

by Theorem 11.23, so #AutKp(Lq) = [Lq : Kp] and Lq/Kp is Galois, and this also shows
that ϕ is surjective and therefore an isomorphism. There is only one prime q̂ of Lq, and it
is necessarily fixed by every σ ∈ Gal(Lq/Kp), so Gal(Lq/Kp) ' Dq̂. The inertia groups Iq
and Iq̂ both have order eq = eq̂, and ϕ restricts to a homomorphism Iq → Iq̂, so the inertia
groups are also isomorphic.
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Corollary 11.24. Assume AKLB and let p be a prime of A. For every α ∈ L we have

NL/K(α) =
∏
q|p

NLq/Kp
(α) and TL/K(α) =

∑
q|p

TLq/Kq
(α).

where we view α as an element of Lq and NL/K(α) as an element of Kp via the canonical
embeddings L ↪→ Lq and K ↪→ Kp.

Proof. The norm and trace are defined as the determinant and trace of K-linear maps

L
×α−→ L that are unchanged upon tensoring with Kp; the corollary then follows from the

isomorphism in part (5) of Theorem 11.23, which commutes with the norm and trace.

Remark 11.25. Theorem 11.23 can be stated more generally in terms of equivalence classes
of absolute values, or places. Rather than working with a prime p of K and primes q|p of L,
one works with an absolute value | |v of K (for example, | |p) and inequivalent absolute
values | |w of L that extend | |v. Places will be discussed further in the next lecture.

Corollary 11.26. Assume AKLB and let p be a prime of A. Let pB =
∏

qeq be the
factorization of pB in B. Let Âp denote the completion of A with respect to | |p, and for
each q|p, let B̂q denote the completion of B with respect to | |q. Then B ⊗A Âp '

∏
q|p B̂q,

as Âp-algebras

Proof. After replacing A with Ap and B with Bp (localizing B as an A-module), we may
assume that A is a DVR and B/A is a free A module of rank n := [L : K] =

∑
q|p eqfq.

Then B ⊗A Âp is a free Âp-module of rank n. Viewing Âp and the B̂q as valuation rings
of Kp and Lq, it follows from part (4) of Theorem 11.23 that

∏
B̂q is a free Âp-module of

rank
∑

q|p[Lq : Kp] =
∑

q|p eqfq = n. These isomorphic Âp-modules lie in isomorphic finite
étale Kp-algebras L ⊗K Kp '

∏
Lq, by part (5) of Theorem 11.23, and this Kp-algebra

isomorphism restricts to an Âp-algebra isomorphism.

Remark 11.27. Let A be a Dedekind domain with fraction field K. If we localize A at
a prime p we obtain a DVR Ap with the same fraction field K. We can then complete Ap

with respect to | |p to obtain a complete DVR Âp whose fraction field Kp is the completion
of K with respect to | |p, and Âp is then the valuation ring of Kp. Alternatively, we could
first complete A with respect to the absolute value | |p induced by p and then localize. But
as explained in Lecture 8, completing A with respect to | |p is the same thing as taking the
valuation ring of Kp, so the completion of A is already the complete DVR Âp we obtained
by localizing and completing; there is no need to localize and nothing would change if we
did. Completion not only commutes with localization, it makes localization unnecessary.

Henceforth if A is a Dedekind domain and p is a prime of A (a nonzero prime ideal), by
the completion of A at p we mean the ring Âp.
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12 The different and the discriminant

12.1 The different

We continue in our usual AKLB setup: A is a Dedekind domain, K is its fraction field, L/K
is a finite separable extension, and B is the integral closure of A in L (a Dedekind domain
with fraction field L). We would like to understand the primes that ramify in L/K. Recall
that a prime q|p of L is unramified if and only if eq = 1 and B/q is a separable extension
of A/p, equivalently, if and only if B/qeq is a finite étale A/p algebra (by Theorem 4.40).1

A prime p of K is unramified if and only if all the primes q|p lying above it are unramified,
equivalently, if and only if the ring B/pB is a finite étale A/p algebra.2

Our main tools for studying ramification are the different DB/A and discriminant DB/A.
The different is a B-ideal that is divisible by precisely the ramified primes q of L, and the
discriminant is an A-ideal divisible by precisely the ramified primes p of K. Moreover, the
valuation vq(DB/A) will give us information about the ramification index eq (its exact value
when q is tamely ramified).

Recall from Lecture 5 the trace pairing L×L→ K defined by (x, y) 7→ TL/K(xy); under
our assumption that L/K is separable, it is a perfect pairing. An A-lattice M in L is a
finitely generated A-module that spans L as a K-vector space (see Definition 5.9). Every
A-lattice M in L has a dual lattice (see Definition 5.11)

M∗ := {x ∈ L : TL/K(xm) ∈ A ∀m ∈M},

which is an A-lattice in L isomorphic to the dual A-module M∨ := HomA(M,A) (see
Theorem 5.12). In our AKLB setting we have M∗∗ = M , by Proposition 5.16.

Every fractional ideal I of B is finitely generated as a B-module, and therefore finitely
generated as an A module (since B is finite over A). If I is nonzero, it necessarily spans L,
since B does. It follows that every element of the group IB of nonzero fractional ideals of B
is an A-lattice in L. We now show that IB is closed under the operation of taking duals.

Lemma 12.1. Assume AKLB. If I ∈ IB then I∗ ∈ IB.

Proof. The dual lattice I∗ is a finitely generated A-module, thus to show that it is a finitely
generated B-module it is enough to show it is closed under multiplication by elements of B.
So consider any b ∈ B and x ∈ I∗. For all m ∈ I we have TL/K((bx)m) = TL/K(x(bm)) ∈ A,
since x ∈ I∗ and bm ∈ I, so bx ∈ I∗ as desired.

Definition 12.2. Assume AKLB. The different DL/K of L/K (and the different DB/A
of B/A), is the inverse of B∗ in IB. Explicitly, we have

B∗ := {x ∈ L : TL/K(xb) ∈ A for all b ∈ B},

and we define

DL/K := DB/A := (B∗)−1 = (B : B∗) = {x ∈ L : xB∗ ⊆ B}.

Note that B ⊆ B∗, since TL/K(ab) ∈ A for a, b ∈ B (by Corollary 4.53), and this implies
DB/A = (B∗)−1 ⊆ B−1 = B. Thus the different is an ideal, not just a fractional ideal.

1Note that B/qeq is reduced if and only if eq = 1; consider the image of a uniformizer in B/qeq .
2As usual, by a prime of A or K we mean a nonzero prime ideal of A, and similarly for B and L. The

notation q|p means that q is a prime of B lying above p (so p = q ∩A and q divides pB).
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The different respects localization and completion.

Proposition 12.3. Assume AKLB and let S be a multiplicative subset of A. Then

S−1DB/A = DS−1B/S−1A.

Proof. This follows from the fact that inverses and duals are both compatible with local-
ization, by Lemmas 3.5 and 5.15.

Proposition 12.4. Assume AKLB and let q|p be a prime of B. Then

DB̂q/Âp
= DB/AB̂q,

where Âp and B̂q are the completions of A and B at p and q, respectively.

Proof. Let L̂ := L ⊗Kp be the base change of the finite étale K-algebra L to Kp. By (5)
of Theorem 11.23, we have L̂ '

∏
q|p Lq. Note that even though L̂ need not be a field, in

general, is is a free Kp-module of finite rank, and is thus equipped with a trace map that
necessarily satisfies TL̂/Kp

(x) =
∑

q|p TL̂/Kp
(x) that defines a trace pairing on L̂.

Now let B̂ := B ⊗ Âp; it is an Ap-lattice in the Kp-vector space L̂. By Corollary 11.26,
B̂ '

∏
q|p B̂q '

⊕
q|p B̂q, and therefore B̂∗ '

⊕
q|p B̂

∗
q , by Corollary 5.13. It follows that

B̂∗ ' B∗⊗A Âp. In particular, B∗ generates each fractional ideal B̂∗q ∈ IB̂q
. Taking inverses,

DB/A = (B∗)−1 generates the B̂q-ideal (B̂∗q )−1 = DB̂q/Âp
.

12.2 The discriminant

Definition 12.5. Let S/R be a ring extension in which S is a free R-module of rank n.
For any x1, . . . , xn ∈ S we define the discriminant

disc(x1, . . . , xn) := discS/R(x1, . . . , xn) := det[TS/R(xixj)]i,j ∈ R.

Note that we do not require x1, . . . , xn to be an R-basis for S, but if they satisfy a non-trivial
R-linear relation then the discriminant will be zero (by linearity of the trace).

In our AKLB setup, we have in mind the case where e1, . . . , en ∈ B is a basis for L as
a K-vector space, in which case disc(e1, . . . , en) = det[TL/K(eiej)]ij ∈ A. Note that we do
not need to assume that B is a free A-module; L is certainly a free K-module. The fact that
the discriminant lies in A when e1, . . . , en ∈ B follows immediately from Corollary 4.53.

Proposition 12.6. Let L/K be a finite separable extension of degree n, and let Ω/K be a
field extension for which there are distinct σ1, . . . , σn ∈ HomK(L,Ω). For any e1, . . . , en ∈ L
we have

disc(e1, . . . , en) = det[σi(ej)]
2
ij ,

and for any x ∈ L we have

disc(1, x, x2, . . . , xn−1) =
∏
i<j

(σi(x)− σj(x))2 .

Such a field extension Ω/K always exists, since L/K is separable (Ω = Ksep works).
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Proof. For 1 ≤ i, j ≤ n we have TL/K(eiej) =
∑n

k=1 σk(eiej), by Theorem 4.50. Therefore

disc(e1, . . . , en) = det[TL/K(eiej)]ij

= det ([σk(ei)]ik[σk(ej)]kj)

= det
(
[σk(ei)]ik[σk(ej)]

t
jk

)
= det[σi(ej)]

2
ij

since the determinant is multiplicative and detM = detM t for any matrix M .
Now let x ∈ L and put ei := xi−1 for 1 ≤ i ≤ n. Then

disc(1, x, x2, . . . , xn−1) = det[σi(x
j−1)]2ij = det[σi(x)j−1]2ij =

∏
i<j

(σi(x)− σj(x))2 ,

since [σi(x)j−1]ij is a Vandermonde matrix (rows of the form z0, . . . , zn−1 for some z); see
[2, p. 258] for a proof of this standard fact.

Definition 12.7. For a polynomial f(x) =
∏
i(x− αi), the discriminant of f is

disc(f) :=
∏
i<j

(αi − αj)2.

Equivalently, if A is a Dedekind domain, f ∈ A[x] is a monic separable polynomial, and α
is the image of x in A[x]/(f(x)), then

disc(f) = disc(1, α, α2, . . . , αn−1) ∈ A.

Example 12.8. disc(x2 + bx+ c) = b2 − 4c and disc(x3 + ax+ b) = −4a3 − 27b2.

Now assume AKLB and let M be an A-lattice in L. Then M is a finitely generated
A-module that contains a K-basis for L. We want to define the discriminant of M in a way
that does not require us to choose a basis.

Let us first consider the case where M is a free A-lattice. If e1, . . . , en ∈ M ⊆ L and
e′1, . . . , e

′
n ∈M ⊆ L are two A-bases for M , then

disc(e′1, . . . , e
′
n) = u2 disc(e1, . . . , en)

for some unit u ∈ A×; this follows from the fact that the change of basis matrix P ∈ An×n is
invertible and its determinant is therefore a unit u. This unit gets squared because we need
to apply the change of basis matrix twice in order to change T(eiej) to T(e′ie

′
j). Explicitly,

writing bases as row-vectors, let e = (e1, . . . , en) and e′ = (e′1, . . . , e
′
n) satisfy e′ = eP . Then

disc(e′) = det[TL/K(e′ie
′
j)]ij

= det[TL/K((eP )i(eP )j)]ij

= det[P t[TL/K(eiej)]ijP ]

= (detP t) disc(e)(detP )

= (detP )2 disc(e),

where we have used the linearity of TL/K to go from the second equality to the third.
This actually gives us a basis independent definition when A = Z. In this case B is

always a free Z-lattice, and the only units in Z are u = ±1, so u2 = 1.
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Definition 12.9. Assume AKLB, let M be an A-lattice in L, and let n := [L :K]. The
discriminant D(M) of M is the A-module generated by {disc(x1, . . . , xn) : x1, . . . , xn ∈M}.

Lemma 12.10. Assume AKLB and let M ′ ⊆M be free A-lattices in L. The discriminants
D(M ′) ⊆ D(M) are nonzero principal fractional ideals. If D(M ′) = D(M) then M ′ = M .

Proof. Let e := (e1, . . . , en) be an A-basis for M . Then disc(e) ∈ D(M), and for any row
vector x := (x1, . . . , xn) with entries in M there is a matrix P ∈ An×n for which x = eP ,
and we then have disc(x) = (detP )2 disc(e) as above. It follows that

D(M) = (disc(e))

is principal, and it is nonzero because e is a basis for L and the trace pairing is nondegener-
ate. If we now let e′ := (e′1, . . . , e

′
n) be an A-basis for M ′ then D(M ′) = (disc(e′)) is also a

nonzero and principal. Our assumption that M ′ ⊆M implies that e′ = eP for some matrix
P ∈ An×n, and we have disc(e′) = (detP )2 disc(e). If D(M ′) = D(M) then detP must be
a unit, in which case P is invertible and e = e′P−1. This implies M ⊆M ′, so M ′ = M .

Proposition 12.11. Assume AKLB and let M be an A-lattice in L. Then D(M) ∈ IA.

Proof. The A-module D(M) ⊆ K is nonzero because M contains a K-basis e = (e1, . . . , en)
for L and disc(e) 6= 0 because the trace pairing is nondegenerate. To show that D(M) is
a finitely generated A-module (and thus a fractional ideal), we use the usual trick: make
it a submodule of a noetherian module. So let N be the free A-lattice in L generated by e
and then pick a nonzero a ∈ A such that M ⊆ a−1N (write each generator for M in terms
of the K-basis e and let a be the product of all the denominators that appear; note that
M is finitely generated). We then have D(M) ⊆ D(a−1N), and D(a−1N) is a principal
fractional ideal of A, hence a noetherian A-module (since A is noetherian), so its submodule
D(M) must be finitely generated.

Definition 12.12. Assume AKLB. The discriminant DL/K of L/K (and the discriminant
DB/A of B/A) is the discriminant of B as an A-module:

DL/K := DB/A := D(B) ∈ IA,

which is an A-ideal, since disc(x1, . . . , xn) = det[TB/A(xixj)]i,j ∈ A for all x1, . . . , xn ∈ B.

Example 12.13. Consider the case A = Z, K = Q, L = Q(i), B = Z[i]. Then B is a free
A-lattice with basis (1, i) and we can compute DL/K in three ways:

• disc(1, i) = det

[
TL/K(1 · 1) TL/K(1 · i)
TL/K(i · 1) TL/K(i · i)

]
= det

[
2 0
0 −2

]
= −4.

• The non-trivial automorphism of L/K fixes 1 and sends i to −i, so we could instead

compute disc(1, i) =

(
det

[
1 1
i −i

])2

= (−2i)2 = −4.

• We have B = Z[i] = Z[x]/(x2 + 1) and can compute disc(x2 + 1) = −4.

In every case the discriminant DL/K is the ideal (−4) = (4).
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Remark 12.14. If A = Z then B is the ring of integers of the number field L, and B is a
free A-lattice, because it is a torsion-free module over a PID and therefore a free module. In
this situation it is customary to define the absolute discriminant DL of the number field L
to be the integer disc(e1, . . . , en) ∈ Z, for any basis (e1, . . . , en) of B, rather than the ideal it
generates. As noted above, this integer is independent of the choice of basis because u2 = 1
for all u ∈ Z×; in particular, the sign of DL is well defined (as we shall see, the sign of DL

carries information about L). In the example above, the absolute discriminant is DL = −4.

Like the different, the discriminant respects localization.

Proposition 12.15. Assume AKLB and let S be a multiplicative subset of A. Then

S−1DB/A = DS−1B/S−1A.

Proof. Let x = s−1 disc(e1, . . . , en) ∈ S−1DB/A for some s ∈ S and e1, . . . , en ∈ B. Then
x = s2n−1 disc(s−1e1, . . . , s

−1en) lies in DS−1B/S−1A. This proves the forward inclusion.
Conversely, for any e1, . . . , en ∈ S−1B we can choose a single s ∈ S ⊆ A so that each sei

lies in B. We then have disc(e1, . . . , en) = s−2n disc(se1, . . . , sen) ∈ S−1DB/A, which proves
the reverse inclusion.

Proposition 12.16. Assume AKLB and let p be a prime of A. Then

DB/AÂp =
∏
q|p

DB̂q/Âp

where Âp and B̂q are the completions of A and B at p and q, respectively.

Proof. After localizing at p we can assume A is a DVR and B is a free A-module of rank n.
As in the proof of Proposition 12.4, we have a trace pairing on the finite étale Kp-algebra
L̂ := L ⊗ Kp and B̂ := B ⊗ Âp '

⊕
q|p B̂q is an Âp-lattice in the Kp-vector space L̂ that

is a direct sum of free Âp-modules, and thus a free Âp-module of rank n =
∑
eqfq; see

Corollary 11.26.
We can choose Âp bases for each B̂q using elements in B; this follows from weak approx-

imation (Theorem 8.5) and the fact that B is dense in B̂q (or see [1, Thm. 2.3]). From these
bases we can construct an Âp-basis ê for the direct sum

⊕
q|p B̂q ' B̂ whose elements each

have nonzero projections to exactly one of the B̂q, along with a corresponding A-basis e
for B obtained from ê as the union of these projections.

The matrix [TL̂/Kp
(êiêj)] is block diagonal; each block corresponds to a matrix whose

determinant is the discriminant of the Âp-basis we chose for one of the B̂q. It follows that
DB̂/Âp

=
∏

q|pDB̂q/Âp
(here we are using the fact that B̂ '

⊕
q|p B̂q is both an isomorphism

of rings and an isomorphism of Ap-modules, hence it preserves traces to Âp). We now
observe that

discB/A(e1, . . . , en) = disc(B⊗Ap)/Âp
(e1 ⊗ 1, . . . , en ⊗ 1)

generates DB/A as an A-ideal, and also generates DB̂/Âp
as an Âp-ideal (note that B̂ is a free

Âp-module, so DB/Âp
is the principal ideal generated by the discriminant of any Ap-basis

for B̂). It follows that DB/AÂp = DB̂/Âp
=
∏

q|pDB̂q/Âp
.
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We have defined two different ideals associated to a finite separable extension of Dedekind
domains B/A in the AKLB setup. We have the different DB/A, which is a fractional ideal
of B, and the discriminant DB/A, which is a fractional ideal of A. We now relate these
two ideals in terms of the ideal norm NB/A : IB → IA, which for I ∈ IB is defined as
NB/A(I) := [B : I]A, where [B : I]A is the module index (see Definitions 6.1 and 6.5).

Theorem 12.17. Assume AKLB. Then DB/A = NB/A(DB/A).

Proof. The different and discriminant are both compatible with localization, by Proposi-
tions 12.3 and 12.15, and the A-modules DB/A and NB/A(DB/A) of A are both determined
by the intersections of their localizations at maximal ideals (Proposition 2.6), so it suffices
to prove that the theorem holds when we replace A by its localization A at a prime of A.
Then A is a DVR and B is a free A-lattice in L; let us fix an A-basis (e1, . . . , en) for B.

The dual A-lattice

B∗ = {x ∈ L : TL/K(xb) ∈ A ∀b ∈ B} ∈ IB

is also a free A-lattice in L, with basis (e∗1, . . . , e
∗
n) uniquely determined by TL/K(e∗i ej) = δij ,

where δij is the Kronecker delta function; see Corollary 5.14. If we write ei =
∑
aije

∗
j in

terms of the K-basis (e∗1, . . . , e
∗
n) for L then

TL/K(eiej) = TL/K

(∑
k

aike
∗
kej

)
=
∑
k

aikTL/K(e∗kej) =
∑
k

aikδkj = aij .

It follows that P := [TL/K(eiej)]ij is the change-of-basis matrix from e∗ := (e∗1, . . . , e
∗
n)

to e := (e1, . . . , en) (as row vectors we have e = e∗P ). If we let φ denote the K-linear
transformation with matrix P (or its transpose, if you prefer to work with column vectors),
then φ is an isomorphism of free A-modules and

DB/A =
(
det[TL/K(eiej)]ij

)
= (detφ) = [B∗ :B]A,

where [B∗ :B]A is the module index (see Definition 6.1). Applying Corollary 6.8 yields

DB/A = [B∗ :B]A = NB/A((B : B∗)) = NB/A((B∗)−1) = NB/A(DB/A).

(the last three equalities each hold by definition).

12.3 Ramification

Having defined the different and discriminant ideals we now want to understand how they
relate to ramification. Recall that in our AKLB setup, if p is a prime of A then we can
factor the B-ideal pB as

pB = qe11 · · · q
er
r .

The Chinese remainder theorem implies

B/pB ' B/qe11 × · · · ×B/q
er
r .

This is a commutative A/p-algebra of dimension
∑
eifi, where fi = [B/qi : A/p] is the

residue degree (see Theorem 5.35). It is a product of fields if and only if we have ei = 1 for
all i, and it is a finite étale-algebra if and only if it is a product of fields that are separable
extensions of A/p. The following lemma relates the discriminant to the property of being a
finite étale algebra.
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Lemma 12.18. Let k be a field and let R be a commutative k-algebra with k-basis r1, . . . , rn.
Then R is a finite étale k-algebra if and only if disc(r1, . . . , rn) 6= 0.

Proof. By Theorem 5.20, R is a finite étale k-algebra if and only if the trace pairing on R
is a perfect pairing, which is equivalent to being nondegenerate, since k is a field.

If the trace pairing is degenerate then for some nonzero x ∈ R we have TR/k(xy) = 0
for all y ∈ R. If we write x =

∑
i xiri with xi ∈ k then TR/k(xrj) =

∑
i xiTR/k(rirj) = 0

for all rj (take y = rj), and this implies that the columns of the matrix [TR/k(rirj)]ij are
linearly dependent and disc(r1, . . . , rn) = det[TR/k(rirj)]ij = 0.

Conversely, if disc(r1, . . . , rn) = 0 then the columns of det[TR/k(rirj)]ij are linearly de-
pendent and for some xi ∈ k not identically zero we must have

∑
i xiTR/k(rirj) = 0 for all j.

For x :=
∑

i xiri and any y =
∑

j yjrj ∈ R we have TR/k(xy) =
∑

j yj
∑

i xiTR/k(rirj) = 0,
which shows that the trace pairing is degenerate.

Theorem 12.19. Assume AKLB, let q be a prime of B lying above a prime p of A such
that B/q is a separable extension of A/p. The extension L/K is unramified at q if and only
if q does not divide DB/A, and it is unramified at p if and only if p does not divide DB/A.

Proof. We first consider the different DB/A. By Proposition 12.4, the different is compatible
with completion, so it suffices to consider the case that A and B are complete DVRs
(complete K at p and L at q and apply Theorem 11.23). We then have [L : K] = eqfq,
where eq is the ramification index and fq is the residue field degree, and pB = qeq .

Since B is a DVR with maximal ideal q, we must have DB/A = qm for some m ≥ 0. By
Theorem 12.17 we have

DB/A = NB/A(DB/A) = NB/A(qm) = pfqm.

Thus q|DB/A if and only if p|DB/A. Since A is a PID, B is a free A-module and we may
choose an A-module basis e1, . . . , en for B that is also a K-basis for L. Let k := A/p, and
let ei be the reduction of ei to the k-algebra R := B/pB. Then (e1, . . . , en) is a k-basis for
R: it clearly spans, and we have [R : k] = [B/qeq : A/p] = eqfq = [L : K] = n.

Since B has an A-module basis, we may compute its discriminant as

DB/A = (disc(e1, . . . , en)).

Thus p|DB/A if and only if disc(e1, . . . , en) ∈ p, equivalently, disc(e1, . . . , en) = 0 (note
that disc(e1, . . . , en) is a polynomial in the TL/K(eiej) and TR/k(eiej) is the trace of the
multiplication-by-eiej map, which is the same as the reduction to k = A/p of the trace of
the multiplication-by-eiej map TL/K(eiej) ∈ A). By Lemma 12.18, disc(e1, . . . , en) = 0 if
and only if the k-algebra B/pB is not finite étale, equivalently, if and only if p is ramified.
Thus p|DB/A if and only if p is ramified. There is only one prime q above p, so we also have
q|DB/A if and only if q is ramified.

We now note an important corollary of Theorem 12.19.

Corollary 12.20. Assume AKLB. Only finitely many primes of A (or B) ramify.

Proof. A and B are Dedekind domains, so the ideals DB/A and DB/A both have unique
factorizations into prime ideals in which only finitely many primes appear.
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12.4 The discriminant of an order

Recall from Lecture 6 that an order O is a noetherian domain of dimension one whose
conductor is nonzero (see Definitions 6.16 and 6.19), and the integral closure of an order
is always a Dedekind domain. In our AKLB setup, the orders with integral closure B are
precisely the A-lattices in L that are rings (see Proposition 6.22); if L = K(α) with α ∈ B,
then A[α] is an example. The discriminant DO/A of such an order O is its discriminant
D(O) as an A-module. The fact that O ⊆ B implies that D(O) ⊆ DB/A is an A-ideal.

If O is an order of the form A[α], where α ∈ B generates L = K(α) with minimal
polynomial f ∈ A[x], then O is a free A-lattice with basis 1, α, . . . , αn−1, where n = deg f ,
and we may compute its discriminant as

DO/A = (disc(1, α, . . . , αn−1)) = (disc(f)),

which is a principal A-ideal contained in DB/A. If B is also a free A-lattice, then as in the
proof of Lemma 12.10 we have

DO/A = (detP )2DB/A = [B :O]2ADB/A,

where P is the matrix of the A-linear map φ : B → O that sends an A-basis for B to an
A-basis for O and [B :O]A is the module index (a principal A-ideal).

In the important special case where A = Z and L is a number field, the integer (detP )2

is uniquely determined and it necessarily divides disc(f), the generator of the principal ideal
D(O) = D(A[α]). It follows that if disc(f) is squarefree then we must have B = O = A[α].
More generally, any prime p for which vp(disc(f)) is odd must be ramified, and any prime
that does not divide disc(f) must be unramified. Another useful observation that applies
when A = Z: the module index [B :O]Z = ([B :O]) is the principal ideal generated by the
index of O in B (as Z-lattices), and we have the relation

DO = [B :O]2DB

between the absolute discriminant of the order O and its integral closure B.

Example 12.21. Consider A = Z, K = Q with L = Q(α), where α3 − α− 1 = 0. We can
compute the absolute discriminant of Z[α] as

disc(1, α, α2) = disc(x3 − x− 1) = −4(−1)3 − 27(−1)2 = −23.

The fact that −23 is squarefree immediately implies that 23 is the only prime of A that
ramifies, and we have DZ[α] = −23 = [OL : Z[α]]2DL, which forces [OL : Z[α]] = 1, so
DL = −23 and OL = Z[α].

More generally, we have the following theorem.

Theorem 12.22. Assume AKLB and let O be an order with integral closure B and con-
ductor c. Then DO/A = NB/A(c)DB/A.

Proof. See Problem Set 6.
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12.5 Computing the discriminant and different

We conclude with a number of results that allow one to explicitly compute the discriminant
and different in many cases.

Proposition 12.23. Assume AKLB. If B = A[α] for some α ∈ L and f ∈ A[x] is the
minimal polynomial of α, then

DB/A = (f ′(α))

is the B-ideal generated by f ′(α).

Proof. See Problem Set 6.

The assumption B = A[α] in Proposition 12.23 does not always hold, but if we want to
compute the power of q that divides DB/A we can complete L at q and K at p = q∩A so that
A and B become complete DVRs, in which case B = A[α] does hold (by Lemma 10.14), so
long as the residue field extension is separable (always true if K and L are global fields, since
the residue fields are then finite, hence perfect). The following definition and proposition
give an alternative approach.

Definition 12.24. Assume AKLB and let α ∈ B have minimal polynomial f ∈ A[x]. The
different of α is defined by

δB/A(α) :=

{
f ′(α) if L = K(α),

0 otherwise.

Proposition 12.25. Assume AKLB. Then DB/A =
(
δB/A(α) : α ∈ B

)
.

Proof. See [3, Thm. III.2.5].

We can now more precisely characterize the ramification information given by the dif-
ferent ideal.

Theorem 12.26. Assume AKLB and let q be a prime of L lying above p = q∩A for which
the residue field extension (B/q)/(A/p) is separable. Then

eq − 1 ≤ vq(DB/A) ≤ eq − 1 + vq(eq),

and the lower bound is an equality if and only if q is tamely ramified.

Proof. See Problem Set 6.

We also note the following proposition, which shows how the discriminant and different
behave in a tower of extensions.

Proposition 12.27. Assume AKLB and let M/L be a finite separable extension and let C
be the integral closure of A in M . Then

DC/A = DC/B · DB/A
(where the product on the right is taken in C), and

DC/A = (DB/A)[M :L]NB/A(DC/B).

Proof. See [4, Prop. III.8].

If M/L/K is a tower of finite separable extensions, we note that the primes p of K that
ramify are precisely those that divide either DL/K or NL/K(DM/L).
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Fall 2019
10/21/2019

13 Global fields and the product formula

Up to this point we have defined global fields as finite extensions of Q (number fields) or
of Fq(t) (global function fields). Our goal in this lecture is to prove a generalization of
the product formula that you proved on Problem Set 1 for K = Q and K = Fq(t), which
will then allow us to give a more natural definition of global fields: they are fields whose
completions are local fields and which satisfy a suitable product formula.

13.1 Places of a field

Definition 13.1. Let K be a field. A place of K is an equivalence class of nontrivial
absolute values on K. Recall that the completion of K at an absolute value depends only
on its equivalence class, so there is a one-to-one correspondence between places of K and
completions of K. We may use MK to denote the set of places of K, and for each place v we
use | |v to denote any representative absolute and Kv to denote the completion of K with
respect to | |v (this does not depend on the choice of | |v). We call a place v archimedean
when Kv is archimedean and nonarchimedean otherwise.

Now let K be a global field. By Corollary 9.7, for any place v of K the completion Kv

is a local field. From our classification of local fields (Theorem 9.9), if Kv is archimedean
then Kv ' R or Kv ' C, and otherwise the absolute value of Kv is induced by a discrete
valuation that we also denote v; note that while the absolute value |x|v := c−v(x) depends
on a choice of c ∈ [0, 1], the discrete valuation v : Kv → Z is uniquely determined. We now
introduce the following terminology:

• if Kv ' R then v is a real place;

• if Kv ' C then v is a complex place;

• if | |v is induced by a discrete valuation vp corresponding to a prime p of K then v is
a finite place; otherwise v is an infinite place.

Every finite place is nonarchimedean. Infinite places are archimedean in characteristic
zero and nonarchimedean otherwise. Every archimedean place is an infinite place, but
nonarchimedean places may be finite or infinite (the latter only in positive characteristic).

Example 13.2. As you proved on Problem Set 1, the set MQ consists of finite places p
corresponding to p-adic absolute values | |p, and a single archimedean infinite place ∞ cor-
responding to the Euclidean absolute value | |∞. The set MFq(t) consist of finite places cor-
responding to irreducible polynomials in Fq[t] and a single nonarchimedean infinite place∞
corresponding to the absolute value | · |∞ := qdeg(·).

Remark 13.3. There is nothing special about the infinite place of Fq(t), it is an artifact of
our choice of the separating element t, which we could change by applying an automorphism
t 7→ (at + b)/(ct + d) of Fq(t). If we put z := 1/t and consider Fq(z) ' Fq(t), the absolute
value | |∞ on Fq(t) is the same as the absolute value | |z on Fq(z) corresponding to the
irreducible polynomial z ∈ Fq[z]. This is analogous to the situation with the projective
line P1, where we may distinguish the projective point (1 : 0) as the “point at infinity”, but
this distinction is not invariant under automorphisms of P1.

Andrew V. Sutherland

https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec9.pdf#theorem.2.7
https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec9.pdf#theorem.2.9


Definition 13.4. If L/K is an extension of global fields, for every place w of L, any absolute
value | |w that represents the equivalence class w restricts to an absolute value on K that
represents a place v of K that is independent of the choice of | |w. We write w|v to indicate
this relationship and say that w extends v or that w lies above v.

Theorem 13.5. Let L/K be a finite separable extension of global fields and let v be a place
of K. We have an isomorphism of finite étale Kv-algebras

L⊗K Kv
∼−→
∏
w|v

Lw

defined by `⊗ x 7→ (`x, . . . , `x).

For nonarchimedean places this follows from part (v) of Theorem 11.23, but here we
give a different proof that works for any place of K.

Proof. The separable extension L/K is a finite étale K-algebra, so the base change L⊗KKv

is a finite étale Kv-algebra, by Proposition 4.36, and is therefore isomorphic to a finite
product

∏
i∈I Li of finite separable extensions Li of Kv, each of which is a local field (any

finite extension of a local field is a local field). We just need to show that there is a
one-to-one correspondence between the sets of local fields {Li : i ∈ I} and {Lw : w|v}.

Let us fix an absolute value | |v on Kv representing the place v. Each Li is a local field
extending Kv, and therefore has a unique absolute value | |w that restricts to | |v; this follows
from Theorem 10.6 when v is nonarchimedean and is obvious when v is archimedean, since
then either Kv ' Lw or Kv ' R ⊆ C ' Lw and the Euclidean absolute value on R is the
restriction of the Euclidean absolute value on C. The map L ↪→ L ⊗K Kv '

∏
i Li � Li

allows us to view L as a subfield of each Li, so the absolute value | |w on Li restricts
to an absolute value on L that uniquely determines a place w|v. This defines a map
φ : {Li : i ∈ I} → {Lw : w|v} that we will show is a bijection satisfying φ(Li) ' Li.

We may view L ⊗K Kv '
∏
i Li as an isomorphism of topological rings, since both

sides are finite dimensional vector spaces over the complete field Kv and thus have a unique
topology induced by the sup norm, by Proposition 10.5, and this topology agrees with the
product topology on

∏
i Li. The image of the canonical embedding L ↪→ L⊗K Kv defined

by ` 7→ ` ⊗ 1 is dense because K ⊆ L is dense in Kv: given any ` ⊗ x in L ⊗K Kv with
` ∈ L and x ∈ Kv, we can choose y ∈ K× arbitrarily close to x so that `y ⊗ 1 = `⊗ y is an
element of the image of L arbitrarily close to `⊗x (and similarly for sums of pure tensors).
The image of L is therefore also dense in

∏
i Li and has dense image under the projections∏

i Li � Li and
∏
i Li � Li × Lj (i 6= j).

If φ(Li) = Lw then Li ' Lw since L is dense in the complete field Li, and Lw is the
completion of L with respect to the restriction of the absolute value on Li to L, by the
universal property of completions (Proposition 8.4). To show that φ is injective, note that
if φ(Li) = φ(Lj) = Lw for some i 6= j we obtain a contradiction because the image of the
diagonal embedding L→ Lw×Lw is not dense in Lw×Lw (its closure is isomorphic to Lw),
but the image of L is dense in Li × Lj .

It remains only to show that φ is surjective. For each w|v we may define a continuous
homomorphism of finite étale Kv-algebras and topological rings:

ϕw : L⊗K Kv → Lw

`⊗ x 7→ `x.
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The map ϕw is surjective because its image contains L and is complete, and Lw is the
completion of L. It follows from Corollary 4.32 that ϕw factors through the projection of
L⊗K Kv '

∏
i Li on to one of its factors Li and induces a homeomorphism from Li to Lw.

It follows that Li ' Lw as topological fields, so φ(Li) = Lw and φ is surjective.

Corollary 13.6. Let L/K be a finite separable extension of global fields, v be a place of K,
and f ∈ K[x] be an irreducible polynomial such that L ' K[x]/(f(x)). There is a one-
to-one correspondence between the irreducible factors of f in Kv[x] and the places of L
lying above v. If f = f1 · · · fr is the factorization of f in Kv[x], then we can order the set
{w|v} = {w1, . . . , wr} so that Lwi ' Kv[x]/(fi(x)) for 1 ≤ i ≤ r.

Proof. Note that the fi are distinct because f is separable over K and therefore separable
over every extension of K, including Kv. The corollary then follows from Proposition 4.33,
Corollary 4.39, and Theorem 13.5.

Given a finite separable extension of global fields L/K and a place v of K, if we fix an
algebraic closure Kv of Kv and consider the set HomK(L,Kv) of K-embeddings of L into
Kv, the Galois group Gal(Kv/Kv) acts on the set HomK(L,Kv) via composition: given
σ ∈ Gal(Kv/Kv) and τ ∈ HomK(L,Kv), we have σ ◦ τ ∈ HomK(L,Kv), and this clearly
defines a group action (composition is associative and the identity acts trivially).

Corollary 13.7. Let L/K be a finite separable extension of global fields and v a place of K.
We have a bijection

HomK(L,Kv)/Gal(Kv/Kv)←→ {w|v},

between Gal(Kv/Kv)-orbits of K-embeddings of L into Kv and the places of L above v.

Proof. By the primitive element theorem, we may assume L ' K(α) = K[x]/(f) for some
α ∈ L with minimal polynomial f ∈ K[x]. We then have a bijection between HomK(L,Kv)
and the roots αi of f in Kv that is compatible with the action of Gal(Kv/Kv) on both
sets. If f = f1 · · · fr is the factorization of f in Kv[x], each fi corresponds to an orbit of
the action of Gal(Kv/Kv) on the roots of f , and by the previous corollary, these are in
one-to-one correspondence with the places of L above v.

For K = Q and v =∞, Corollary 13.7 implies that HomQ(L,C)/Gal(C/R) is in bijection
with the set {w|∞} of infinite places of the number field L; note that Gal(C/R) is the cyclic
group of order 2 generated by complex conjugation, so the orbits of HomQ(L,C) all have size
1 or 2, depending on whether the embedding of L into C is fixed by complex conjugation or
not. Each real place w corresponds to a Gal(C/R)-orbit of size 1; this occurs for the elements
of HomQ(L,C) whose image lies in R and may also be viewed as elements of HomQ(L,R).
Each complex place corresponds to a Gal(C/R)-orbit of size two in HomQ(L,C); these are
conjugate pairs whose images do not lie in R.

Definition 13.8. Let K be a number field. Elements of HomQ(K,R) are real embeddings,
and elements of HomQ(K,C) whose image does not lie in R are complex embeddings.

There is a one-to-one correspondence between real embeddings and real places, but
complex embeddings come in conjugate pairs; each pair of complex embeddings corresponds
to a single complex place.

Corollary 13.9. Let K be a number field with r real places and s complex places. Then

[K : Q] = r + 2s.
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Proof. We may write K ' Q[x]/(f) for some irreducible separable f ∈ Q[x], and we then
have [K : Q] = deg f = # HomQ(K,C), since there is a one-to-one correspondence between
HomQ(K,C) and the roots of f . The action of Gal(C/R) on HomQ(K,C) has r orbits of
size 1, and s orbits of size 2, and the corollary follows.

Example 13.10. Let K = Q[x]/(x3 − 2). There are three embeddings K ↪→ C, one for
each root of x3 − 2; explicitly:

(1) x 7→ 3
√

2, (2) x 7→ e2πi/3 · 3
√

2, (3) x 7→ e4πi/3 · 3
√

2.

The first embedding is real, while the second two are complex and conjugate to each other.
Thus K has r = 1 real place and s = 1 complex place, and we have [K : Q] = 1 ·1+2 ·1 = 3.

We conclude this section with a result originally due to Brill [2] that relates the parity
of the number of complex places to the sign of the absolute discriminant of a number field.

Proposition 13.11. Let K be a number field with s complex places. The sign of the absolute
discriminant DK ∈ Z is (−1)s.

Proof. Let α1, . . . , αn be a Z-basis for OK , let HomQ(K,C) = {σ1, . . . , σn} and consider the
matrix A := [σi(αj)]ij with determinant detA =: x + yi ∈ C; recall that DK = (detA)2,
by Proposition 12.6. Each real embedding σi corresponds to a row of A fixed by complex
conjugation, while each pair of complex conjugate embeddings σi, σ̄i corresponds to a pair
of rows of A that are interchanged by complex conjugation. Swapping a pair of rows negates
the determinant, thus det Ā = (−1)s detA, and we have

x+ yi = detA = (−1)s det Ā = (−1)s(x− yi).

Either (−1)s = 1, in which case y = 0 and DK = x2 has sign +1 = (−1)s, or (−1)s = −1,
in which case x = 0 and DK = −y2 has sign −1 = (−1)s.

13.2 Haar measures

Definition 13.12. Let X be a locally compact Hausdorff space. The σ-algebra Σ of X
is the collection of subsets of X generated by the open and closed sets under countable
unions and countable intersections. Its elements are Borel sets, or measurable sets. A Borel
measure on X is a countably additive function

µ : Σ→ R≥0 ∪ {∞}.

A Radon measure on X is a Borel measure on X that additionally satisfies

1. µ(S) <∞ if S is compact,

2. µ(S) = inf{µ(U) : S ⊆ U, U open},
3. µ(S) = sup{µ(C) : C ⊆ S, C compact},

for all Borel sets S.1

1Some authors additionally require X to be σ-compact (a countable union of compact sets). Local fields
are σ-compact so this distinction will not concern us.
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Definition 13.13. A locally compact group is a topological group that is Hausdorff and
locally compact.2 A (left) Haar measure µ on a locally compact group G is a nonzero Radon
measure that is translation invariant, meaning that

µ(S) = µ(x+ S)

for all x ∈ G and measurable S ⊆ X (we write the group operation additively because we
have in mind the additive group of a local field). A compact group is a locally compact
group that is compact; in compact groups every measurable set has finite measure.

One defines a right Haar measure analogously, but in most cases they coincide and in
our situation we are working with an abelian group (the additive group of a field), in which
case they necessarily do. The key fact we need about Haar measures is that they exist and
are unique up to scaling. For compact groups existence was proved by Haar and uniqueness
by von Neumann; the general result for locally compact groups was proved by Weil.

Theorem 13.14 (Weil). Every locally compact group G has a Haar measure. If µ and µ′

are two Haar measure on G, then there is a positive real number λ such that µ′(S) = λµ(S)
for all measurable sets S.

Proof. See [3, §7.2].

Example 13.15. The standard Lebesgue measure µ on Rn with µ(
∏
i[ai, bi]) =

∏
i |bi−ai|

is the unique Haar measure on Rn for which the unit cube has measure 1.3

The additive group of a local field K is a locally compact group (it is a metric space,
hence Hausdorff). For compact groups G, it is standard to normalize the Haar measure so
that µ(G) = 1, but local fields are never compact, and we will always have µ(K) =∞. For
nonarchimedean local fields the valuation ring A = B≤1(0) is a compact group, and it is
then natural to normalize the Haar measure on K so that µ(A) = 1. The key point is that
there is a unique absolute value on K that is compatible with every Haar measure µ on K,
no matter how it is normalized.

Proposition 13.16. Let K be a local field with discrete valuation v, residue field k, and
absolute value

| · |v := (#k)−v(·),

and let µ be a Haar measure on K. For every x ∈ K and measurable set S ⊆ K we have

µ(xS) = |x|vµ(S).

Moreover, the absolute value | |v is the unique absolute value compatible with the topology
on K for which this is true.

Proof. Let A be the valuation ring of K with maximal ideal p. The proposition clearly
holds for x = 0, so let x 6= 0. The map φx : y 7→ xy is an automorphism of the additive
group of K, and it follows that the composition µx = µ ◦φx is a Haar measure on K, hence

2Note that the Hausdorff assumption is part of the definition. Some authors include it in the definition of
locally compact, and some also include it in the definition of compact (Bourbaki, for example); the convention
varies by field and with geography. But everyone agrees that locally compact groups are Hausdorff.

3Strictly speaking, the Haar measure on Rn is the restriction of the Lebesgue measure to the σ-algebra.
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a multiple of µ, say µx = λxµ, for some λx ∈ R>0. Define the function χ : K× → R>0 by
χ(x) := λx = µx(A)/µ(A). Then µx = χ(x)µ, and for all x, y ∈ K× we have

χ(xy) =
µxy(A)

µ(A)
=
µx(yA)

µ(A)
=
χ(x)µy(A)

µ(A)
=
χ(x)χ(y)µ(A)

µ(A)
= χ(x)χ(y).

Thus χ is multiplicative, and we claim that in fact χ(x) = |x|v for all x ∈ K×. Since
both χ and | · |v are multiplicative, it suffices to consider x ∈ A − {0}. For any such x,
the ideal xA is equal to pv(x), since A is a DVR. The residue field k := A/p is finite, hence
A/xA is also finite; indeed it is a k-vector space of dimension v(x) and has cardinality
[A : xA] = (#k)v(x). Writing A as a finite disjoint union of cosets of xA, we have

µ(A) = [A : xA]µ(xA) = (#k)v(x)χ(x)µ(A),

and therefore χ(x) = (#k)−v(x) = |x|v as claimed. It follows that

µ(xS) = µx(S) = χ(x)µ(S) = |x|vµ(S),

for all x ∈ K and measurable S ⊆ K. To prove uniqueness, if | | is an absolute value on K
that induces the same topology as | |v then for some 0 < c < 1 we have |x| = |x|cv for all
x ∈ K×. Let us fix x ∈ K× with |x|v 6= 1 (take any x with v(x) 6= 0). If | | also satisfies
µ(xS) = |x|µ(S) then

µ(xA)

µ(A)
= |x| = |x|cv =

(
µ(xA)

µ(A)

)c
,

which implies c = 1, meaning that | | and | |v are the same absolute value.

13.3 The product formula for global fields

Definition 13.17. Let K be a global field. For each place v of K the normalized absolute
value ‖ ‖v : Kv → R≥0 on the completion of K at v is defined by

‖x‖v :=
µ(xS)

µ(S)
,

where µ is a Haar measure on Kv and S ⊆ Kv is a measurable set with finite nonzero
measure (such as the set {x ∈ Kv : |x|v ≤ 1}, for example).

This definition is independent of the choice of µ and S (by Theorem 13.14). If v is
nonarchimedean then the normalized absolute value ‖ ‖v is precisely the absolute value | |v
defined in Proposition 13.16. If v is a real place then the normalized absolute value ‖ ‖v is
just the usual Euclidean absolute value | |R on R, since for the Euclidean Haar measure µR
on R we have µR(xS) = |x|RµR(S) for every measurable set S. But when v is a complex
place the normalized absolute value ‖ ‖v is the square of the Euclidean absolute value | |C
on C, since in C we have µC(xS) = |x|2CµC(S).

Remark 13.18. When v is a complex place the normalized absolute value ‖ ‖v is not an
absolute value, because it does not satisfy the triangle inequality. For example, if K = Q(i)
and v|∞ is the complex place of K then ‖1‖v = |1|2C = 1 but

‖1 + 1‖v = ‖2‖v = |2|2C = 4 > 2 = ‖1‖v + ‖1‖v.

Nevertheless, the normalized absolute value ‖ ‖v is always multiplicative and compatible
with the topology on Kv in the sense that the open balls B<r(x) := {y ∈ Kv : ‖y−x‖v < r}
are a basis for the topology on Kv; these are the properties that we care about for the
product formula (and for the topology on the ring of adéles AK that we will see later).
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Lemma 13.19. Let L/K be a finite separable extension of global fields, let v be a place
of K and let w|v be a place of L. Then

‖x‖w = ‖NLw/Kv
(x)‖v.

Proof. The lemma is trivially true if [Lw : Kv] = 1 so assume [Lw : Kv] > 1. If v is
archimedean then Lw ' C and Kv ' R, in which case for any x ∈ Lw we have

‖x‖w = µ(xS)/µ(S) = |x|2C = |xx|R = |NC/R(x)|R = ‖NLw/Kv
(x)‖v,

where | |R and | |C are the Euclidean absolute values on R and C.
We now assume v is nonarchimedean. Let πv and πw be uniformizers for the local fields

Kv and Lw, respectively, and let f be the degree of the corresponding residue field extension

kw/kv. Without loss of generality, we may assume x = π
w(x)
w , since ‖x‖v = |x|v depends

only on w(x). Theorem 6.10 and Proposition 13.16 imply

‖NLw/Kv
(πw)‖v = ‖πfv ‖v = (#kv)

−f ,

so ‖NLw/Kv
(x)‖v = (#kv)

−fw(x). Proposition 13.16 then implies

‖x‖w = (#kw)−w(x) = (#kv)
−fw(x) = ‖NLw/Kv

(x)‖v.

Remark 13.20. Note that if v is a nonarchimedean place of K extended by a place w|v
of L/K, the absolute value ‖ ‖w is not the unique absolute value on Lw that extends the
absolute value on ‖ ‖v on Kv given by Theorem 10.6, it differs by a power of n = [Lw : Kv],
but it is equivalent to it. It might seem strange to use a normalization here that does
not agree with the one we used when considering extensions of local fields in Lecture 9.
The difference is that here we are thinking about a single global field K that has many
different completions Kv, and we want the normalized absolute values on the various Kv

to be compatible (so that the product formula will hold). By contrast, in Lecture 9 we
considered various extensions Lw of a single local field Kv and wanted to normalize the
absolute values on the Lw compatibly so that we could work in Kv and any of its extensions
(all the way up to Kv) using the same absolute value. These two objectives cannot be met
simultaneously and it is better to use the “right” normalization in each setting.

Theorem 13.21 (Product Formula). Let L be a global field. For all x ∈ L× we have∏
v∈ML

‖x‖v = 1,

where ‖ ‖v denotes the normalized absolute value for each place v ∈ML.

Proof. The global field L is a finite separable extension of K = Q or K = Fq(t).4 Let p be
a place of K. By Theorem 13.5, any basis for L as a K-vector space is also a basis for

L⊗K Kp '
∏
v|p

Lv

4Here we are using the fact that if Fq is the field of constants of L (the largest finite field in L), then L
is a finite extension of Fq(z) and we can choose some t ∈ Fq(z) − Fq so that Fq(z) ' Fq(t) and L/Fq(t) is
separable (such a t is called a separating element).
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as a Kv-vector space. Thus

NL/K(x) = N(L⊗KKp)/Kp
(x) =

∏
v|p

NLv/Kp
(x).

Taking normalized absolute values on both sides yields∥∥NL/K(x)
∥∥
p

=
∏
v|p

‖NLv/Kp
(x)‖p =

∏
v|p

‖x‖v.

We now take the product of both sides over all places p ∈MK to obtain∏
p∈MK

‖NL/K(x)‖p =
∏

p∈MK

∏
v|p

‖x‖v =
∏
v∈ML

‖x‖v.

The LHS is equal to 1, by the product formula for K proved on Problem Set 1.

With the product formula in hand, we can now give an axiomatic definition of a global
field, which up to now we have simply defined as a finite extension of Q or Fq(t), due to
Emil Artin and George Whaples [1].

Definition 13.22. A global field is a field K with at least one place whose completion at
each of its places v ∈MK is a local field Kv, and which has a product formula of the form∏

v∈MK

‖x‖v = 1,

where each normalized absolute value ‖ ‖v : Kv → R≥0 satisfies ‖ ‖v = | |mv
v for some

absolute value | |v representing v and some fixed mv ∈ R>0.

Theorem 13.23 (Artin-Whaples). Every global field is a finite extension of Q or Fq(t).

Proof. See Problem Set 7.
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14 The geometry of numbers

14.1 Lattices in real vector spaces

Recall that for an integral domain A with fraction fieldK, an A-lattice in a finite dimensional
K-vector space V is a finitely generated A-submodule of V that contains a K-basis for V
(see Definition 5.9). We now want to specialize to the case A = Z, but rather than working
with the fraction field K = Q we will instead work with its completion R at the unique
infinite place of Q.

Remark 14.1. In this lecture we shall focus specifically on number fields, but we will make
remarks along the way about how one can similarly treat global function fields (where one
would take A = Fq[t] and work with its completion Fq(t)∞ ' Fq((1

t )) at the unique infinite
place of Fq(t)). In Problem Set 7 you will have the opportunity to explore the function field
case in more detail.

A finitely generated Z-submodule of a vector space is necessarily a free module, since Z
is a PID and every submodule of a vector space is torsion-free. Now V is an R-vector
space of some finite dimension n, and has a canonical structure as a topological metric
space isomorphic to Rn (by Proposition 10.5, there is a unique topology on V compatible
with the topology of R, because R is complete). This topology makes V a locally compact
Hausdorff space, thus V is a locally compact group and therefore has a Haar measure µ
that is unique up to scaling, by Theorem 13.14.

Definition 14.2. A subgroupH of a topological groupG is discrete if the subspace topology
on H is the discrete topology (every point is open), and cocompact if H is a normal subgroup
of G and the quotient G/H is compact (here G/H denotes the group G/H with the quotient
topology given by identifying elements of G that lie in the same coset of H).

Definition 14.3. Let V be an R-vector space of finite dimension. A (full) lattice in V is a
Z-submodule generated by an R-basis for V ; equivalently, a discrete cocompact subgroup.

See Problem Set 7 for a proof that these two definitions are equivalent.

Remark 14.4. A discrete subgroup of a Hausdorff topological group is always closed; see
[1, III.2.1.5] for a proof. This implies that the quotient of a Hausdorff topological group by
a normal discrete subgroup is Hausdorff (which is false for topological spaces in general);
see [1, III.2.1.18]. It follows that the quotient of a Hausdorff topological group (including
all locally compact groups) by a discrete cocompact subgroup is a compact group. These
facts are easy to see in the case of lattices: Z is closed in R (as the complement of a
union of open intervals), so Zn is closed in Rn. Given a lattice Λ in V , each Z-basis for Λ
determines an isomorphism of topological groups Λ ' Zn and V ' Rn, and the quotient
V/Λ ' Rn/Zn ' (R/Z)n (an n-torus), is compact Hausdorff and thus a compact group.

Remark 14.5. You might ask why we are using the archimedean completion R = Q∞
rather than some other completion Qp. The reason is Z is not a discrete subgroup of Qp

for any finite place p (elements of Z can be arbitrarily close to 0 under the p-adic metric).
Similarly, Fq[t] is a discrete subgroup of Fq(t)∞, but not of any other completion of Fq(t).

Any basis v1, . . . , vn for V determines a parallelepiped

F (v1, . . . , vn) := {t1v1 + · · ·+ tnvn : t1, . . . , tn ∈ [0, 1)}

Andrew V. Sutherland
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that we may view as the unit cube by fixing an isomorphism ϕ : V
∼−→ Rn that maps

(v1, . . . , vn) to the standard basis of unit vectors for Rn. It then makes sense to normalize
the Haar measure µ so that µ(F (v1, . . . , vn)) = 1, and we then have µ(S) = µRn(ϕ(S)) for
every measurable set S ⊆ V , where µRn denotes the standard Lebesgue measure on Rn.

For any other basis e1, . . . , en of V , if we let E = [eij ]ij be the matrix whose jth column
expresses ej =

∑
i eijvi, in terms of our normalized basis v1, . . . , vn, then

µ(F (e1, . . . , en)) = |detE| =
√

detEt detE =
√

det(EtE) =
√

det[〈ei, ej〉]ij , (1)

where 〈ei, ej〉 is the canonical inner product (the dot product) on Rn. Here we have used
the fact that the determinant of a matrix in Rn×n is the signed volume of the parallelepiped
spanned by its columns (or rows). This is a consequence of the following more general
result, which is independent of the choice of basis or the normalization of µ.

Proposition 14.6. Let T : V → V be a linear transformation of V ' Rn. For any Haar
measure µ on V and every measurable set S ⊆ V we have

µ(T (S)) = | detT |µ(S). (2)

Proof. See [11, Ex. 1.2.21].

If Λ is a lattice e1Z + · · · + enZ in V , the quotient V/Λ is a compact group that we
may identify with the parallelepiped F (e1, . . . , en) ⊆ V , which forms a set of unique coset
representatives. More generally, we make the following definition.

Definition 14.7. Let Λ be a lattice in V ' Rn. A fundamental domain for Λ is a measurable
set F ⊆ V such that

V =
⊔
λ∈Λ

(F + λ).

In other words, F is a measurable set of coset representatives for V/Λ. Fundamental domains
exist: if Λ = e1Z + · · ·+ enZ we may take the parallelepiped F (e1, . . . , en).

Proposition 14.8. Let Λ be a lattice in V ' Rn and let µ be a Haar measure on V . Every
fundamental domain for Λ has the same measure, and this measure is finite and nonzero.

Proof. Let F and G be two fundamental domains for Λ. Using the translation invariance
and countable additivity of µ (note that Λ ' Zn is a countable set) along with the fact that
Λ is closed under negation, we obtain

µ(F ) = µ(F ∩ V ) = µ

(
F ∩

⊔
λ∈Λ

(G+ λ)

)
= µ

(⊔
λ∈Λ

(F ∩ (G+ λ))

)
=
∑
λ∈Λ

µ(F ∩ (G+ λ)) =
∑
λ∈Λ

µ((F − λ) ∩G) =
∑
λ∈Λ

µ(G ∩ (F + λ)) = µ(G),

where the last equality follows from the first four (swap F and G). If we fix a Z-basis
e1, . . . , en for Λ, the parallelepiped F (e1, . . . , en) is a fundamental domain for Λ, and its
closure is compact, so µ(F (e1, . . . , en)) is finite, and it is nonzero because there is an iso-
morphism V ' Rn that maps the closure of F (e1, . . . , en) to the unit cube in Rn whose
Lebesgue measure is nonzero (whether a set has zero measure or not does not depend on
the normalization of the Haar measure and is therefore preserved by isomorphisms of locally
compact groups).
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Definition 14.9. Let Λ be a lattice in V ' Rn and fix a Haar measure µ on V . The
covolume covol(Λ) ∈ R>0 of Λ is the measure µ(F ) of any fundamental domain F for Λ.

Note that covolumes depend on the normalization of µ, but ratios of covolumes do not.

Proposition 14.10. If Λ′ ⊆ Λ are lattices in V ' Rn, then covol(Λ′) = [Λ : Λ′] covol(Λ).

Proof. Fix a fundamental domain F for Λ and a set of coset representatives S for Λ/Λ′.
Then

F ′ :=
⊔
λ∈S

(F + λ)

is a fundamental domain for Λ′, and #S = [Λ : Λ′] = µ(F ′)/µ(F ) is finite. We then have

covol(Λ′) = µ(F ′) =
∑
λ∈S

µ(F + λ) = (#S)µ(F ) = [Λ : Λ′] covol(Λ),

since every translation F + λ of F is a fundamental domain for Λ.

Definition 14.11. Let S be a subset of a real vector space. The set S is symmetric if it is
closed under negation, and convex if for all x, y ∈ S we have {tx+ (1− t)y : t ∈ [0, 1]} ⊆ S.

Theorem 14.12 (Minkowski’s Lattice Point Theorem). Let Λ be a lattice in V ' Rn
and µ a Haar measure on V . If S ⊆ V is a symmetric convex measurable set that satisfies

µ(S) > 2n covol(Λ),

then S contains a nonzero element of Λ.

Proof. See Problem Set 6.

Note that the inequality in Theorem 14.12 bounds the ratio of the measures of two sets
(S and a fundamental domain for Λ), and is thus independent of the choice of µ.

Remark 14.13. In the function field analog of Theorem 14.12 the convexity assumption
is not needed and the factor of 2n can be removed.

14.2 The canonical inner product

Let K/Q be a number field of degree n with r real places and s complex places; then
n = r + 2s, by Corollary 13.9. We now want to consider the base change of K to R and C:

KR := K ⊗Q R ' Rr × Cs,
KC := K ⊗Q C ' Cn.

The isomorphism KR ' Rr ×Cs follows from Theorem 13.5 and the isomorphism KC ' Cn
follows from the fact that C is separably closed; see Example 4.31. We note that KR is
an R-vector space of dimension n, thus KR ' Rn, but this is an isomorphism of R-vector
spaces and is not an R-algebra isomorphism unless s = 0.

We have a sequence of injective homomorphisms of topological rings

OK ↪→ K ↪→ KR ↪→ KC, (3)

which are defined as follows:
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• the map OK ↪→ K is inclusion;

• the map K ↪→ KR = K ⊗Q R is the canonical embedding α 7→ α⊗ 1;

• the map KR ' Rr×Cs ↪→ Cr×C2s ' KC embeds each factor of Rr in a corresponding
factor of Cr via inclusion and each C in Cs is mapped to C×C in C2s via z 7→ (z, z̄).

To better understand the last map, note that each C in Cs arises as R[α] = R[x]/(f) ' C
for some monic irreducible f ∈ R[x] of degree 2, but when we base-change to C the field
R[α] splits into the étale algebra C[x]/(x − α) × C[x]/(x − ᾱ) ' C × C. The composition
K ↪→ KR ↪→ KC is given by the map

x 7→ (σ1(x), . . . , σn(x)),

where HomQ(K,C) = {σ1, . . . , σn}. If we put K = Q(α) := K[x]/(f) and let α1, . . . , αn ∈ C
be the roots of f in C, each σi is the Q-algebra homomorphism K → C defined by α 7→ αi.

If we fix a Z-basis for OK , its image under the maps in (3) is a Q-basis for K, an R-basis
for KR, and a C-basis for KC, all of which are vector spaces of dimension n = [K : Q]. We
may thus view the injections in (3) as inclusions of topological groups (but not rings!)

Zn ↪→ Qn ↪→ Rn ↪→ Cn.

The ring of integers OK is a lattice in the real vector space KR ' Rn, which inherits an
inner product from the canonical Hermitian inner product on KC ' Cn defined by

〈z, z′〉 :=
n∑
i=1

ziz̄
′
i ∈ C.

For elements x, y ∈ K ↪→ KR ↪→ KC the Hermitian inner product can be computed as

〈x, y〉 :=
∑

σ∈HomQ(K,C)

σ(x)σ(y) ∈ R, (4)

which is a real number because the non-real embeddings in HomQ(K,C) come in complex
conjugate pairs. The inner product defined in (4) agrees with the restriction of the Hermitian
inner product on KR ↪→ KC. The metric space topology it induces on KR is the same as
the Euclidean topology on KR ' Rn induced by the usual dot product on Rn, but the
corresponding norm ‖x‖ := 〈x, x〉 has a different normalization, as we now explain.

If we write elements z ∈ KC ' Cn as vectors (zσ) indexed by the set σ ∈ HomQ(K,C)
in some fixed order, we may identify KR with its image in KC as the set

KR = {z ∈ KC : z̄σ = zσ̄ for all σ ∈ HomQ(K,C)}.

For real embeddings σ = σ̄ we have zσ ∈ R ⊆ C, and for pairs of conjugate complex
embeddings (σ, σ̄) we get the embedding z 7→ (zσ, zσ̄) = (zσ, z̄σ) of C into C × C used to
defined the map KR ↪→ KC above. Each z ∈ KR can be uniquely written in the form

(w1, . . . , wr, x1 + iy1, x1 − iy1, . . . , xs + iys, xs − iys), (5)

with wi, xj , yj ∈ R. Each wi corresponds to a zσ with σ = σ̄, and each (xj + iyj , xj − iyj)
corresponds to a complex conjugate pair (zσ, zσ̄) with σ 6= σ̄. The canonical inner product
on KR can then be written as

〈z, z′〉 =
r∑
i=1

wiw
′
i + 2

s∑
j=1

(xjx
′
j + yjy

′
j).
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Thus if we take w1, . . . , wr, x1, y1, . . . , xx, ys as coordinates for KR ' Rn (as R-vector
spaces), in order to normalize the Haar measure µ on KR so that it is consistent with the
Lebesgue measure µRn on Rn we define

µ(S) := 2sµRn(S) (6)

for any measurable set S ⊆ KR that we may view as a subset of Rn by expressing it in
wi, xj , yj coordinates as above. With this normalization, the identity (1) still holds when
we replace µRn with µ and the dot product on Rn with the Hermitian inner product on KR,
that is, for any R-basis e1, . . . , en of KR we still have

µ(F (e1, . . . , en)) =
√
|det[〈ei, ej〉]ij | (7)

Using the Hermitian inner product on KR ⊆ KC rather than the dot product on KR ' Rn
multiplies 2s of the columns in the matrix [〈ei, ej〉]ij by 2, and thus multiplies the RHS by√

22s = 2s; our normalization of µ = 2sµRn multiplies the LHS by 2s so that (7) still holds.

Remark 14.14. In the function field case one replaces the separable closure C of R with
a separable closure Fq(t)sep

∞ of Fq(t)∞. The situation is slightly more complicated, since
unlike C/R, the extension Fq(t)sep

∞ /Fq(t)∞ is not finite, but for any finite separable extension
K/Fq(t) (a finite étale Fq(t)-algebra) one can base change K to Fq(t)∞ and Fq(t)sep

∞ ; these
play the role of KR and KC.

14.3 Covolumes of fractional ideals

Having fixed a normalized Haar measure µ for KR, we can now compute covolumes of
lattices in KR ' Rn. This includes not only (the image of) the ring of integers OK , but also
any nonzero fractional ideal I of OK : every such I contains a nonzero principal fraction
ideal aOK , and if e1, . . . , en is a Z-basis for OK then ae1, . . . , aen is a Z-basis for aOK that
is an R-basis for KR that lies in I.

Recall from Remark 12.14 that the discriminant of a number field K is the integer

DK := discOK := disc(e1, . . . , en) ∈ Z.

Proposition 14.15. Let K be a number field. Using the normalized Haar measure on KR
defined in (6),

covol(OK) =
√
|DK |.

Proof. Let e1, . . . , en ∈ OK be a Z-basis for OK , let HomQ(K,C) = {σ1, . . . , σn}, and define
A := [σi(ej)]ij ∈ Cn×n. Then DK = disc(e1, . . . , en) = (detA)2, by Proposition 12.6

Viewing OK ↪→ KR as a lattice in KR with basis e1, . . . , en, we may use (7) to compute
covol(OK) = µ(F (e1, . . . , en)) =

√
|det[〈ei, ej〉]ij |. Applying (4) yields

det[〈ei, ej〉]ij = det
[∑

k σk(ei)σk(ej)
]
ij

= det(AtA) = (detA)(detA).

Noting that detA is the square root of an integer (hence either real or purely imaginary),
we have covol(OK)2 = |(detA)2| = |DK |, and the proposition follows.
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Recall from Remark 6.13 that for number fields K we view the absolute norm

N: IOK
→ IZ

I 7→ [OK : I]Z

as having image in Q>0 by identifying N(I) ∈ IZ with a positive generator for N(I) (note
that Z is a PID). Recall that [OK : I]Z is a module index of Z-lattices in the Q-vector
space K (see Definitions 6.1 and 6.5), and for ideals I ⊆ OK this is just the positive integer
[OK :I]Z = [OK :I]. When I = (a) is a principal fractional ideal with a ∈ K, we may simply
write N(a) := N((a)) = |NK/Q(a)|.

Corollary 14.16. Let K be a number field and let I be a nonzero fractional ideal of OK .
Then

covol(I) = N(I)
√
|DK |

Proof. Let n = [K :Q]. Since covol(bI) = bn covol(I) and N(bI) = bnN(I) for any b ∈ Z>0,
without loss of generality we may assume I ⊆ OK (replace I with a suitable bI if not).
Applying Propositions 14.10 and 14.15, we have

covol(I) = [OK :I] covol(OK) = N(I) covol(OK) = N(I)
√
|DK |

as claimed.

14.4 The Minkowski bound

Theorem 14.17. Minkowski bound Let K be a number field of degree n with s complex
places. Define the Minkowski constant mK for K as the positive real number

mK :=
n!

nn

(
4

π

)s√
|DK |.

For every nonzero fractional ideal I of OK there is a nonzero a ∈ I for which

N(a) ≤ mKN(I).

To prove this theorem we need the following lemma.

Lemma 14.18. Let K be a number field of degree n with r real and s complex places. For
each t ∈ R>0, the measure of the convex symmetric set

St :=
{

(zσ) ∈ KR :
∑
|zσ| ≤ t

}
⊆ KR

with respect to the normalized Haar measure µ on KR is

µ(St) = 2rπs
tn

n!
.

Proof. As in (5), we may uniquely write each z = (zσ) ∈ KR in the form

(w1, . . . , wr, x1 + iy1, x1 − iy1 . . . , xs + iys, xs − iys)

with wi, xj , yj ∈ R. We will have
∑

σ |zσ| ≤ t if and only if

r∑
i=1

|wi|+
s∑
j=1

2
√
|xj |2 + |yj |2 ≤ t. (8)
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We now compute the volume of this region in Rn by relating it to the volume of the simplex

Ut :=
{

(u1, . . . , un) ∈ Rn≥0 : u1 + · · ·+ un ≤ t
}
⊆ Rn,

which is µRn(Ut) = tn/n! (volume of the standard simplex in Rn scaled by a factor of t).
If we view all the wi, xj , yj as fixed except the last pair (xs, ys), then (xs, ys) ranges over

a disk of some radius d ∈ [0, t/2] determined by (8). If we replace (xs, ys) with (un−1, un)
ranging over the triangular region bounded by un−1 + un ≤ 2d and un−1, un ≥ 0, we need
to incorporate a factor of π/2 to account for the difference between (2d)2/2 = 2d2 and πd2;
repeat this s times. Similarly, if we hold everything but wr fixed and replace wr ranging
over [−d, d] for some d ∈ [0, t] with ur ranging over [0, d], we need to incorporate a factor
of 2 to account for this change of variable; repeat r times. We then have

µ(St) = 2sµRn(St) = 2s
(π

2

)s
2rµRn(U) = 2rπs

tn

n!
.

Proof of Theorem 14.17. Let I be a nonzero fractional ideal of OK . By Theorem 14.12, if we
choose t so that µ(St) > 2n covol(I), then St will contain a nonzero a ∈ I. By Lemma 14.18
and Corollary 14.16, it suffices to choose t so that(

t

n

)n
=
n!µ(St)

nn2rπs
>

n!2n

nn2rπs
covol(I) =

n!

nn

(
4

π

)s√
|DK |N(I) = mKN(I).

Let us now pick t so that
(
t
n

)n
> mKN(I). Then St contains a ∈ I with

∑
σ |σ(a)| ≤ t

Recalling that the geometric mean is bounded above by the arithmetic mean, we then have

N(a) =
(

N(a)1/n
)n

=

(∏
σ

|σ(a)|1/n
)n
≤

(
1

n

∑
σ

|σ(a)|

)n
≤
(
t

n

)n
,

Taking the limit as
(
t
n

)n → mKN(I) from above yields N(a) ≤ mKN(I).

14.5 Finiteness of the class group

Recall that the ideal class group clOK is the quotient of the ideal group IK of OK by its
subgroup of principal fractional ideals. We now use the Minkowski bound to prove that
every ideal class [I] ∈ clOK can be represented by an ideal I ⊆ OK of small norm. It will
then follow that the ideal class group is finite.

Theorem 14.19. Let K be a number field. Every ideal class in clOK contains an ideal
I ⊆ OK of absolute norm N(I) ≤ mK , where mK is the Minkowski constant for K.

Proof. Let [J ] be an ideal class of OK represented by the nonzero fractional ideal J . By
Theorem 14.17, the fractional ideal J−1 contains a nonzero element a for which

N(a) ≤ mKN(J−1) = mKN(J)−1,

and therefore N(aJ) = N(a)N(J) ≤ mK . We have a ∈ J−1, thus aJ ⊆ J−1J = OK , so
I = aJ is an OK-ideal in the ideal class [J ] with N(I) ≤ mK as desired.

Lemma 14.20. Let K be a number field and let M be a real number. The set of ideals
I ⊆ OK with N(I) ≤M is finite.
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Proof 1. As a lattice in KR ' Rn, the additive group OK ' Zn has only finitely many
subgroups I of index m for each positive integer m ≤M , since [Zn :I] = m implies

(mZ)n ⊆ I ⊆ Zn,

and (mZ)n has finite index mn = [Zn :mZn] = [Z :mZ]n in Zn.

The proof of Lemma 14.20 is effective: the number of ideals I ⊆ OK with N(I) ≤ M
clearly cannot exceed Mn+1. But in fact we can give a much better bound than this.

Proof 2. Let I be an ideal of absolute norm N(I) ≤M and let I = p1 · · · pk be its factoriza-
tion into (not necessarily distinct) prime ideals. Then M ≥ N(I) = N(p1) · · ·N(pk) ≥ 2k,
since the norm of each pi is a prime power, and in particular, at least 2. It follows that
k ≤ log2M is bounded, independent of I. Each prime ideal p lies above some prime p ≤M ,
of which there are fewer than M , and for each prime p the number of primes p|p is at
most n. Thus there are fewer than (nM)log2M ideals of norm at most M in OK .

Corollary 14.21. Let K be a number field. The ideal class group of OK is finite.

Proof. By Theorem 14.19, each ideal class is represented by an ideal of norm at most mK ,
and by Lemma 14.20, the number of such ideals is finite.

Remark 14.22. The geometry of numbers is not a necessary ingredient to Corollary 14.21,
there are purely algebraic proofs that apply to any global field; see [10] for an example.

Remark 14.23. For imaginary quadratic fields K = Q(
√
−d) it is known that the class

number hK := # clOK tends to infinity as d→∞ ranges over square-free integers. This was
conjectured by Gauss in his Disquisitiones Arithmeticae [3] and proved by Heilbronn [5] in
1934; the first fully explicit lower bound was obtained by Oesterlé in 1988 [7]. This implies
that there are only a finite number of imaginary quadratic fields with any particular class
number. It was conjectured by Gauss that there are exactly 9 imaginary quadratic fields
with class number one, but this was not proved until the 20th century by Stark [9] and
Heegner [4].1 Complete lists of imaginary quadratic fields for each class number hK ≤ 100
are now available [12]. By contrast, Gauss predicted that infinitely many real quadratic
fields should have class number 1, however this question remains completely open.2

Corollary 14.24. Let K be a number field of degree n with s complex places. Then

|DK | ≥
(
nn

n!

)2 (π
4

)2s
>

1

e2n

(
πe2

4

)n
.

Proof. If I is an ideal and a ∈ I is nonzero, then N(a) ≥ N(I), so Theorem 14.19 implies

mK =
n!

nn

(
4

π

)s√
|DK | ≥ 1,

the first inequality follows. The second uses an explicit form of Stirling’s approximation,

n! ≤ e
√
n
(n
e

)n
,

and the fact that 2s ≤ n.

1Heegner’s 1952 result [4] was essentially correct but contained some gaps that prevented it from being
generally accepted until 1967 when Stark gave a complete proof in [9].

2In fact it is conjectured that hK = 1 for approximately 75.446% of real quadratic fields with prime
discriminant; this follows from the Cohen-Lenstra heuristics [2].
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We note that πe2/4 ≈ 5.8 > 1, so the minimum value of |DK | increases exponentially
with n = [K :Q]. The lower bounds for n ∈ [2, 7] given by the corollary are listed below,
along with the least value of |DK | that actually occurs. As can be seen in the table, |DK |
appears to grow much faster than the corollary suggests. Better lower bounds can be proved
using more advanced techniques, but a significant gap still remains.

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

lower bound from Corollary 14.24 3 13 44 259 986 6267
minimum value of |DK | 3 23 275 4511 92799 2306599

Corollary 14.25. If K is a number field other than Q then |DK | > 1; equivalently, there
are no nontrivial unramified extensions of Q.

Theorem 14.26. For every real M the set of number fields K with |DK | < M is finite.

Proof. It follows from Corollary 14.24 that it suffices to prove this for fixed n := [K : Q],
since for all sufficiently large n we will have |DK | > M for all number fields K of degree n.

Case 1: Let K be a totally real field (so every place v|∞ is real) with |DK | < M . Then
r = n and s = 0, so KR ' Rr × Cs = Rn. Consider the convex symmetric set

S := {(x1, . . . , xn) ∈ KR ' Rn : |x1| ≤
√
M and |xi| < 1 for i > 1}

with measure

µ(S) = 2
√
M2n−1 = 2n

√
M > 2n

√
|DK | = 2n covol(OK).

By Theorem 14.12, the set S contains a nonzero a ∈ OK ⊆ K ↪→ KR that we may write as
a = (a1, . . . , an) = (σ1(a), . . . , σn(a)), where the σi are the n embeddings of K into C, all
of which are real embeddings. We have

N(a) =

∣∣∣∣∣∏
i

σi(a)

∣∣∣∣∣ ≥ 1,

since N(a) must be a positive integer, and |a2|, . . . , |an| < 1, so |a1| > 1 > |ai| for all i 6= 1.
We claim that K = Q(a). If not, each ai = σi(a) would be repeated [K : Q(a)] > 1

times in the vector (a1, . . . , an), since there must be [K : Q(a)] elements of HomQ(K,C)
that fix Q(a), namely, those lying in the kernel of the map HomQ(K,C)→ HomQ(Q(a),C)
induced by restriction. But this is impossible since ai 6= a1 for i 6= 1.

The minimal polynomial f ∈ Z[x] of a is a monic irreducible polynomial of degree n.
The roots of f(x) in C are precisely the ai = σi(a) ∈ R, all of which are bounded by
|ai| ≤

√
M . Each coefficient fi of f(x) is an elementary symmetric functions of its roots,

hence also bounded in absolute value (certainly |fi| ≤ 2nMn/2 for all i). The fi are integers,
so there are only finitely many possibilities for f(x), hence only finitely many totally real
number fields K of degree n.

Case 2: K has r real and s > 0 complex places, and KR ' Rr × Cs. Now let

S := {(w1, . . . , wr, z1, . . . , zs) ∈ KR : |z1|2 < c
√
M and |wi|, |zj | < 1 (j > 1)}

with c chosen so that µ(S) > 2n covol(OK) (the exact value of c depends on s and n). The
argument now proceeds as in case 1: we get a nonzero a ∈ OK ∩ S for which K = Q(a),
and only a finite number of possible minimal polynomials f ∈ Z[x] for a.
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Lemma 14.27. Let K be a number field of degree n. For each prime number p we have

vp(DK) ≤ nblogp nc+ n− 1.

In particular, vp(DK) ≤ nblog2 nc+ n− 1 for all p.

Proof. We have

vp(DK) = vp(NK/Q(DK/Q)) =
∑
q|p

fqvq(DK/Q)

where DK/Q is the different ideal and fq is the residue degree of q|p. Using Theorem 12.26
to bound vq(DK/Q) yields

vp(DK) ≤
∑
q|p

fq(eq − 1 + vq(eq)) = n−
∑
q|p

fq +
∑
q|p

fqeqvp(eq) ≤ n− 1 + nblogp nc,

where we have used −1 as an upper bound on −
∑

q|p fq and blogp nc as an upper bound on
each vp(eq) (since eq ≤ n), and the fact that

∑
q|p eqfq = n (by Theorem 5.35).

Remark 14.28. The bound in Lemma 14.27 is tight; it is achieved by K = Q[x]/(xp
e − p),

for example.

Theorem 14.29 (Hermite). Let S be a finite set of places of Q, and let n be an integer.
The number of extensions K/Q of degree n unramified outside of S is finite.

Proof. By Lemma 14.27, since n is fixed, the valuation vp(DK) is bounded for each p ∈ S
and must be zero for p 6∈ S. Thus |DK | is bounded, and the theorem then follows from
Proposition 14.26.

Remark 14.30. In the function field analogs of Theorem 14.26 and Theorem 14.29 one
requires K to be a separable extension of Fq(t) with constant field Fq (so K∩Fq = Fq). This
is not really a restriction in the sense that every global function field K contains a subfield
Fq(t) for which this is true, but one needs to take q = #(K ∩ Fq) and to choose t to be a
separating element (such a t exists by [6, Thm. 7.20]). Unlike the number field setting where
the embedding of the rational numbers Q in a number field K is unique, there are many
ways to embed the rational function field Fq(t) in a global function field K. The notion
of an absolute discriminant DK doesn’t really make sense in this setting, one can speak
of the discriminant DK/Fq(t) only after fixing a suitable choice of Fq(t). As you showed on
Problem Set 6, the valuation of the discriminant of an extension of global function fields is
not bounded as a function of the degree, in general, and this means that the function field
analog of Lemma 14.27 only holds when we use the discriminant of a separable extension.
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15 Dirichlet’s unit theorem

Let K be a number field. The two main theorems of classical algebraic number theory are:

• The class group clOK is finite.

• The unit group O×K is finitely generated.

We proved the first result in the previous lecture; in this lecture we will prove the second,
due to Dirichlet. Dirichlet (1805–1859) died five years before Minkowski (1864–1909) was
born, so he did not have Minkowski’s lattice point theorem (Theorem 14.12) to work with.
But we do, and this simplifies the proof considerably.

15.1 The group of Arakelov divisors of a global field

Let K be a global field. As in previous lectures, we use MK to denote the set of places
(equivalence classes of absolute values) of K. For each place v ∈ MK we use Kv to denote
the completion of K with respect to v (a local field), and we have a normalized absolute
value ‖ ‖v : Kv → R≥0 defined by

‖x‖v :=
µ(xS)

µ(S)
,

where µ is a Haar measure on Kv and S is any measurable set of positive finite measure.
This definition does not depend on the particular choice of µ or S; it is determined by the
topology of Kv, which is an invariant of the place v (see Definition 13.17).

When Kv is nonarchimedean its topology is induced by a discrete valuation that we also
denote v, and we use kv to denote the residue field (the quotient of the valuation ring by its
maximal ideal), which is a finite field (see Proposition 9.6). In Lecture 13 we showed that

‖x‖v =


|x|v = (#kv)

−v(x) if v is nonarchimedean,

|x|R if Kv ' R,
|x|2C if Kv ' C.

While ‖ ‖v is not always an absolute value (when Kv ' C it does not satisfy the triangle
inequality), it is always multiplicative and defines a continuous homomorphism K×v → R×>0

of locally compact groups that is surjective precisely when v is archimedean.

Definition 15.1. Let K be a global field. A (multiplicative) Arakelov divisor (or MK-
divisor) is a sequence of positive real numbers c = (cv) indexed by v ∈ MK with all
but finitely many cv = 1 and cv ∈ ‖K×v ‖ := {‖x‖v : x ∈ K×v }.1 The set of Arakelov
divisors DivK forms an abelian group under pointwise multiplication (cv)(dv) := (cvdv).
The multiplicative group K× is canonically embedded in DivK via the map x 7→ (‖x‖v),
where it forms the subgroup of principal Arakelov divisors.

Remark 15.2. Many authors define DivK as an additive group by taking logarithms (for
nonarchimedean places v, one replaces cv = (#kv)

−v(c) with the integer v(c)), as in [4] for
example. The multiplicative convention we use here is due to Weil [5] and better suited to
our application to the multiplicative group O×K .2

1When v is archimedean we have ‖K×
v ‖ = R>0 and this constraint is automatically satisfied.

2Weil calls them K-divisors [5, p. 422], while Lang uses MK-divisors [2].
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Definition 15.3. Let K be a global field. The size of an Arakelov divisor c is the real
number

‖c‖ :=
∏

v∈MK

cv ∈ R>0.

The map DivK → R×>0 defined by c 7→ ‖c‖ is a group homomorphism that contains the sub-
group of principal Arakelov divisors in its kernel (by the product formula, Theorem 13.21).
Corresponding to each Arakelov divisor c is a subset L(c) of K defined by

L(c) := {x ∈ K : ‖x‖v ≤ cv for all v ∈MK}.

and a nonzero fractional ideal of OK defined by

Ic :=
∏
v-∞

qv(c)v ,

where qv := {a ∈ OK : v(a) > 0} is the prime ideal corresponding to the discrete valuation v
that induces ‖ ‖v, and v(c) := − log#kv(cv) ∈ Z (so v(x) = v(c) if and only if ‖x‖v = cv).
We have L(c) ⊆ Ic ⊆ K, and the map c 7→ Ic defines a group homomorphism DivK → IK .
Observe that to specify an Arakelov divisor c it suffices to specify the fractional ideal Ic
and the real numbers cv > 0 for v|∞ (a finite set).

Remark 15.4. The quotient of DivK by its subgroup of principal divisors is denoted
PicK. The homomorphism DivK → IK sends principal Arakelov divisors to principal
fractional ideals, and it follows that the ideal class group clOK is a quotient of PicK. We
have a commutative diagram

DivK IK

PicK clOK .

←→

←→ ←→

←→

The Arakelov divisors of size 1 form a subgroup of DivK denoted Div0K that contains
the subgroup of principal divisors and surjects onto IK via the map DivK → IK (we are
free to choose any Ic ∈ IK because we can always choose the cv at infinite places to ensure
‖c‖ = 1). The quotient of Div0K by the subgroup of principal Arakelov divisors is the
Arakelov class group Pic0K, which admits the ideal class group clOK as a finite quotient.
See [4] for more background on Arakelov class groups and how to compute them.

Remark 15.5. The set L(c) associated to an Arakelov divisor c is directly analogous to
the Riemann-Roch space

L(D) := {f ∈ k(X) : vP (f) ≥ −nP for all closed points P ∈ X},

associated to a divisor D ∈ DivX of a smooth projective curve X/k, which is a k-vector
space of finite dimension. Recall that a divisor is a formal sum D =

∑
nPP over the closed

points (Gal(k̄/k)-orbits) of the curve X with nP ∈ Z and all but finitely many nP zero.
If k is a finite field then K = k(X) is a global field and there is a one-to-one corre-

spondence between closed points of X and places of K, and a normalized absolute value
‖ ‖P for each closed point P (indeed, one can take this as a definition). The constraint
vP (f) ≥ −nP is equivalent to ‖f‖P ≤ (#kP )nP , where kP is the residue field corresponding
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to P . If we put cP := (#kP )nP then c = (cP ) is an Arakelov divisor with L(c) = L(D). The
Riemann-Roch space L(D) is finite (since k is finite), and we will prove below that L(c) is
also finite (but note that when K is a number field the finite set L(c) is not a vector space).

In §6.3 we described the divisor group DivX as the additive analog of the ideal group
of the ring of integers A = OK , equivalently, the coordinate ring A = k[X], of the global
function field K = k(X). When X is a smooth projective curve this is not a perfect analogy
because divisors in DivX may include terms corresponding to “points at infinity” which
do not correspond to fractional ideal of A. The group of Arakelov divisors DivK takes
these infinite places into account and is a more exact analog of DivX when X is a smooth
projective curve over a finite field.

We now specialize to the case where K is a number field. Recall that the absolute norm
N(I) of a fractional ideal of OK is the unique t ∈ Q>0 for which NOK/Z(I) = (t). We have

N(Ic) =
∏
v-∞

N(qv)
v(c) =

∏
v-∞

(#kv)
v(c) =

∏
v-∞

c−1v ,

and therefore
‖c‖ = N(Ic)

−1
∏
v|∞

cv, (1)

We also define
Rc := {x ∈ KR : |x|v ≤ cv for all v|∞},

which we note is a compact, convex, symmetric subset of the real vector space

KR := K ⊗Q R ' Rr × Cs,

where r is the number of real places of K, and s is the number of complex places. If we
view Ic and L(c) as subsets of KR via the canonical embedding K ↪→ KR, then

L(c) = Ic ∩Rc.

Example 15.6. Let K = Q(i). The ideal (2 + i) lying above 5 is prime and corresponds to
a finite place v1, and there is a unique infinite place v2|∞ which is complex. Let cv1 = 1/5,
let cv2 = 10, and set cv = 1 for all other v ∈MK . We then have Ic = (2 + i) and the image
of L(c) = {x ∈ (2 + i) : |x|∞ ≤ 10} under the canonical embedding K ↪→ KR ' C is the
set of lattice points in the image of the ideal Ic that lie within the circle Rc ⊆ KR ' C of
radius

√
10. Note that ‖ ‖v2 = | |2C is the square of the usual absolute value on C, which is

why the circle has radius
√

10 rather than 10.
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√
10

The set L(c) is clearly finite; it contains exactly 9 points.

Lemma 15.7. Let c be an Arakelov divisor of a global field K. The set L(c) is finite.

Proof. We assume K is a number field; see Problem Set 7 for the function field case. The
fractional ideal Ic is a lattice in KR (under the canonical embedding K ↪→ KR), and is thus
a closed discrete subset of KR (recall from Remark 14.4 that lattices are closed). In KR
we may view L(c) = Ic ∩Rc as the intersection of a discrete closed set with a compact set,
which is a compact discrete set and therefore finite.

Corollary 15.8. Let K be a global field, and let µK denote the torsion subgroup of K×

(equivalently, the roots of unity in K). The group µK is finite and equal to the kernel of
the map K× → DivK defined by x 7→ (‖x‖v); it is also the torsion subgroup of O×K .

Proof. Each ζ ∈ µK satisfies ζn = 1 for some positive integer n. For every place v ∈MK we
have ‖ζn‖v = ‖ζ‖nv = 1, and therefore ‖ζ‖v = 1. It follows that µK ⊆ ker(K× → DivK).
Let c be the Arakelov divisor with cv = 1 for all v ∈ MK . Then ker(K× → DivK) ⊆ L(c)
is a finite subgroup of K× and is therefore contained in the torsion subgroup µK . Every
element of µK is an algebraic integer (in fact a root of xn − 1), so µK ⊆ O×K .

It follows from Corollary 15.8 that for any global field K we have the following exact
sequence of abelian groups

1 −→ µK −→ K× −→ DivK −→ PicK −→ 1.

Proposition 15.9. Let K be a number field with s complex places, define

BK :=

(
2

π

)s√
|DK |.

If c is an Arakelov divisor of size ‖c‖ > BK then L(c) contains an element of K×.
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Proof. Our strategy is to apply Minkowski’s lattice point theorem (see Theorem 14.12) to
the convex symmetric set Rc and the lattice Ic ⊆ K ⊆ KR; we just need to show that
if ‖c‖ > BK then the ratio of the Haar measure of Rc to the covolume of Ic exceeds 2n,
where n = r + 2s is the degree of K (which is the real dimension of KR). As defined in
§14.2, we normalize the Haar measure µ on the locally compact group KR ' Rr ×Cs ' Rn
so that µ(S) = 2sµRn(S) for measurable S ⊆ KR. For each real place v, the constraint
‖x‖v = |x|R ≤ cv contributes a factor of 2cv to µ(Rc), and for each complex place v the
constraint ‖x‖v = |x|2C ≤ cv contributes a factor of πcv (the area of a circle of radius

√
cv).

We may then compute

µ(Rc)

covol(Ic)
=

2sµRn(Rc)

covol(Ic)
=

2s
(∏

v real 2cv
)(∏

v complex πcv
)

covol(Ic)

=
2r(2π)s

∏
v|∞ cv√

|DK |N(Ic)
=

2r(2π)s√
|DK |

‖c‖ =
‖c‖
BK

2n > 2n

where we have used Corollary 14.16 and (1) in the second line. Theorem 14.12 implies that
L(c) = Rc∩Ic contains a nonzero element (which lies in K× ⊆ KR, since Ic ⊆ K ⊆ KR).

Remark 15.10. The bound in Proposition 15.9 can be turned into an asymptotic, that is,
for c ∈ DivK, as ‖c‖ → ∞ we have

#L(c) =

(
2r(2π)s√
|DK |

+ o(1)

)
‖c‖. (2)

This can be viewed as a multiplicative analog of the Riemann-Roch theorem for function
fields, which states that for divisors D =

∑
nPP , as degD :=

∑
nP →∞ we have

dimL(D) = 1− g + degD. (3)

The nonnegative integer g is the genus, an important invariant of a function field that is
often defined by (3); one could similarly use (2) to define the nonnegative integer |DK |.
For all sufficiently large ‖c‖ the o(1) error term will be small enough so that (2) uniquely
determines |DK |. Conversely, with a bit more work one can adapt the proofs of Lemma 15.7
and Proposition 15.9 to give a proof of the Riemann-Roch theorem for global function fields.

15.2 The unit group of a number field

Let K be a number field with ring of integers OK . The multiplicative group O×K is the unit
group of OK , and may also be called the unit group of K. Of course the unit group of the
ring K is K×, but this is typically referred to as the multiplicative group of K.

As a ring, the finite étale R-algebra KR = K ⊗Q R also has a unit group, and we have
an isomorphism of topological groups3

K×R '
∏
v|∞

K×v '
∏

real v|∞

R×
∏

complex v|∞

C× = (R×)r × (C×)s.

3The additive group of KR is isomorphic to Rn as a topological group (and R-vector space), a fact we
have used in our study of lattices in KR. But as topological rings KR ' Rr × Cs 6' Rn unless s = 0.
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Writing elements of K×R as vectors x = (xv) indexed by the infinite places v of K, we now
define a surjective homomorphism of locally compact groups

Log : K×R → Rr+s

(xv) 7→ (log ‖xv‖v).

It is surjective and continuous because each of the maps xv 7→ log ‖xv‖v is, and it is a group
homomorphism because

Log(xy) = (log ‖xvyv‖v) = (log ‖xv‖v+log ‖yv‖v) = (log ‖xv‖v)+(log ‖yv‖v) = Log x+Log y;

here we have used the fact that the normalized absolute value ‖ ‖v is multiplicative.
Recall from Corollary 13.7 that there is a one-to-one correspondence between the infinite

places of K and the Gal(C/R)-orbits of HomQ(K,C). For each v|∞ let us now pick a
representative σv of its corresponding Gal(C/R)-orbit in HomQ(K,C); for real places v
there is a unique choice for σv, while for complex places there are two choices, σv and its
complex conjugate σ̄v. Regardless of our choices, we then have

‖x‖v =

{
|σv(x)|R if v|∞ is real

|σv(x)σ̄v(x)|R if v|∞ is complex.

The absolute norm N: K× → Q×>0 extends naturally to a continuous homomorphism of
locally compact groups

N: K×R → R×>0

(xv) 7→
∏
v|∞

‖xv‖v

which is compatible with the canonical embedding K× ↪→ K×R . Indeed, we have

N(x) =
∣∣NK/Q(x)

∣∣ =

∣∣∣∣∣∏
σ

σ(x)

∣∣∣∣∣
R

=
∏
v|∞

‖x‖v.

We thus have a commutative diagram

K× K×R Rr+s

Q×>0 R×>0 R,

←↩ →

←→ N

←→Log

←→ N ←→ T

←↩ → ←→log

where T: Rr+s → R is defined by T(x) =
∑

i xi. We may view Log as a map from K× to
Rr+s via the embedding K× ↪→ K×R , and similarly view N as a map from K× to R×>0.

We can succinctly summarize the commutativity of the above diagram by the identity

T(Log x) = log N(x),

which holds for all x ∈ K×, and all x ∈ K×R . The norm of a unit in OK must be a unit
in Z, hence have absolute value 1. Thus O×K lies in the kernel of the map x 7→ log N(x)
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and therefore also in the kernel of the map x 7→ T(Log x). It follows that Log(O×K) is a
subgroup of the trace zero hyperplane

Rr+s0 := {x ∈ Rr+s : T(x) = 0},

which we note is both a subgroup of Rr+s, and an R-vector subspace of dimension r+s−1.
The proof of Dirichlet’s unit theorem amounts to showing that Log(O×K) is a lattice in Rr+s0 .

Proposition 15.11. Let K be a number field with r real and s complex places, and let ΛK
be the image of the unit group O×K in Rr+s0 under the Log map. The following hold:

(1) We have a split exact sequence of finitely generated abelian groups

1→ µK → O×K
Log−→ ΛK → 0;

(2) ΛK is a lattice in the trace zero hyperplane Rr+s0 .

Here µK is not a Haar measure, it denotes the group of roots of unity in K, all of which
are clearly torsion elements of O×K , and any torsion element of O×K is clearly a root of unity.

Proof. (1) We first show exactness. Let Z be the kernel of O×K
Log−→ ΛK . Clearly µK ⊆ Z,

since ΛK ⊆ Rr+s0 is torsion free. Let c be the Arakelov divisor with Ic = OK and cv = 2 for
v|∞, so that

L(c) = {x ∈ OK : ‖x‖v ≤ 2 for all v|∞}.

For x ∈ O×K we have

x ∈ L(c)⇐⇒ Log(x) ∈ LogRc = {z ∈ Rr+s : zi ≤ log 2}.

The set on the RHS includes the zero vector, thus Z ⊆ L(c), which by Lemma 15.7 is a
finite set. As a finite subgroup of O×K , we must have Z ⊆ µK , so Z = µK and the sequence
is exact (the map from O×K to ΛK is surjective by the definition of ΛK).

We now show the sequence splits. Note that ΛK ∩Log(Rc) = Log
(
O×K ∩ L(c)

)
is finite,

since L(c) is finite. It follows that 0 is an isolated point of ΛK in Rr+s, and in Rr+s0 , so ΛK
is a discrete subgroup of the R-vector space Rr+s0 . It is therefore a free Z-module of finite
rank at most r + s − 1, since it spans some subspace of Rr+s0 in which it is both discrete
and cocompact, hence a lattice. It follows that O×K is finitely generated, since it lies in a
short exact sequence whose left and right terms are finitely generated (recall that µK is
finite, by Corollary 15.8). By the structure theorem for finitely generated abelian groups,
the sequence must split, since µK is the torsion subgroup of O×K .

(2) Having proved (1) it remains only to show that ΛK spans Rr+s0 . Let V be the
subspace of Rr+s0 spanned by ΛK and suppose for the sake of contradiction that dimV <
dimRr+s0 . The orthogonal subspace V ⊥ then contains a unit vector u, and for every λ ∈ R>0

the open ball B<λ(λu) does not intersect ΛK . Thus Rr+s0 contains points arbitrarily far
away from every point in ΛK (with respect to any norm on Rr+s0 ⊆ Rr+s). To obtain a
contradiction it is enough to show that there is a constant M ∈ R>0 such that for every
h ∈ Rr+s0 there is an ` ∈ ΛK for which ‖h− `‖ := maxi |hi − `i| < M (here we are using ‖ ‖
to denote the sup norm on the R-vector space Rr+s).

Let us fix a real number B > BK , where BK is as in Proposition 15.9, so that for every
c ∈ DivK with ‖c‖ ≥ B the set L(c) contains a nonzero element, and fix a vector b ∈ Rr+s
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with nonnegative components bi such that T(b) =
∑

i bi = logB. Let (α1), . . . , (αm) be the
list of all nonzero principal ideals with N(αj) ≤ B (by Lemma 14.20 this is a finite list).
Let M be twice the maximum of (r + s)B and maxj ‖Log(αj)‖.

Now let h ∈ Rr+s0 , and define c ∈ DivK by Ic := OK and cv := exp(hi + bi) for v|∞,
where i is the coordinate in Rr+s corresponding to v under the Log map. We have

‖c‖ =
∏
v

cv = exp
(∑

i

(hi + bi)
)

= exp T(h+ b) = exp(T(h) + T(b)) = exp T(b) = B > BK ,

thus L(c) contains a nonzero γ ∈ Ic∩K = OK , and g = Log(γ) satisfies gi ≤ log cv = hi+bi.
We also have T(g) = T(Log γ) = log N(γ) ≥ 0, since N(γ) ≥ 1 for all nonzero γ ∈ OK . The
vector v := g − h ∈ Rr+s satisfies

∑
i vi = T(v) = T(g)− T(h) = T(g) ≥ 0 and vi ≤ bi ≤ B

which together imply |vi| ≤ (r + s)B, so ‖g − h‖ = ‖v‖ ≤M/2. We also have

log N(γ) = T(Log(γ)) ≤ T(h+ b) = T(b) = logB,

so N(γ) ≤ B and (γ) = (αj) for one of the αj fixed above. Thus γ/αj ∈ O×K is a unit, and

` := Log(γ/αj) = Log(γ)− Log(αj) ∈ ΛK

satisfies ‖g − `‖ = ‖Log(αj)‖ ≤M/2. We then have

‖h− `‖ ≤ ‖h− g‖+ ‖g − `‖ ≤M

as desired (by the triangle inequality for the sup-norm).

Dirichlet’s unit theorem follows immediately from Proposition 15.11.

Theorem 15.12 (Dirichlet’s Unit Theorem). Let K be a number field with r real
and s complex places. Then O×K ' µK × Zr+s−1 is a finitely generated abelian group.

Proof. The image of the torsion-free part of the unit group O×K under the Log map is the
lattice ΛK in the trace-zero hyperplane Rr+s0 , which has dimension r + s− 1.

We can restate this theorem in a more general form so that it applies to all global fields.
As usual, when we consider global function fields we view them as extensions of Fq(t), with q
chosen so that K ∩ Fq = Fq and t chosen so that K/Fq(t) is separable.

Theorem 15.13 (Unit Theorem for Global Fields). Let K/F be a finite separable
extension, with F = Q or F = Fq(t), let S ⊆ MK be the set of places of K lying above the
unique infinite place of F , and define O×K := {x ∈ K× : v(x) = 0 for all v ∈ MK − S}.
Then O×K ' µK × Z#S−1 is a finitely generated abelian group.

Proof. For F = Q we have #S = r + s and this is simply Dirichlet’s unit theorem; for
F = Fq(t), see [3, Prop. 14.1].

Remark 15.14. We should be careful in how we interpret 15.13 in the case F = Fq(t). By
applying an automorphism of Fq(t) (replace t by t−a for some a ∈ Fq, say) we can move any
degree-one place to infinity. This will change the group O×K and may change the number of
places of K above our new point at infinity. In contrast to the number field setting (where
the place of Q at infinity is invariant because it is the only archimedean place) the ring OK
and the set S are not intrinsic to K in the function field setting; they depend on the choice
of the separating element t used to construct the separable extension K/Fq(t).
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Example 15.15. Let K = Q(
√
d) be a quadratic field with d 6= 1 squarefree. If d < 0 then

r = 0 and s = 1, in which case the unit group O×K has rank 0 and O×K = µK is finite.

If d > 0 then K = Q(
√
d) ⊆ R is a real quadratic field with r = 2 and s = 0, and the

unit group O×K has rank 1. The only torsion elements of O×K ⊆ R are ±1, thus

O×K = {±εn : n ∈ Z},

for some ε ∈ O×K of infinite order. We may assume ε > 1: if ε < 0 then replace ε by −ε, and
if ε < 1 then replace ε by ε−1 (we cannot have ε = 1 ∈ µK).

The assumption ε > 1 uniquely determines ε. This follows from the fact that for ε > 1
we have |εn| > |ε| for all n > 1 and |εn| ≤ 1 for all n ≤ 0.

This unique ε is the fundamental unit of OK (and of K). To explicitly determine ε, let
D = discOK (so D = d if d ≡ 1 mod 4 and D = 4d otherwise). Every element of OK can
be uniquely written as

x+ y
√
D

2
,

where x and Dy are integers of the same parity. In the case of a unit we must have

N(x+y
√
D

2 ) = ±1, equivalently,
x2 −Dy2 = ±4. (4)

Conversely, any solution (x, y) ∈ Z2 to the above equation has x and Dy with the same

parity and corresponds to an element of O×K . The constraint ε = x+y
√
D

2 > 1 forces x, y > 0.

This follows from the fact that ε−1 = |x−y
√
D|

2 < 1, so −2 < x− y
√
D < 2, and adding and

subtracting x+ y
√
D > 2 shows x > 0 and y > 0 (respectively).

Thus we need only consider positive integer solutions (x, y) to (4). Among such solutions,
x1 + y1

√
D < x2 + y2

√
D implies x1 < x2, so the solution that minimizes x will give us the

fundamental unit ε.
Equation (4) is a (generalized) Pell equation. Solving the Pell equation is a well-studied

problem and there are a number of algorithms for doing so. The most well known uses
continued fractions and is explored on Problem Set 7; this is not the most efficient method,
but it is dramatically faster than an exhaustive search; see [1] for a comprehensive survey. A
remarkable feature of this problem is that even when D is quite small, the smallest solution
to (4) may be very large. For example, when D = d = 889 the fundamental unit is

ε =
26463949435607314430 + 887572376826907008

√
889

2
.

15.3 The regulator of a number field

Let K be a number field with r real places and s complex places, and let Rr+s0 be the
trace-zero hyperplane in Rr+s. Choose any coordinate projection π : Rr+s → Rr+s−1, and
use the induced isomorphism Rr+s0

∼−→ Rr+s−1 to endow Rr+s0 with a Euclidean measure.
By Proposition 15.11, the image ΛK of the unit group O×K is a lattice in Rr+s0 , and we can
measure its covolume using the Euclidean measure on Rr+s0 .

Definition 15.16. The regulator of a number field K is

RK := covol(π(Log(O×K))) ∈ R>0,
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where π : Rr+s → Rr+s−1 is any coordinate projection; the value of RK does not depend
on the choice of π, since we use π to normalize the Haar measure on Rr+s0 ' Rr+s−1. If
ε1, . . . , εr+s−1 is a fundamental system of units (a Z-basis for the free part of O×K), then RK
can be computed as the absolute value of the determinant of any (r + s− 1)× (r + s− 1)
minor of the (r + s)× (r + s− 1) matrix whose columns are the vectors Log(εi) ∈ Rr+s.

Example 15.17. If K is a real quadratic field with absolute discriminant D and fun-

damental unit ε = x+y
√
D

2 , then r + s = 2 and the product of the two real embeddings
σ1(ε), σ2(ε) ∈ R is N(ε) = ±1. Thus log |σ2(ε)| = − log |σ1(ε)| and

Log(ε) = (log |σ1(ε)|, log |σ2(ε)|) = (log |σ1(ε)|,− log |σ1(ε)|).

The 1 × 1 minors of the 2 × 1 transpose of Log(ε) have determinant ± log |σ1(ε)|; the
absolute value of the determinant is the same in both cases, and since we have require the
fundamental unit to satisfy ε > 1 (which forces a choice of embedding), the regulator of K
is simply RK = log ε.
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16 Riemann’s zeta function and the prime number theorem

We now divert our attention from algebraic number theory to talk about zeta functions and
L-functions. As we shall see, every global field has a zeta function that is intimately related
to the distribution of its primes. We begin with the zeta function of the rational field Q,
which we will use to prove the prime number theorem.

We will need some basic results from complex analysis, all of which can be found in any
introductory textbook (such as [1, 2, 3, 7, 12]). A short glossary of terms and a list of the
basic theorems we will use can be found at the end of these notes.1

16.1 The Riemann zeta function

Definition 16.1. The Riemann zeta function is the complex function defined by the series

ζ(s) :=
∑
n≥1

n−s,

for Re(s) > 1, where n varies over positive integers. It is easy to verify that this series
converges absolutely and locally uniformly on Re(s) > 1 (use the integral test on an open
ball strictly to the right of the line Re(s) = 1). By Theorem 16.17, it defines a holomorphic
function on Re(s) > 1, since each term n−s = e−s logn is holomorphic.

Theorem 16.2 (Euler product). For Re(s) > 1 we have

ζ(s) =
∑
n≥1

n−s =
∏
p

(1− p−s)−1,

where the product converges absolutely. In particular, ζ(s) 6= 0 for Re(s) > 1.

The product in the theorem above ranges over primes p. This is a standard practice in
analytic number theory that we will follow: the symbol p always denotes a prime, and any
sum or product over p is understood to be over primes, even if this is not explicitly stated.

Proof. We have ∑
n≥1

n−s =
∑
n≥1

∏
p

p−vp(n)s =
∏
p

∑
e≥0

p−es =
∏
p

(1− p−s)−1.

To justify the second equality, consider the partial zeta function ζm(s), which restricts the
summation in ζ(s) to the set Sm of m-smooth integers (those with no prime factors p > m).
If p1, . . . , pk are the primes up to m, absolute convergence implies

ζm(s) :=
∑
n∈Sm

n−s =
∑

e1,...,ek≥0

(pe11 · · · p
ek
k )−s =

∏
1≤i≤k

∑
ei≥0

(p−si )ei =
∏
p≤m

(1− p−s)−1.

For any δ > 0 the sequence of functions ζm(s) converges uniformly on Re(s) > 1+δ to ζ(s);
indeed, for any ε > 0 and any such s we have

|ζm(s)− ζ(s)| ≤

∣∣∣∣∣∣
∑
n≥m

n−s

∣∣∣∣∣∣ ≤
∑
n≥m
|n−s| =

∑
n≥m

n−Re(s) ≤
∫ ∞
m

x−1−δdx ≤ 1

δ
m−δ < ε,

1Those familiar with this material should still glance at §16.3.2 which touches on some convergence issues
that are particularly relevant to number theoretic applications.
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for all sufficiently large m. It follows that the sequence ζm(s) converges locally uniformly to
ζ(s) on Re(s) > 1. The sequence of functions Pm(s) :=

∏
p≤m(1− p−s)−1 clearly converges

locally uniformly to
∏

(1− p−s)−1 on any region in which the latter function is absolutely
convergent (or even just convergent). For any s in Re(s) > 1 we have

∑
p

| log(1− p−s)−1| =
∑
p

∣∣∣∣∣∣
∑
e≥1

1

e
p−es

∣∣∣∣∣∣ ≤
∑
p

∑
e≥1

|p−s|e =
∑
p

(|ps| − 1)−1 <∞,

where we have used the identity log(1− z) = −
∑

n≥1
1
nz

n, valid for |z| < 1. It follows that∏
p(1− p−s)−1 is absolutely convergent (and in particular, nonzero) on Re(s) > 1.

Theorem 16.3 (Analytic continuation I). For Re(s) > 1 we have

ζ(s) =
1

s− 1
+ φ(s),

where φ(s) is a holomorphic function on Re(s) > 0. Thus ζ(s) extends to a meromorphic
function on Re(s) > 0 that has a simple pole at s = 1 with residue 1 and no other poles.

Proof. For Re(s) > 1 we have

ζ(s)− 1

s− 1
=
∑
n≥1

n−s −
∫ ∞

1
x−sdx =

∑
n≥1

(
n−s −

∫ n+1

n
x−sdx

)
=
∑
n≥1

∫ n+1

n

(
n−s − x−s

)
dx.

For each n ≥ 1 the function φn(s) :=
∫ n+1
n (n−s − x−s)dx is holomorphic on Re(s) > 0. For

each fixed s in Re(s) > 0 and x ∈ [n, n+ 1] we have

|n−s − x−s| =
∣∣∣∣∫ x

n
st−s−1dt

∣∣∣∣ ≤ ∫ x

n

|s|
|ts+1|

dt =

∫ x

n

|s|
t1+Re(s)

dt ≤ |s|
n1+Re(s)

,

and therefore

|φn(s)| ≤
∫ n+1

n

∣∣n−s − x−s∣∣ dx ≤ |s|
n1+Re(s)

.

For any s0 with Re(s0) > 0, if we put ε := Re(s0)/2 and U := B<ε(s0), then for each n ≥ 1,

sup
s∈U
|φn(s)| ≤ |s0|+ ε

n1+ε
=: Mn,

and
∑

nMn = (|s0|+ε)ζ(1+ε) converges. The series
∑

n φn thus converges locally normally
on Re(s) > 0. By the Weierstrass M -test (Theorem 16.19),

∑
n φn converges to a function

φ(s) = ζ(s)− 1
s−1 that is holomorphic on Re(s) > 0.

We now show that ζ(s) has no zeros on Re(s) = 1; this fact is crucial to the prime
number theorem. For this we use the following ingenious lemma, attributed to Mertens.2

Lemma 16.4 (Mertens). For x, y ∈ R with x > 1 we have |ζ(x)3ζ(x+ iy)4ζ(x+ 2iy)| ≥ 1.

2If this lemma strikes you as pulling a rabbit out of a hat, well, it is. For a slight variation, see [15, IV],
which uses an alternative approach due to Hadamard.
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Proof. From the Euler product ζ(s) =
∏
p(1− p−s)−1, we see that for Re(s) > 1 we have

log |ζ(s)| = −
∑
p

log |1− p−s| = −
∑
p

Re log(1− p−s) =
∑
p

∑
n≥1

Re(p−ns)

n
,

since log |z| = Re log z and log(1−z) = −
∑

n≥1
zn

n for |z| < 1. Plugging in s = x+ iy yields

log |ζ(x+ iy)| =
∑
p

∑
n≥1

cos(ny log p)

npnx
,

since Re(p−ns) = p−nx Re(e−iny log p) = p−nx cos(−ny log p) = p−nx cos(ny log p). Thus

log |ζ(x)3ζ(x+ iy)4ζ(x+ 2iy)| =
∑
p

∑
n≥1

3 + 4 cos(ny log p) + cos(2ny log p)

npnx
.

We now note that the trigonometric identity cos(2θ) = 2 cos2 θ − 1 implies

3 + 4 cos θ + cos(2θ) = 2(1 + cos θ)2 ≥ 0.

Taking θ = ny log p yields log |ζ(x)3ζ(x+ iy)4ζ(x+ 2iy)| ≥ 0, which proves the lemma.

Corollary 16.5. ζ(s) has no zeros on Re(s) ≥ 1.

Proof. We know from Theorem 16.2 that ζ(s) has no zeros on Re(s) > 1, so suppose
ζ(1 + iy) = 0 for some y ∈ R. Then y 6= 0, since ζ(s) has a pole at s = 1, and we know that
ζ(s) does not have a pole at 1 + 2iy 6= 1, by Theorem 16.3. We therefore must have

lim
x→1
|ζ(x)3ζ(x+ iy)4ζ(x+ 2iy)| = 0, (1)

since ζ(s) has a simple pole at s = 1, a zero at 1 + iy, and no pole at 1 + 2iy. But this
contradicts Lemma 16.4.

16.2 The Prime Number Theorem

The prime counting function π : R→ Z≥0 is defined by

π(x) :=
∑
p≤x

1;

it counts the number of primes up to x. The prime number theorem (PNT) states that

π(x) ∼ x

log x
.

The notation f(x) ∼ g(x) means limx→∞ f(x)/g(x) = 1; one says that f is asymptotic to g.
This conjectured growth rate for π(x) dates back to Gauss and Legendre in the late 18th

century. In fact Gauss believed the asymptotically equivalent but more accurate statement3

π(x) ∼ Li(x) :=

∫ x

2

dt

log t
.

3More accurate in the sense that |π(x)− Li(x)| grows more slowly than |π(x)− x
log x
| as x→∞.
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However it was not until a century later that the prime number theorem was independently
proved by Hadamard [5] and de la Vallée Poussin [9] in 1896. Their proofs are both based
on the work of Riemann [10], who in 1860 showed that there is a precise connection between
the zeros of ζ(s) and the distribution of primes (we shall say more about this later), but
was unable to prove the prime number theorem.

The proof we will give is more recent and due to Newman [8], but it relies on the
same properties of the Riemann zeta function that were exploited by both Hadamard and
de la Vallée, the most essential of which is the fact that ζ(s) has no zeros on Re(s) ≥ 1
(Corollary 16.5). A concise version of Newman’s proof by Zagier can be found in [15]; we
will follow Zagier’s outline but be slightly more expansive in our presentation. We should
note that there are also “elementary” proofs of the prime number theorem independently
obtained by Erdös [4] and Selberg [11] in the 1940s that do not use the Riemann zeta
function, but they are elementary only in the sense that they do not use complex analysis;
the details of these proofs are considerably more complicated than the one we will give.

Rather than work directly with π(x), it is more convenient to work with the log-weighted
prime-counting function defined by Chebyshev4

ϑ(x) :=
∑
p≤x

log p,

whose growth rate differs from that of π(x) by a logarithmic factor.

Theorem 16.6 (Chebyshev). π(x) ∼ x
log x if and only if ϑ(x) ∼ x.

Proof. We clearly have 0 ≤ ϑ(x) ≤ π(x) log x, thus

ϑ(x)

x
≤ π(x) log x

x
.

For every ε ∈ (0, 1) we have

ϑ(x) ≥
∑

x1−ε<p≤x

log p ≥ (1− ε)(log x)
(
π(x)− π(x1−ε)

)
≥ (1− ε)(log x)(π(x)− x1−ε),

and therefore

π(x) ≤
(

1

1− ε

)
ϑ(x)

log x
+ x1−ε.

Thus for all ε ∈ (0, 1) we have

ϑ(x)

x
≤ π(x) log x

x
≤
(

1

1− ε

)
ϑ(x)

x
+

log x

xε
.

The second term on the RHS tends to 0 as x → ∞, and the lemma follows: by choosing ε
sufficiently small we can make the ratios of ϑ(x) to x and π(x) to x/ log x arbitrarily close
together as x→∞, so if one of them tends to 1, so must the other.

4As with most Russian names, there is no canonical way to write Chebyshev in the latin alphabet and
one finds many variations in the literature; in English, the spelling Chebyshev is now the most widely used.
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In view of Chebyshev’s result, the prime number theorem is equivalent to ϑ(x) ∼ x.
We thus want to prove limx→∞ ϑ(x)/x = 1; let us first show that limx→∞ ϑ(x)/x bounded,
which is indicated by the asymptotic notation ϑ(x) = O(x).5

Lemma 16.7 (Chebyshev). For x ≥ 1 we have ϑ(x) ≤ (4 log 2)x, thus ϑ(x) = O(x).

Proof. For any integer n ≥ 1, the binomial theorem implies

22n = (1 + 1)2n =
2n∑
m=0

(
2n

m

)
≥
(

2n

n

)
=

(2n)!

n!n!
≥
∏

n<p≤2n

p = exp(ϑ(2n)− ϑ(n)),

since (2n)! is divisible by every prime p ∈ (n, 2n] but n! is not divisible by any such p.
Taking logarithms on both sides yields

ϑ(2n)− ϑ(n) ≤ 2n log 2,

valid for all integers n ≥ 1. For any integer m ≥ 1 we have

ϑ(2m) =
m∑
n=1

(
ϑ(2n)− ϑ(2n−1)

)
≤

m∑
n=1

2n log 2 ≤ 2m+1 log 2.

For any real x ≥ 1 we can choose an integer m ≥ 1 so that 2m−1 ≤ x < 2m, and then

ϑ(x) ≤ ϑ(2m) ≤ 2m+1 log 2 = (4 log 2)2m−1 ≤ (4 log 2)x,

as claimed.

In order to prove ϑ(x) ∼ x, we will use a general analytic criterion applicable to any
non-decreasing real function f(x).

Lemma 16.8. Let f : R≥1 → R be a nondecreasing function. If the integral
∫∞

1
f(t)−t
t2

dt
converges then f(x) ∼ x.

Proof. Let F (x) :=
∫ x

1
f(t)−t
t2

dt. The hypothesis is that limx→∞ F (x) exists. This implies
that for all λ > 1 and all ε > 0 we have |F (λx)− F (x)| < ε for all sufficiently large x.

Fix λ > 1 and suppose there is an unbounded sequence (xn) such that f(xn) ≥ λxn for
all n ≥ 1. For each xn we have

F (λxn)− F (xn) =

∫ λxn

xn

f(t)− t
t2

dt ≥
∫ λxn

xn

λxn − t
t2

dt =

∫ λ

1

λ− t
t2

dt = c,

for some c > 0, where we used the fact that f is non-decreasing to get the middle inequality.
Taking ε < c, we have |F (λxn) − F (xn)| = c > ε for arbitrarily large xn, a contradiction.
Thus f(x) < λx for all sufficiently large x. A similar argument shows that f(x) > 1

λx
for all sufficiently large x. These inequalities hold for all λ > 1, so limx→∞ f(x)/x = 1.
Equivalently, f(x) ∼ x.

5The equality sign in the big-O notation f(x) = O(g(x)) is a standard abuse of notation; it simply means
lim supx→∞ |f(x)|/|g(x)| <∞ (and nothing more). In more complicated equalities a big-O expression should
be interpreted as a set of functions, one of which makes the equality true, for example,

∑
n≥1

1
n

= log n+O(1).
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In order to show that the hypothesis of Lemma 16.8 is satisfied for f = ϑ, we will work
with the function H(t) = ϑ(et)e−t − 1; the change of variables t = eu shows that∫ ∞

1

ϑ(t)− t
t2

dt converges ⇐⇒
∫ ∞

0
H(u)du converges .

We now recall the Laplace transform.

Definition 16.9. Let h : R>0 → R be a piecewise continuous function. The Laplace trans-
form Lh of h is the complex function defined by

Lh(s) :=

∫ ∞
0

e−sth(t)dt,

which is holomorphic on Re(s) > c for any c ∈ R for which h(t) = O(ect).

The following properties of the Laplace transform are easily verified.

• L(g + h) = Lg + Lh, and for any a ∈ R we have L(ah) = aLh.

• If h(t) = a ∈ R is constant then Lh(s) = a
s .

• L(eath(t))(s) = L(h)(s− a) for all a ∈ R.

We now define the auxiliary function

Φ(s) :=
∑
p

p−s log p,

which is related to ϑ(x) by the following lemma.

Lemma 16.10. L(ϑ(et))(s) = Φ(s)
s is holomorphic on Re(s) > 1.

Proof. By Lemma 16.7, ϑ(et) = O(et), so L(ϑ(et)) is holomorphic on Re(s) > 1. Let pn be
the nth prime, and put p0 := 0. The function ϑ(et) is constant on t ∈ (log pn, log pn+1), so∫ log pn+1

log pn

e−stϑ(et)dt = ϑ(pn)

∫ log pn+1

log pn

e−stdt =
1

s
ϑ(pn)

(
p−sn − p−sn+1

)
.

We then have

(Lϑ(et))(s) =

∫ ∞
0

e−stϑ(et)dt =
1

s

∞∑
n=1

ϑ(pn)
(
p−sn − p−sn+1

)
=

1

s

∞∑
n=1

ϑ(pn)p−sn −
1

s

∞∑
n=1

ϑ(pn−1)p−sn

=
1

s

∞∑
n=1

(
ϑ(pn)− ϑ(pn−1)

)
p−sn

=
1

s

∞∑
n=1

p−sn log pn =
Φ(s)

s
.

Let us now consider the function H(t) := ϑ(et)e−t − 1. It follows from the lemma and
standard properties of the Laplace transform that on Re(s) > 0 we have

LH(s) = L(ϑ(et)e−t)(s)− (L1)(s) = L(ϑ(et))(s+ 1)− 1

s
=

Φ(s+ 1)

s+ 1
− 1

s
.
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Lemma 16.11. The function Φ(s)− 1
s−1 extends to a meromorphic function on Re(s) > 1

2
that is holomorphic on Re(s) ≥ 1.

Proof. By Theorem 16.3, ζ(s) extends to a meromorphic function on Re(s) > 0, which
we also denote ζ(s), that has only a simple pole at s = 1 and no zeros on Re(s) ≥ 1, by
Corollary 16.5. It follows that the logarithmic derivative ζ ′(s)/ζ(s) of ζ(s) is meromorphic
on Re(s) > 0, with no zeros on Re(s) ≥ 1 and only a simple pole at s = 1 with residue −1
(see §16.3.1 for standard facts about the logarithmic derivative of a meromorphic function).
In terms of the Euler product, for Re(s) > 1 we have6

−ζ
′(s)

ζ(s)
= (− log ζ(s))′ =

(
− log

∏
p

(1− p−s)−1

)′
=

(∑
p

log(1− p−s)

)′

=
∑
p

p−s log p

1− p−s
=
∑
p

log p

ps − 1
=
∑
p

(
1

ps
+

1

ps(ps − 1)

)
log p

= Φ(s) +
∑
p

log p

ps(ps − 1)
.

The sum on the RHS converges absolutely and locally uniformly to a holomorphic function
on Re(s) > 1/2. The LHS is meromorphic on Re(s) > 0, and on Re(s) ≥ 1 it has only a
simple pole at s = 1 with residue 1. It follows that Φ(s) − 1

s−1 extends to a meromorphic

function on Re(s) > 1
2 that is holomorphic on Re(s) ≥ 1.

Corollary 16.12. The functions Φ(s + 1) − 1
s and (LH)(s) = Φ(s+1)

s+1 − 1
s both extend to

meromorphic functions on Re(s) > −1
2 that are holomorphic on Re(s) ≥ 0.

Proof. The first statement follows immediately from the lemma. For the second, note that

Φ(s+ 1)

s+ 1
− 1

s
=

1

s+ 1

(
Φ(s+ 1)− 1

s

)
− 1

s+ 1

is meromorphic on Re(s) > −1
2 and holomorphic on Re(s) ≥ 0, since it is a sum of products

of such functions.

The final step of the proof relies on the following analytic result due to Newman [8].

Theorem 16.13. Let f : R≥0 → R be a bounded piecewise continuous function, and suppose
its Laplace transform extends to a holomorphic function g(s) on Re(s) ≥ 0. Then the
integral

∫∞
0 f(t)dt converges and is equal to g(0).

Proof. Without loss of generality we assume f(t) ≤ 1 for all t ≥ 0. For τ ∈ R>0, define
gτ (s) :=

∫ τ
0 f(t)e−stdt, By definition

∫∞
0 f(t)dt = limτ→∞ gτ (0), thus it suffices to prove

lim
τ→∞

gτ (0) = g(0).

For r > 0, let γr be the boundary of the region {s : |s| ≤ r and Re(s) ≥ −δr} with
δr > 0 chosen so that g is holomorphic on γr; such a δr exists because g is holomorphic
on Re(s) ≥ 0, hence on some open ball B≤2δ(y)(iy) for each y ∈ [−r, r], and we may take

6As is standard when computing logarithmic derivatives, we are taking the principal branch of the complex
logarithm and can safely ignore the negative real axis where it is not defined since we are assuming Re(s) > 1.

18.785 Fall 2019, Lecture #16, Page 7



δr := inf{δ(y) : y ∈ [r,−r]}, which is positive because [−r, r] is compact. Each γr is a

simple closed curve, and for each τ > 0 the function h(s) := (g(s) − gτ (s))esτ (1 + s2

r2
) is

holomorphic on a region containing γr. Using Cauchy’s integral formula (Theorem 16.26)
to evaluate h(0) yields

g(0)− gτ (0) = h(0) =
1

2πi

∫
γr

(
g(s)− gτ (s)

)
esτ
(

1

s
+

s

r2

)
ds. (2)

We will show the LHS tends to 0 as τ → ∞ by showing that for any ε > 0 we can set
r = 3/ε > 0 so that the absolute value of the RHS is less than ε for all sufficiently large τ .

Let γ+
r denote the part of γr in Re(s) > 0, a semicircle of radius r. The integrand is

absolutely bounded by 1/r on γ+
r , since for |s| = r and Re(s) > 0 we have

∣∣g(s)− gτ (s)
∣∣ · ∣∣∣∣esτ (1

s
+

s

r2

)∣∣∣∣ =

∣∣∣∣∫ ∞
τ
f(t)e−stdt

∣∣∣∣ · eRe(s)τ

r
·
∣∣∣r
s

+
s

r

∣∣∣
≤
∫ ∞
τ
e−Re(s)tdt · e

Re(s)τ

r
· 2 Re(s)

r

=
e−Re(s)τ

Re(s)
· e

Re(s)τ

r
· 2 Re(s)

r

= 2/r2.

Therefore ∣∣∣∣ 1

2πi

∫
γ+r

(
g(s)− gτ (s)

)
esτ
(

1

s
+

s

r2

)
ds

∣∣∣∣ ≤ 1

2π
· πr · 2

r2
=

1

r
(3)

Now let γ−r be the part of γr in Re(s) < 0, a truncated semi-circle. For any fixed r, the
first term g(s)esτ (s−1 + sr−2) in the integrand of (2) tends to 0 as τ → ∞ for Re(s) < 0
and |s| ≤ r. For the second term we note that since gτ (s) is holomorphic on C, it makes no
difference if we instead integrate over the semicircle of radius r in Re(s) < 0. For |s| = r
and Re(s) < 0 we then have∣∣∣∣gτ (s)esτ

(
1

s
+

s

r2

)∣∣∣∣ =

∣∣∣∣∫ τ

0
f(t)e−stdt

∣∣∣∣ · eRe(s)τ

r
·
∣∣∣r
s

+
s

r

∣∣∣
≤
∫ τ

0
e−Re(s)tdt · e

Re(s)τ

r

(−2 Re(s))

r

=

(
1− e−Re(s)τ

Re(s)

)
eRe(s)τ

r

(−2 Re(s))

r

= 2/r2 · (1− eRe(s)τ Re(s)),

where the factor (1− eRe(s)τ Re(s)) on the RHS tends to 1 as τ →∞ since Re(s) < 0. We
thus obtain the bound 1/r + o(1) when we replace γ+

r with γ−r in (3), and the RHS of (2)
is bounded by 2/r + o(1) as τ →∞. It follows that for any ε > 0, for r = 3/ε > 0 we have

|g(0)− gτ (0)| < 3/r = ε

for all sufficiently large τ . Therefore limτ→∞ gτ (0) = g(0) as desired.
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Remark 16.14. Theorem 16.13 is an example of what is known as a Tauberian theorem.
For a piecewise continuous function f : R≥0 → R, its Laplace transform

Lf(s) :=

∫ ∞
0

e−stf(t)dt,

is typically not defined on Re(s) ≤ c, where c is the least c for which f(t) = O(ect). Now
it may happen that the function Lf has an analytic continuation to a larger domain; for
example, if f(t) = et then (Lf)(s) = 1

s−1 extends to a holomorphic function on C − {1}.
But plugging values of s with Re(s) ≤ c into the integral usually does not work; in our
f(t) = et example, the integral diverges on Re(s) ≤ 1. The theorem says that when Lf
extends to a holomorphic function on the entire half-plane Re(s) ≥ 0, its value at s = 0 is
exactly what we would get by simply plugging 0 into the integral defining Lf .

More generally, Tauberian theorems refer to results related to transforms f → T (f) that
allow us to deduce properties of f (such as the convergence of

∫∞
0 f(t)dt) from properties

of T (f) (such as analytic continuation to Re(s) ≥ 0). The term “Tauberian” was coined by
Hardy and Littlewood and refers to Alfred Tauber, who proved a theorem of this type as a
partial converse to a theorem of Abel.

Theorem 16.15 (Prime Number Theorem). π(x) ∼ x
log x .

Proof. H(t) = ϑ(et)e−t − 1 is piecewise continuous and bounded, by Lemma 16.7, and its
Laplace transform extends to a holomorphic function on Re(s) ≥ 0, by Corollary 16.12.
Theorem 16.13 then implies that the integral∫ ∞

0
H(t)dt =

∫ ∞
0

(
ϑ(et)e−t − 1

)
dt

converges. Replacing t with log x, we see that∫ ∞
1

(
ϑ(x)

1

x
− 1

)
dx

x
=

∫ ∞
1

ϑ(x)− x
x2

dx

converges. Lemma 16.8 implies ϑ(x) ∼ x, equivalently, π(x) ∼ x
log x , by Theorem 16.6.

One disadvantage of our proof is that it does not give us an error term. Using more
sophisticated methods, Korobov [6] and Vinogradov [14] independently obtained the bound

π(x) = Li(x) +O

(
x

exp
(
(log x)3/5+o(1)

)) ,
in which we note that the error term is bounded by O(x/(log x)n) for all n but not by
O(x1−ε) for any ε > 0. Assuming the Riemann Hypothesis, which states that the zeros of
ζ(s) in the critical strip 0 < Re(s) < 1 all lie on the line Re(s) = 1

2 , one can prove

π(x) = Li(x) +O(x1/2+o(1)).

More generally, if we knew that ζ(s) has no zeros in the critical strip with real part greater
than c, for some c ≥ 1/2 strictly less than 1, we could prove π(x) = Li(x) +O(xc+o(1)).

There thus remains a large gap between what we can prove about the distribution of
prime numbers and what we believe to be true. Remarkably, other than refinements to the
o(1) term appearing in the Korobov-Vinogradov bound, essentially no progress has been
made on this problem in the last 60 years.
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16.3 A quick recap of some basic complex analysis

The complex numbers C are a topological field under the distance metric d(x, y) = |x− y|
induced by the standard absolute value |z| :=

√
zz̄, which is also a norm on C as an R-vector

space; all references to the topology on C (open, compact, convergence, limits, etc.) are
made with this understanding.

16.3.1 Glossary of terms and standard theorems

Let f and g denote complex functions defined on an open subset of C.

• f is differentiable at z0 if limz→z0
f(z)−f(z0)

z−z0 exists.

• f is holomorphic at z0 if it is differentiable on an open neighborhood of z0.

• f is analytic at z0 if there is an open neighborhood of z0 in which f can be defined
by a power series f(z) =

∑
n=0 an(z − z0)n; equivalently, f is infinitely differentiable

and has a convergent Taylor series on an open neighborhood of z0.

• Theorem: f is holomorphic at z0 if and only if it is analytic at z0.

• Theorem: If C is a connected set containing a nonempty open set U and f and g
are holomorphic on C with f|U = g|U , then f|C = g|C .

• With U and C as above, if f is holomorphic on U and g is holomorphic on C with
f|U = g|U , then g is the (unique) analytic continuation of f to C and f extends to g.

• If f is holomorphic on a punctured open neighborhood of z0 and |f(z)| → ∞ as z → z0

then z0 is a pole of f ; note that the set of poles of f is necessarily a discrete set.

• f is meromorphic at z0 if it is holomorphic at z0 or has z0 as a pole.

• Theorem: If f is meromorphic at z0 then it can be defined by a Laurent series
f(z) =

∑
n≥n0

an(z − z0)n that converges on an open punctured neighborhood of z0.

• The order of vanishing ordz0(f) of a nonzero function f that is meromorphic at z0 is
the least index n of the nonzero coefficients an in its Laurent series expansion at z0.
Thus z0 is a pole of f iff ordz0(f) < 0 and z0 is a zero of f iff ordz0(f) > 0.

• If ordz0(f) = 1 then z0 is a simple zero of f , and if ordz0(f) = −1 it is a simple pole.

• The residue resz0(f) of a function f meromorphic at z0 is the coefficient a−1 in its
Laurent series expansion f(z) =

∑
n≥n0

an(z − z0)n at z0.

• Theorem: If z0 is a simple pole of f then resz0(f) = limz→z0(z − z0)f(z).

• Theorem: If f is meromorphic on a set S then so is its logarithmic derivative f ′/f ,
and f ′/f has only simple poles in S and resz0(f ′/f) = ordz0(f) for all z0 ∈ S. In
particular the poles of f ′/f are precisely the zeros and poles of f .

16.3.2 Convergence

Recall that a series
∑∞

n=1 an of complex numbers converges absolutely if the series
∑

n |an| of
nonnegative real numbers converges. An equivalent definition is that the function a(n) := an
is integrable with respect to the counting measure µ on the set of positive integers N. Indeed,
if the series is absolutely convergent then

∞∑
n=1

an =

∫
N
a(n)µ,
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and if the series is not absolutely convergent, the integral is not defined. Absolute conver-
gence is effectively built-in to the definition of the Lebesgue integral, which requires that
in order for the function a(n) = x(n) + iy(n) to be integrable, the positive real functions
|x(n)| and |y(n)| must both be integrable (summable), and separately computes sums of
the positive and negative subsequences of (x(n)) and (y(n)) as suprema over finite subsets.

The measure-theoretic perspective has some distinct advantages. It makes it immedi-
ately clear that we may replace the index set N with any set of the same cardinality, since
the counting measure depends only on the cardinality of N, not its ordering. We are thus
free to sum over any countable index set, including Z, Q, any finite product of countable
sets, and any countable coproduct of countable sets (such as countable direct sums of Z);
such sums are ubiquitous in number theory and many cannot be meaningfully interpreted
as limits of partial sums in the usual sense, since this assumes that the index set is well
ordered (not the case with Q, for example). The measure-theoretic view makes also makes
it clear that we may convert any absolutely convergent sum of the form

∑
X×Y into an

iterated sum
∑

X

∑
Y (or vice versa), via Fubini’s theorem.

We say that an infinite product
∏
n an of nonzero complex numbers is absolutely con-

vergent when the sum
∑

n log an is, in which case
∏
n an := exp(

∑
n log an).7 This implies

that an absolutely convergent product cannot converge to zero, and the sequence (an) must
converge to 1 (no matter how we order the an). All of our remarks above about absolutely
convergent series apply to absolutely convergent products as well.

A series or product of complex functions fn(z) is absolutely convergent on S if the series
or product of complex numbers fn(z0) is absolutely convergent for all z0 ∈ S.

Definition 16.16. A sequence of complex functions (fn) converges uniformly on S if there is
a function f such that for every ε > 0 there is an integerN for which supz∈S |fn(z)−f(z)| < ε
for all n ≥ N . The sequence (fn) converges locally uniformly on S if every z0 ∈ S has an
open neighborhood U for which (fn) converges uniformly on U ∩ S. When applied to a
series of functions these terms refer to the sequence of partial sums.

Because C is locally compact, locally uniform convergence is the same thing as compact
convergence: a sequence of functions converges locally uniformly on S if and only if it
converges uniformly on every compact subset of S.

Theorem 16.17. A sequence or series of holomorphic functions fn that converges locally
uniformly on an open set U converges to a holomorphic function f on U , and the sequence
or series of derivatives f ′n then converges locally uniformly to f ′ (and if none of the fn has
a zero in U and f 6= 0, then f has no zeros in U).

Proof. See [3, Thm. III.1.3] and [3, Thm. III.7.2].

Definition 16.18. A series of complex functions
∑

n fn(z) converges normally on a set S
if
∑

n ‖fn‖ :=
∑

n supz∈S |fn(z)| converges. The series
∑

n fn(z) converges locally normally
on S if every z0 ∈ S has an open neighborhood U on which

∑
n fn(z) converges normally.

Theorem 16.19 (Weierstrass M-test). Every locally normally convergent series of
functions converges absolutely and locally uniformly. Moreover, a series

∑
n fn of holomor-

phic functions on S that converges locally normally converges to a holomorphic function f
on S, and then

∑
n f
′
n converges locally normally to f ′.

7In this definition we use the principal branch of log z := log |z|+ iArg z with Arg z ∈ (−π, π).
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Proof. See [3, Thm. III.1.6].

Remark 16.20. To show a series
∑

n fn is locally normally convergent on a set S amounts
to proving that for every z0 ∈ S there is an open neighborhood U of z0 and a sequence of
real numbers (Mn) such that |fn(z)| ≤ Mn for z ∈ U ∩ S and

∑
nMn < ∞, whence the

term “M -test”.

16.3.3 Contour integration

We shall restrict our attention to integrals along contours defined by piecewise-smooth
parameterized curves; this covers all the cases we shall need.

Definition 16.21. A parameterized curve is a continuous function γ : [a, b] → C whose
domain is a compact interval [a, b] ⊆ R. We say that γ is smooth if it has a continuous
nonzero derivative on [a, b], and piecewise-smooth if [a, b] can be partitioned into finitely
many subintervals on which the restriction of γ is smooth. We say that γ is closed if
γ(a) = γ(b), and simple if it is injective on [a, b) and (a, b]. Henceforth we will use the term
curve to refer to any piecewise-smooth parameterized curve γ, or to its oriented image of
in the complex plane (directed from γ(a) to γ(b)), which we may also denote γ.

Definition 16.22. Let f : Ω→ C be a continuous function and let γ be a curve in Ω. We
define the contour integral ∫

γ
f(z)dz :=

∫ b

a
f(γ(t))γ′(t)dt,

whenever the integral on the RHS (which is defined as a Riemann sum in the usual way)
converges. Whether

∫
γ f(z)dz converges, and if so, to what value, does not depend on the

parameterization of γ: if γ′ is another parameterized curve with the same (oriented) image
as γ, then

∫
γ′ f(z)dz =

∫
γ f(z)dz.

We have the following analog of the fundamental theorem of calculus.

Theorem 16.23. Let γ : [a, b] → C be a curve in an open set Ω and let f : Ω → C be a
holomorphic function Then ∫

γ
f ′(z)dz = f(γ(b))− f(γ(a)).

Proof. See [2, Prop. 4.12].

Recall that the Jordan curve theorem implies that every simple closed curve γ parti-
tions C into two components, one of which we may unambiguously designate as the interior
(the one on the left as we travel along our oriented curve). We say that γ is contained in an
open set U if both γ and its interior lie in U . The interior of γ is a simply connected set, and
if an open set U contains γ then it contains a simply connected open set that contains γ.

Theorem 16.24 (Cauchy’s Theorem). Let U be an open set containing a simple closed
curve γ. For any function f that is holomorphic on U we have∫

γ
f(z)dz = 0.
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Proof. See [2, Thm. 8.6] (we can restrict U to a simply connected set).

Cauchy’s theorem generalizes to meromorphic functions.

Theorem 16.25 (Cauchy Residue Formula). Let U be an open set containing a simple
closed curve γ. Let f be a function that is meromorphic on U , let z1, . . . , zn be the poles of
f that lie in the interior of γ, and suppose that no pole of f lies on γ. Then∫

γ
f(z)dz = 2πi

n∑
i=1

reszi(f).

Proof. See [2, Thm. 10.5] (we can restrict U to a simply connected set).

To see where the 2πi comes from, consider
∫
γ
dz
z with γ(t) = eit for t ∈ [0, 2π]. In general

one weights residues by a corresponding winding number, but the winding number of a
simple closed curve about a point in its interior is always 1.

Theorem 16.26 (Cauchy’s Integral Formula). Let U be an open set containing a
simple closed curve γ. For any function f holomorphic on U and a in the interior of γ,

f(a) =
1

2πi

∫
γ

f(z)

z − a
dz.

Proof. Apply Cauchy’s residue formula to g(z) = f(z)/(z − a); the only poles of g in the
interior of γ are a simple pole at z = a with resa(g) = f(a).

Cauchy’s residue formula can also be used to recover the coefficients f (n)(a)/n! appearing
in the Laurent series expansion of a meromorphic function at a (apply it to f(z)/(z−a)n+1).
One of many useful consequences of this is Liouville’s theorem, which can be proved by
showing that the Laurent series expansion of a bounded holomorphic function on C about
any point has only one nonzero coefficient (the constant coefficient).

Theorem 16.27 (Liouville’s theorem). Bounded entire functions are constant.

Proof. See [2, Thm. 5.10].

We also have the following converse of Cauchy’s theorem.

Theorem 16.28 (Morera’s Theorem). Let f be a continuous function and on an open
set U , and suppose that for every simple closed curve γ contained in U we have∫

γ
f(z)dz = 0.

Then f is holomorphic on U .

Proof. See [3, Thm. II.3.5].
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17 The functional equation

In the previous lecture we proved that the Riemann zeta function ζ(s) has an Euler product
and an analytic continuation to the right half-plane Re(s) > 0. In this lecture we complete
the picture by deriving a functional equation that relates the values of ζ(s) to those of
ζ(1− s). This will then also allow us to extend ζ(s) to a meromorphic function on C that
is holomorphic except for a simple pole at s = 1.

17.1 Fourier transforms and Poisson summation

A key tool we will use to derive the functional equation is the Poisson summation formula,
a result from harmonic analysis that we now recall.

Definition 17.1. A Schwartz function on R is a complex-valued C∞ function f : R → C
that decays rapidly to zero: for all m,n ∈ Z≥0 we have

sup
x∈R

∣∣∣xmf (n)(x)
∣∣∣ <∞,

where f (n) denotes the nth derivative of f . The Schwartz space S(R) of all Schwartz
functions on R is a (non-unital) C-algebra of infinite dimension.

Example 17.2. All compactly supported C∞ functions are Schwartz functions, as is the
Gaussian function g(x) := e−πx

2
. Non-examples include functions that do not tend to zero

as x → ±∞ (such as polynomials), and functions like (1 + x2n)−1 and e−x
2

sin(ex
2
) that

either do not tend to zero quickly enough, or have derivatives that do not tend to zero as
x→ ±∞.

Remark 17.3. For any p ∈ R≥1, the Schwartz space S(R) is contained in the space Lp(R)
of functions on f : R → C for which the Lebesgue integral

∫
R |f(x)|pdx exists. The space

Lp(R) is a complete normed C-vector space under the Lp-norm ‖f‖p := (
∫
R |f(x)|pdx)1/p,

and is thus a Banach space. The Schwartz space S(R) is not complete under the Lp-norm,
but it is dense in Lp(R) (in the subspace topology). One can equip the Schwartz space with
a translation-invariant metric of its own under which it is a complete metric space (and thus
a Fréchet space, since it is also locally convex), but the topology of S(R) will not concern
us here. Similar comments apply to S(Rn).

It follows immediately from the definition and standard properties of the derivative that
the Schwartz space S(R) is closed under differentiation, multiplication by polynomials, and
linear change of variable. It is also closed under convolution: for any f, g ∈ S(R) the
function

(f ∗ g)(x) :=

∫
R
f(y)g(x− y)dy

is also an element of S(R). Convolution is commutative, associative, and bilinear.

Definition 17.4. The Fourier transform of a Schwartz function f ∈ S(R) is the function

f̂(y) :=

∫
R
f(x)e−2πixydx,
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which is also a Schwartz function [1, Thm. 5.1.3]. We can recover f(x) from f̂(y) via the
inverse transform

f(x) =

∫
R
f̂(y)e+2πixydy;

see [1, Thm. 5.1.9] for a proof of this fact. The maps f 7→ f̂ and f̂ 7→ f are thus inverse
linear operators on S(R) (they are also continuous in the metric topology of S(R) and thus
homeomorphisms).

Remark 17.5. The invertibility of the Fourier transform on the Schwartz space S(R) is
a key motivation for its definition. For functions in L1(R) (the largest space of functions
for which our definition of the Fourier transform makes sense), the Fourier transform of a
smooth function decays rapidly to zero, and the Fourier transform of a function that decays
rapidly to zero is smooth; this leads one to consider the subspace S(R) of smooth functions
that decay rapidly to zero. One can show that S(R) is the largest subspace of L1(R) closed
under multiplication by polynomials on which the Fourier transform is invertible.1

The Fourier transform changes convolutions into products, and vice versa. We have

f̂ ∗ g = f̂ ĝ and f̂g = f̂ ∗ ĝ,

for all f, g ∈ S(R) (see Problem Set 8). One can thus view the Fourier transform as an
isomorphism of (non-unital) C-algebras that sends (S(R),+,×) to (S(R),+, ∗).

Lemma 17.6. For all a ∈ R>0 and f ∈ S(R), we have f̂(ax)(y) = 1
a f̂(ya).

Proof. Applying the substitution t = ax yields

f̂(ax)(y) =

∫
R
f(ax)e−2πixydx =

1

a

∫
R
f(t)e−2πity/adt =

1

a
f̂
(y
a

)
.

Lemma 17.7. For f ∈ S(R) we have d
dy f̂(y) = −2πi x̂f(x)(y) and d̂

dxf(x)(y) = 2πiyf̂(y).

Proof. Noting that xf ∈ S(R), the first identity follows from

d
dy f̂(y) = d

dy

(∫
R
f(x)e−2πixydx

)
=

∫
R
f(x)(−2πix)e−2πixydx = −2πi x̂f(x)(y),

since we may differentiate under the integral via dominated convergence. For the second,
we note that limx→±∞ f(x) = 0, so integration by parts yields

d̂
dxf(x)(y) =

∫
R
f ′(x)e−2πixydx = 0−

∫
R
f(x)(−2πiy)e−2πixydx = 2πiyf̂(y).

The Fourier transform is compatible with the inner product 〈f, g〉 :=
∫
R f(x)g(x)dx on

L2(R) (which contains S(R)). Indeed, we can easily derive Parseval’s identity:

〈f, g〉 =

∫
R
f(x)g(x)dx =

∫
R

∫
R
f̂(y)g(x)e+2πixydxdy =

∫
R
f̂(y)ĝ(y)dy = 〈f̂ , ĝ〉,

which when applied to g = f yields Plancherel’s identity:

‖f‖22 = 〈f, f〉 = 〈f̂ , f̂〉 = ‖f̂‖22,

where ‖f‖2 = (
∫
R |f(x)|2dx)1/2 is the L2-norm. For number-theoretic applications there is

an analogous result due to Poisson.

1I thank Keith Conrad and Terry Tao for clarifying this point.
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Theorem 17.8 (Poisson Summation Formula). For all f ∈ S(R) we have the identity∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

Proof. We first note that both sums are well defined; the rapid decay property of Schwartz
functions guarantees absolute convergence. Let F (x) :=

∑
n∈Z f(x + n). Then F is a

periodic C∞-function, so it has a Fourier series expansion

F (x) =
∑
n∈Z

cne
2πinx,

with Fourier coefficients

cn =

∫ 1

0
F (t)e−2πintdt =

∫ 1

0

∑
m∈Z

f(t+m)e−2πintdt =

∫
R
f(t)e−2πintdt = f̂(n).

We then note that ∑
n∈Z

f(n) = F (0) =
∑
n∈Z

cn =
∑
n∈Z

f̂(n).

Finally, we note that the Gaussian function e−πx
2

is its own Fourier transform.

Lemma 17.9. Let g(x) := e−πx
2
. Then ĝ(y) = g(y).

Proof. The function g(x) satisfies the first order ordinary differential equation

g′ + 2πxg = 0, (1)

with initial value g(0) = 1. Multiplying both sides by −i and taking Fourier transforms
yields

−i(ĝ′ + 2πx̂g) = −i(2πixĝ + iĝ′) = ĝ′ + 2πxĝ = 0,

via Lemma 17.7. So ĝ also satisfies (1), and ĝ(0) =
∫
R e
−πx2dx = 1, so ĝ = g.

17.1.1 Jacobi’s theta function

We now define the theta function2

Θ(τ) :=
∑
n∈Z

eπin
2τ .

The sum is absolutely convergent for im τ > 0 and thus defines a holomorphic function on
the upper half plane. It is easy to see that Θ(τ) is periodic modulo 2, that is,

Θ(τ + 2) = Θ(τ),

but it it also satisfies another functional equation.

Lemma 17.10. For all a ∈ R>0 we have Θ(ia) = Θ(i/a)/
√
a.

Proof. Put g(x) := e−πx
2

and h(x) := g(
√
ax) = e−πx

2a. Lemmas 17.6 and 17.9 imply

ĥ(y) = ̂g(
√
ax)(y) = ĝ

(
y/
√
a
)
/
√
a = g

(
y/
√
a
)
/
√
a.

Plugging τ = ia into Θ(τ) and applying Poisson summation (Theorem 17.8) yields

Θ(ia) =
∑
n∈Z

e−πn
2a =

∑
n∈Z

h(n) =
∑
n∈Z

ĥ(n) =
∑
n∈Z

g
(
n/
√
a
)
/
√
a = Θ(i/a)/

√
a.

2The function Θ(τ) we define here is a special case of one of four parameterized families of theta functions
Θi(z : τ) originally defined by Jacobi for i = 0, 1, 2, 3, which play an important role in the theory of elliptic
functions and modular forms; in terms of Jacobi’s notation, Θ(τ) = Θ3(0; τ).
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17.1.2 Euler’s gamma function

You are probably familiar with the gamma function Γ(s), which plays a key role in the
functional equation of not only the Riemann zeta function but many of the more general zeta
functions and L-series we wish to consider. Here we recall some of its analytic properties.
We begin with the definition of Γ(s) as a Mellin transform.

Definition 17.11. The Mellin transform of a function f : R>0 → C is the complex function
defined by

M(f)(s) :=

∫ ∞
0
f(t)ts−1dt,

whenever this integral converges. It is holomorphic on Re s ∈ (a, b) for any interval (a, b) in
which the integral

∫∞
0 |f(t)|tσ−1dt converges for all σ ∈ (a, b).

Definition 17.12. The Gamma function

Γ(s) :=M(e−t)(s) =

∫ ∞
0

e−tts−1dt,

is the Mellin transform of e−t. Since
∫∞

0 |e
−t|tσ−1dt converges for all σ > 0, the integral

defines a holomorphic function on Re(s) > 0.
Integration by parts yields

Γ(s) =
tse−t

s

∣∣∣∣∞
0

+
1

s

∫ ∞
0

e−ttsdt =
Γ(s+ 1)

s
,

thus Γ(s) has a simple pole at s = 0 with residue 1 (since Γ(1) =
∫∞

0 e−tdt = 1), and

Γ(s+ 1) = sΓ(s) (2)

for Re(s) > 0. Equation (2) allows us to extend Γ(s) to a meromorphic function on C with
simple poles at s = 0,−1,−2, . . ., and no other poles.

An immediate consequence of (2) is that for integers n > 0 we have

Γ(n+ 1) = nΓ(n) = n(n− 1)Γ(n− 1) = n(n− 1)(n− 2) · · · 2 · 1 · Γ(1) = n!,

thus the gamma function can be viewed as an extension of the factorial function. The
gamma function satisfies many useful identities in addition to (2), including the following.

Theorem 17.13 (Euler’s Reflection Formula). We have

Γ(s)Γ(1− s) =
π

sin(πs)
.

as meromorphic functions on C with simple poles at each integer s ∈ Z.

Proof. Let f(s) := Γ(s)Γ(1 − s) sin(πs). The function Γ(s)Γ(1 − s) has a simple pole at
each s ∈ Z and no other poles, while sin(πs) has a zero at each s ∈ Z and no poles, so f(s)
is holomorphic on C. We now note that

f(s+ 1) = Γ(s+ 1)Γ(−s) sin(πs+π) = −sΓ(s)Γ(−s) sin(πs) = Γ(s)Γ(1− s) sin(πs) = f(s),
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so f is periodic (with period 1). Using the substitution u = et we obtain

|Γ(s)| ≤
∫ ∞

0
|e−tts−1|dt =

∫ ∞
−∞
|e−eueu(s−1)|eudu =

∫ ∞
−∞

euRe(s)−eudu.

This implies |Γ(s)| is bounded on Re(s) ∈ [1, 2], hence on Re(s) ∈ [0, 1]∩ Im(s) ≥ 1, via (2).
It follows that in the strip Re(s) ∈ [0, 1] we have

|f(s)| = |Γ(s)||Γ(1− s)|| sin(πs)| = O(eIm(s)),

as Im(s) → ∞, since | sin(πs)| = 1
2 |e

is − eis̄| = O(eIm(s)). By Lemma 17.14 below, f(s) is
constant. To determine the constant, as s→ 0 we have Γ(s) ∼ 1

s and sin(πs) ∼ πs, thus

f(0) = lim
s→0

f(s) = lim
s→0

Γ(s)Γ(1− s) sin(πs) = lim
s→0

1

s
· 1 · πs = π,

and the theorem follows.

Lemma 17.14. Let f(s) be a holomorphic function on C such that f(s + 1) = f(s) and
|f(s)| = O(eIm(s)) as Im(s)→∞ in the vertical strip Re(s) ∈ [0, 1]. Then f is constant.

Proof. The function

g(s) =
f(s)− f(a)

sin(π(s− a))

is holomorphic on C, since f(s) − f(a) is holomorphic and vanishes at the zeros a + Z
of sin(π(s − a)) (all of which are simple). We also have g(s + 1) = g(s), and |g(s)| is
bounded on Re(s) ∈ [0, 1], since as Im(s) → ∞ we have |f(s) − f(a)| = O(eIm(s)) and
| sin(π(s−a))| ∼ eπ Im(s). It follows that g(s) is bounded on C, hence constant, by Liouville’s
theorem. We must have g = 0, since |g(s)| = O(e(1−π) Im(s)) = o(1) as Im(s)→∞, and this
implies f(s) = f(a) for all s ∈ C.

Example 17.15. Putting s = 1
2 in the reflection formula yields Γ(1

2)2 = π, so Γ(1
2) =

√
π.

Corollary 17.16. The function Γ(s) has no zeros on C.

Proof. Suppose Γ(s0) = 0. The RHS of the reflection formula Γ(s)Γ(1 − s) = π/ sin(πs)
is never zero, since sin(πs) has no poles, so Γ(1 − s) must have a pole at s0. Therefore
1 − s0 ∈ Z, equivalently, s0 ∈ Z, but for s0 ∈ Z>0 we have Γ(s0) = (s0 − 1)! 6= 0, and for
s0 ∈ Z≤0 we cannot have Γ(s0) = 0 because Γ(s) has a pole at all non-positive integers.

17.1.3 Completing the zeta function

Let us now consider the function

F (s) := π−sΓ(s)ζ(2s),

which is holomorphic on Re(s) > 1/2. In the region Re(s) > 1/2 we have an absolutely
convergent sum

F (s) = π−sΓ(s)
∑
n≥1

n−2s =
∑
n≥1

(πn2)−sΓ(s) =
∑
n≥1

∫ ∞
0

(πn2)−sts−1e−tdt,
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and the substitution t = πn2y with dt = πn2dy yields

F (s) =
∑
n≥1

∫ ∞
0

(πn2)−s(πn2y)s−1e−πn
2yπn2dy =

∑
n≥1

∫ ∞
0

ys−1e−πn
2ydy.

By the Fubini-Tonelli theorem, we can swap the sum and the integral to obtain

F (s) =

∫ ∞
0

ys−1
∑
n≥1

e−πn
2ydy.

We have Θ(iy) =
∑

n∈Z e
−πn2y = 1 + 2

∑
n≥1 e

−πn2y, thus

F (s) =
1

2

∫ ∞
0

ys−1(Θ(iy)− 1)dy

=
1

2

(∫ 1

0
ys−1Θ(iy)dy − 1

s
+

∫ ∞
1

ys−1(Θ(iy)− 1)dy

)
We now focus on the first integral on the RHS. The change of variable t = 1

y yields∫ 1

0
ys−1Θ(iy)dy =

∫ 1

∞
t1−sΘ(i/t)(−t−2)dt =

∫ ∞
1

t−s−1Θ(i/t)dt.

By Lemma 17.10, Θ(i/t) =
√
tΘ(it), and adding −

∫∞
1 t−s−1/2dt+

∫∞
1 t−s−1/2dt = 0 yields

=

∫ ∞
1

t−s−1/2
(
Θ(it)− 1

)
dt+

∫ ∞
1

t−s−1/2dt

=

∫ ∞
1

t−s−1/2
(
Θ(it)− 1

)
dt− 1

1/2− s
.

Plugging this back into our equation for F (s) we obtain the identity

F (s) =
1

2

∫ ∞
1

(
ys−1 + y−s−1/2

)(
Θ(iy)− 1

)
dy − 1

2s
− 1

1− 2s
,

valid on Re(s) > 1/2. We now observe that F (s) = F (1
2 − s) for s 6= 0, 1

2 , which allows us
to analytically extend F (s) to a meromorphic function on C with poles only at s = 0, 1/2.
Replacing s with s/2 leads us to define the completed zeta function

Z(s) := π
−s/2Γ( s2)ζ(s), (3)

which is meromorphic on C and satisfies the functional equation

Z(s) = Z(1− s). (4)

It has simple poles at 0 and 1 (and no other poles). The only zeros of Z(s) on Re(s) > 0
are the zeros of ζ(s), since by Corollary 17.16, the gamma function Γ(s) has no zeros (and
neither does π−s/2). Thus the zeros of Z(s) on C all lie in the critical strip 0 < Re(s) < 1.

The functional equation also allows us to analytically extend ζ(s) to a meromorphic
function on C whose only pole is a simple pole at s = 1; the pole of Z(s) at s = 0 comes
from the pole of Γ(s/2) at s = 0. The function Γ(s/2) also has poles at −2,−4, . . . where
Z(s) does not, so our extended ζ(s) must have zeros at −2,−4, . . .. These are trivial zeros;
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all the interesting zeros of ζ(s) lie in the critical strip and are conjectured to lie only on the
critical line Re(s) = 1/2 (this is the Riemann hypothesis).

We can compute ζ(0) using the functional equation. From (3) and (4) we have

ζ(s) =
Z(s)

π−s/2Γ( s2)
=

Z(1− s)
π−s/2Γ( s2)

=
π

(s−1)
2 Γ(1−s

2 )

π−s/2Γ( s2)
ζ(1− s) =

πs−1/2Γ(1−s
2 )

Γ( s2)
ζ(1− s). (5)

We know that ζ(s) has a simple pole with residue 1 at s = 1, so

1 = lim
s→1+

(s− 1)ζ(s) = lim
s→1+

(s− 1)πs−1/2Γ(1−s
2 )

Γ( s2)
ζ(1− s).

When s = 1, the denominator on the RHS is Γ(1
2) =

√
π, which cancels π1−1/2 =

√
π in the

numerator. Using Γ(z) = 1
zΓ(z + 1) to shift Γ(1−s

2 ) in the numerator yields

1 = lim
s→1+

(s− 1) 2
1−sΓ

(
3−s

2

)
ζ(1− s) = −2Γ(1)ζ(0) = −2ζ(0).

Thus ζ(0) = −1/2.
Using the reflection formula to replace Γ( s2) = π/(Γ(2−s

2 ) sin(πs2 )) in (5), we have

ζ(s) = πs−
3/2Γ(1−s

2 )Γ(2−s
2 ) sin(πs2 )ζ(1− s).

Applying the duplication formula Γ(2z) = π−1/222z−1Γ(z)Γ(z+ 1
2) with z = 1−s

2 then yields

ζ(s) = 2sπs−1 sin(πs2 )Γ(1− s)ζ(1− s), (6)

which is how one often sees the functional equation for ζ(s) written.

17.2 Gamma factors and a holomorphic zeta function

If we write out the Euler product for the completed zeta function, we have

Z(s) = π−
s/2Γ( s2) ·

∏
p

(1− p−s)−1.

One should think of this as a product over the places of the field Q; the leading factor

ΓR(s) := π−
s/2Γ( s2)

that distinguishes the completed zeta function Z(s) from ζ(s) corresponds to the real
archimedean place of Q. When we discuss Dedekind zeta functions in a later lecture we
will see that there are gamma factors ΓR and ΓC associated to each of the real and complex
places of a number field.

If we insert an additional factor of
(
s
2

)
:= s(s−1)

2 in Z(s) we can remove the poles at 0
and 1, yielding a function ξ(s) holomorphic on C. This yields Riemann’s seminal result.

Theorem 17.17 (Analytic Continuation II). The function

ξ(s) :=
(
s
2

)
ΓR(s)ζ(s)

is holomorphic on C and satisfies the functional equation

ξ(s) = ξ(1− s).

The zeros of ξ(s) all lie in the critical strip 0 < Re(s) < 1.

Remark 17.18. We will usually work with Z(s) and deal with the poles rather than making
it holomorphic by introducing additional factors; some authors use ξ(s) to denote our Z(s).
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17.3 Zeros in the critical strip

The zeros of ξ(s) in the critical strip are precisely the zeros of ζ(s) in the critical strip. Let
N(T ) denote the number of zeros of ξ(s) in the critical strip that satisfy 0 < im s < T .
If we fix ε > 0 and let R be the rectangle {−ε ≤ Re(s) ≤ 1 + ε, 0 ≤ im s ≤ T}, we can
compute N(T ) using Cauchy’s argument principle via

N(T ) =
1

2πi

∫
∂R

ξ′(s)

ξ(s)
ds,

provided that there are no zeros on the lines im s = 0 and im s = T . From this formula and
the functional equation one derive the asymptotic formula

N(T ) ∼ 1

2π
T log

(
T

2πe

)
,

along with an explicit error term that allows one to compute the integer N(T ) exactly.
Note that this formula implies that there are infinitely many zeros in the critical strip. The
Riemann hypothesis states that all of these zeros lie on the critical line im s = 1/2.

One can count zeros on the critical line by counting zeros of the Hardy Z-function

eiθ(t)ζ(1/2 + it)

in a region 0 ≤ t ≤ T , where θ(t) is the Riemann-Siegel function

θ(t) := arg

(
Γ

(
2it+ 1

4

))
− log π

2
t.

There are asymptotic expansions of the Hardy Z-function that allow one to do this efficiently 
(one counts sign changes and checks for multiple roots). By comparing the result to N(T ) 
one can determine whether all the zeros in the critical strip with 0 < im s < T lie on the 
critical line or not. This has been done for values of T exceeding 1013; more precisely, it 
has been verified that when ordered by their imaginary parts, the first 1013 zeros above the 
real axis all lie on the critical line; see [2] for details.
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18 Dirichlet L-functions, primes in arithmetic progressions

Having proved the prime number theorem, we would like to prove an analogous result
for primes in arithmetic progressions. We begin with Dirichlet’s theorem on primes in
arithmetic progressions, a result that predates the prime number theorem by sixty years.

Theorem 18.1 (Dirichlet 1837). For all coprime integers a and m there are infinitely many
primes p ≡ a mod m.

In fact Dirichlet proved more than this. In a sense that we will make precise below, he
proved that for every fixed modulus m the primes are equidistributed among the residue
classes in (Z/mZ)×. The equidistribution statement that Dirichlet was able to prove is a
bit weaker than one might like, but it is more than enough to establish Theorem 18.1.

Remark 18.2. Many of the standard tools of complex analysis we take for granted were not
available to Dirichlet in 1837. Riemann was the first to seriously study ζ(s) as a function of
a complex variable, some twenty years after Dirichlet proved Theorem 18.1. We will work
in a more modern setting, but our approach still follows the spirit of Dirichlet’s proof.

18.1 Infinitely many primes

To motivate Dirichlet’s method of proof, let us consider the following (admittedly clumsy)
proof that there are infinitely many primes. It is sufficient to show that the Euler product

ζ(s) =
∏
p

(1− p−s)−1

diverges as s→ 1+. Of course we know ζ(s) has a pole at s = 1 (by Theorem 16.3), but let
us suppose for the moment that we did not already know this. Taking logarithms yields

log ζ(s) = −
∑
p

log(1− p−s) =
∑
p

p−s +O(1), (1)

as s→ 1+, where we have used the asymptotic bounds

− log(1− x) = x+O(x2) (as x→ 0) and
∑
p

O(p−2s) = O(1) (Re(s) > 1/2 + ε).

We can estimate
∑

p≤x
1
p via Mertens’ second theorem, one of three he proved in [4].

Theorem 18.3 (Mertens 1874). As x→∞ we have

(1)
∑
p≤x

log p
p = log x+R(x), where |R(x)| < 2.1

(2)
∑
p≤x

1
p = log log x+B +O

(
1

log x

)
, where B = 0.261497 . . . is Mertens’ constant;

(3)
∑
p≤x

log
(
1− 1

p

)
= −log log x− γ +O

(
1

log x

)
, where γ = 0.577216 . . . is Euler’s constant.

1In fact, R(x) = −B3 + o(1) where B3 = 1.332582 . . . is an explicit constant.
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Proof. See Problem Set 9.

Thus not only does
∑
p−s diverge as s→ 1+, we can say with a fair degree of precision

how quickly this happens. We should note, however, that Mertens’ estimate is not as
strong as the prime number theorem. Indeed, as you will prove on Problem Set 9, the
Prime Number Theorem is equivalent to the statement∑

p≤x

1

p
= log log x+B + o

(
1

log x

)
,

which is (ever so slightly) sharper than Mertens’ estimate.2

18.1.1 Infinitely many primes congruent to 1 modulo 4

To demonstrate how the argument above generalizes to primes in arithmetic progressions,
let us prove there are infinitely many primes congruent to 1 mod 4. We might initially
consider ∏

p≡ 1 mod 4

(1− p−s)−1 =
∑
n≥1

p|n⇒ p≡ 1 mod 4

n−s,

but the sum on the RHS is a bit awkward. Let us instead define a Dirichlet character

χ(n) :=


1 if n ≡ 1 mod 4,

−1 if n ≡ −1 mod 4,

0 otherwise,

and consider the Dirichlet L-function

L(s, χ) :=
∏
p

(1− χ(p)p−s)−1 =
∑
n≥1

χ(n)n−s = 1− 3−s + 5−s − 7−s + 9−s + · · · ,

which converges absolutely on Re(s) > 1. As s→ 1+ we have

logL(s, χ) = −
∑
p

log(1− χ(p)p−s) =
∑
p

χ(p)p−s +O(1)

=
∑

p≡ 1 mod 4

p−s −
∑

p≡ 3 mod 4

p−s + O(1),

and
log ζ(s) =

∑
p≡ 1 mod 4

p−s +
∑

p≡ 3 mod 4

p−s +O(1),

thus
log ζ(s) + logL(s, χ)

2
=

∑
p≡ 1 mod 4

p−s +O(1).

Provided logL(s, χ) = O(1) as s→ 1+, the LHS (and hence the RHS) must tend to infinity
as s→ 1+, since ζ(s)→∞ as s→ 1+. It thus suffices to show that L(s, χ) has an analytic

2The error term in the PNT actually implies
∑

p≤x
1
p

= log log x + B + O
(
1
x

)
, but an o( 1

log x
) bound is

already enough to show π(x) ∼ x/ log x. That the difference between a little-o and a big-O is the difference
between proving the PNT and not proving it demonstrates how critical it is to understand error terms.
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continuation to a neighborhood of s = 1 with L(1, χ) 6= 0 (in which case there is a branch
of the complex logarithm holomorphic on a neighborhood of L(1, χ)). We will prove this in
the next lecture. Assuming this for the moment, we then have∑

p≤x
p≡ 1 mod 4

1

p
=

1

2
log log x+O(1).

Mertens’ second theorem implies that the same holds if we instead sum over p ≡ 3 mod 4.
The primes are thus equidistributed modulo m = 4 in the sense that for all integers a
coprime to m we have ∑

p≤x
p≡ a mod m

1

p
∼ 1

φ(m)

∑
p≤x

1

p
∼ 1

φ(m)
log log x.

We should note that this statement is weaker than the prime number theorem for arithmetic
progressions, which states that

π(x;m, a) ∼ 1

φ(m)
π(x),

where π(x;m, a) counts the primes p ≤ x for which p ≡ a mod m (see Problem Set 9).
Dirichlet did not have Mertens’ asymptotic bounds so he stated his results in a different

way, using what is now called the Dirichlet density of a set of primes S,

d(S) := lim
s→1+

∑
p∈S p

−s∑
p p
−s ,

defined whenever this limit exists (one can also define notions of lower and upper Dirichlet
density using lim inf and lim sup that are always defined and agree whenever d(S) is defined).
This definition differs from the more common notion of natural density

δ(S) := lim
x→∞

#{p ≤ x : p ∈ S}
#{p ≤ x}

.

Dirichlet proved that for all coprime integers a and m the set of primes p ≡ a mod m has
Dirichlet density 1/φ(m), whereas the prime number theorem for arithmetic progressions
states that this set has natural density 1/φ(m). If a set of primes S has a natural density
then it has a Dirichlet density and the two are equal, but the converse need not hold: there
are sets of primes that have a Dirichlet density but no natural density (see Problem Set 9).

In order to complete our proof that there are infinitely many primes p ≡ 1 mod 4, we
still need to show L(1, χ) 6= 0. We will achieve this in the next lecture, but for now let
us show that this reduces to understanding the behavior of the Dedekind zeta function3

ζQ(i)(s) at s = 1. In general the Dedekind zeta function of a number field K is defined by

ζK(s) :=
∑
a

N(a)−s =
∏
p

(1−N(p)−s)−1,

3The Dedekind zeta function is named after Richard Dedekind, the last doctoral student of Gauss. He
received his Ph.D. in 1854, the same year as Riemann, another student of Gauss. Dedekind and Riemann
both studied under Dirichlet as well.
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where the sum ranges over nonzero ideals of the ring of integers OK , the product ranges
over nonzero prime ideals of OK (primes of K), and N(a) := [OK : a] is the absolute norm.
Note that ζQ(s) = ζ(s), so this is a natural generalization of the Riemann zeta function.

That the Euler product for ζK(s) converges for Re(s) > 1 follows easily from the case
ζQ(s) = ζ(s) proved in Theorem 16.2. We use unique factorization of ideals in the Dedekind
domain OK to convert the sum over ideals a into a product over prime ideals p. We then
note that for each rational prime p we have #{p|p} ≤ [K : Q] = n and N(p) = pfp ≥ p (by
Theorems 5.35 and 6.10), and it follows that∑

p

∣∣log(1−N(p)−s)
∣∣ ≤ n

∑
p

∣∣log(1− p−s)
∣∣ .

The sum on the RHS converges on Re(s) > 1, so the sum on the LHS must as well.
For K = Q(i) we can rewrite the Euler product for ζK(s) as

ζK(s) =
∏
p

(1−N(p)−s)−1 =
∏
p

∏
p|p

(1−N(p)−s)−1

= (1− 2−s)−1
∏

p≡1 mod 4

(1− p−s)−1(1− p−s)−1
∏

p≡3 mod 4

(1− p−2s)−1

= (1− 2−s)−1
∏

p≡1 mod 4

(1− p−s)−1(1− p−s)−1
∏

p≡3 mod 4

(1− p−s)−1(1 + p−s)−1

=
∏
p

(1− p−s)−1
∏
p

(1− χ(p)p−s)−1

= ζ(s)L(s, χ),

where we have used the fact that we have

• one prime p of norm N(p) = 2 above the single prime p = 2 that ramifies in Q(i);

• two primes p, p̄ of norm N(p) = N(p̄) = p above each prime p that splits in Q(i),
equivalently, the primes p ≡ 1 mod 4;

• one prime p of norm N(p) = p2 above each prime p that remains inert in Q(i),
equivalently, the primes p ≡ 3 mod 4.

We know ζ(s) has a simple pole at s = 1. If we can show ζK(s) extends to a meromorphic
function with a simple pole at s = 1, then L(s, χ) must extend to a function that is
holomorphic and nonvanishing at s = 1, since

ords=1L(s, χ) = ords=1ζK(s)− ords=1ζ(s) = −1− (−1) = 0.

In fact, ζK(s) extends to a meromorphic function on Re(s) > 1
2 with a simple pole at

s = 1; this can be proved directly, but it follows from a much more general and striking
result, the analytic class number formula, which was also proved by Dirichlet (at least for
quadratic fields). We will prove the analytic class number formula in the next lecture. For
the remainder of this lecture we will focus on generalizing our approach to handle arbitrary
moduli m.
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18.2 Dirichlet characters

We now define the notion of a Dirichlet character. Historically, these preceded the notion
of a group character; they were introduced by Dirichlet in 1831, well before the notion of an
abstract group was in common use.4 In order to simplify the exposition we will occasionally
invoke some standard facts about characters of finite abelian groups that we recall in §18.6.

Definition 18.4. A function f : Z → C is called an arithmetic function.5 The function f
is multiplicative if f(1) = 1 and f(mn) = f(m)f(n) for all coprime m,n ∈ Z; it is totally
multiplicative (or completely multiplicative) if f(1) = 1 and f(mn) = f(m)f(n) for all
m,n ∈ Z. For m ∈ Z>0 we say that f is m-periodic if f(n + m) = f(n) for all n ∈ Z, and
we call m the period of f it is the least m > 0 for which this holds.

Definition 18.5. A Dirichlet character is a periodic totally multiplicative arithmetic func-
tion χ : Z→ C.

The image of a Dirichlet character is a finite multiplicatively closed subset of C, hence
the union of a finite subgroup of U(1) and a subset of {0}. The constant function 1(n) := 1
is the trivial Dirichlet character ; it is the unique Dirichlet character of period 1. Each
m-periodic Dirichlet character χ restricts to a group character χ on (Z/mZ)×. Conversely,
every group character χ of (Z/mZ)× can be extended to a Dirichlet character χ by defining
χ(n) = 0 for n 6∈ (Z/mZ)×; this is called extension by zero.6

Definition 18.6. A Dirichlet character of modulus m is an m-periodic Dirichlet character χ
that is the extension by zero of a group character on (Z/mZ)×; equivalently, an m-periodic
Dirichlet character for which n ∈ (Z/mZ)× ⇐⇒ χ(n) 6= 0.

Remark 18.7. Some authors only define Dirichlet characters of modulus m, thereby bak-
ing m into the definition of a Dirichlet character; we simply view Dirichlet characters as
functions Z → C that satisfy certain properties. Note that a single Dirichlet character
may be a Dirichlet character of modulus m for infinitely many m (for example, the unique
Dirichlet character of modulus 2 is also a Dirichlet character of modulus 2k for all k ≥ 1).

The Dirichlet characters of modulus m form a group under pointwise multiplication
that is canonically isomorphic to the character group of (Z/mZ)×. Not every m-periodic
Dirichlet character χ is a Dirichlet character of modulus m, since an m-periodic Dirichlet
character need not vanish on n 6∈ (Z/mZ)×. More generally, we have the following lemma.

Lemma 18.8. Let χ be a Dirichlet character of period m. Then χ is a Dirichlet character
of modulus m′ if and only if m|m′|mk for some k (which holds in particular for m′ = m).

Proof. Suppose for the sake of contradiction that χ(n) 6= 0 for some n ∈ Z that has a prime
factor p in common with m. Then χ(p) 6= 0, since χ(p)χ(n/p) = χ(n) 6= 0, and for r ∈ Z,

χ(r)χ(p) = χ(rp) = χ(rp+m) = χ(r +m/p)χ(p),

which implies χ(r) = χ(r + m/p), since χ(p) 6= 0. Thus χ is (m/p)-periodic, but this
contradicts the minimality of the period m. Therefore χ(n) = 0 for all n 6∈ (Z/mZ)×.

4Galois’ seminal paper was rejected that same year; it wasn’t published until 12 years after his death.
5Many authors restrict the domain of an arithmetic function to Z≥1; for the periodic arithmetic functions

we are interested in here, this distinction is irrelevant, and it is slightly more natural to work with Z.
6When we write n 6∈ (Z/mZ)× we of course refer to the image of n under the quotient map Z→ Z/mZ.
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Conversely, for any n ∈ (Z/mZ)× we can pick an integer a = ne ≡ 1 mod m so that
χ(1) = χ(a) = χ(ne) = χ(n)e 6= 0 and χ(n) 6= 0. So χ is a Dirichlet character of modulus m.

If m|m′|mk, then the prime divisors of m′ coincide with those of m. It follows that

n ∈ (Z/m′Z)× ⇐⇒ n ∈ (Z/mZ)× ⇐⇒ χ(n) 6= 0,

and χ is clearly m′-periodic (since m|m′), so χ is a Dirichlet character of modulus m′.
Conversely, if χ is a Dirichlet character of modulus m′, then χ is m′-periodic, and

therefore m|m′, since m is the period of χ. And since χ is a Dirichlet character of modulus m
and of modulus m′, for each prime p we have

p 6∈ (Z/mZ)× ⇐⇒ χ(p) = 0⇐⇒ p 6∈ (Z/m′Z)×,

thus the prime divisors of m and m′ coincide and m′ must divide some power mk of m.

18.2.1 Primitive Dirichlet characters

Given a Dirichlet character χ1 of modulus m1 dividing m2, we can always create a Dirichlet
character χ2 of modulus m2 by taking the extension by zero of the restriction of χ1 to
(Z/m2Z)×; in other words, let χ2(n) := χ1(n) for n ∈ (Z/m2Z)× and χ2(n) := 0 otherwise.
If m2 is divisible by a prime p that does not divide m1, the Dirichlet characters χ1 and χ2

will not be the same (χ2(p) = 0 6= χ1(p), for example), they will agree on n ∈ (Z/m2Z)×

but not on n ∈ (Z/m1Z)×.7 We can create infinitely many new Dirichlet characters from
χ1 in this way, but they will differ from χ1 only in a rather trivial sense. We would like to
distinguish the Dirichlet characters that arise in this way from those that do not.

Definition 18.9. Let χ1 and χ2 be Dirichlet characters of modulus m1 and m2, respectively,
with m1|m2. If χ2(n) = χ1(n) for n ∈ (Z/m2Z)× then χ2 is induced by χ1. A Dirichlet
character that is not induced by any character other than itself is primitive.

Lemma 18.10. A Dirichlet character χ2 of modulus m2 is induced by a Dirichlet character
of modulus m1|m2 if and only if χ2 is constant on residue classes in (Z/m2Z)× that are
congruent modulo m1. When this holds, the Dirichlet character χ1 of modulus m1 that
induces χ2 is uniquely determined.

Proof. If χ2 is induced by χ1 then it must be constant on residue classes in (Z/m2Z)×

that are congruent modulo m1, since χ1 is. To prove the converse we first show that the
surjective ring homomorphism Z/m2Z→ Z/m1Z given by reduction modulo m1 induces a
surjective homomorphism π : (Z/m2Z)× → (Z/m1Z)× of unit groups.8

Suppose u1 ∈ Z is a unit modulo m1. Let a be the product of all primes dividing m2/m1

but not u1. Then u2 = u1 + m1a is not divisible by any prime p|m1 (since u1 isn’t), nor
is it divisible by any prime p|(m2/m1): by construction, such a p divides exactly one of u1
and m1a. Thus u2 is a unit modulo m2 that reduces to u1 modulo m1 and π is surjective.

If χ2 is a Dirichlet character of modulus m2 constant on fibers of π we can define
a Dirichlet character χ1 of modulus m1 via χ1(n1) := χ2(n2) for n1 ∈ (Z/m1Z)× with
n2 ∈ π−1(n1) (any such n2 will do). Thus χ1 induces χ2, and if χ′1 also induces χ2 it must
satisfy the same condition χ1(n1) = χ2(n2) that uniquely determines χ1.

7Note that while #(Z/m1Z)× ≤ #(Z/m2Z)×, the set of integers n ∈ (Z/m1Z)× (the n coprime to m1)
contains the set of integers n ∈ (Z/m2Z)× (the n coprime to m2) and is usually larger.

8In fact, one can show that every surjective homomorphism of finite rings induces a surjective homomor-
phism of unit groups, but this does not hold in general (consider Z→ Z/5Z, for example).
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Definition 18.11. A Dirichlet character χ induced by 1 is called principal (and is primitive
if only if χ = 1). For m ∈ Z>0 we use 1m to denote the principal Dirichlet character of
modulus m; it corresponds to the trivial character of (Z/mZ)×.

Lemma 18.12. Let χ be a Dirichlet character of modulus m. Then∑
n∈Z/mZ

χ(n) 6= 0 ⇐⇒ χ = 1m.

Proof. We have χ(n) = 0 for n 6∈ (Z/mZ)×, and the sum over (Z/mZ)× is nonzero if and
only if χ restricts to the trivial character on (Z/mZ)×, by the orthogonality of characters;
see Corollary 18.37.

Note that the principal Dirichlet characters 1m and 1m′ necessarily coincide when
m|m′|mk; for example the principal Dirichlet character of modulus 2 (the parity function)
is the same as the principal Dirichlet character of modulus 4 (and every power of 2).

Theorem 18.13. Every Dirichlet character χ is induced by a primitive Dirichlet charac-
ter χ̃ that is uniquely determined by χ.

Proof. Let us define a partial ordering � on the set of all Dirichlet characters by defining
χ1 � χ2 if χ1 induces χ2. The relation � is clearly reflexive, and it follows from Lemma 18.10
that it is transitive.

Let χ be a Dirichlet character of period m and consider the set X = {χ′ : χ′ � χ}. Each
χ′ ∈ X necessarily has period m′ dividing m and there is at most one χ′ of period m′ for
each divisor m′ of m, by Lemma 18.10. Thus X is finite, and nonempty (since χ ∈ X).

Suppose χ1, χ2 ∈ X have periods m1 and m2, respectively. Then m1 and m2 both
divide m, as does m3 = gcd(m1,m2). We have a commutative square of surjective unit
group homomorphisms induced by reduction maps:

(Z/mZ)× (Z/m1Z)×

(Z/m2Z)× (Z/m3Z)×.

←�

←�

←�

←�

From Lemma 18.10 we know that χ is constant on residue classes in (Z/mZ)× that are con-
gruent modulo either m1 or m2, and therefore χ is constant on residue classes in (Z/mZ)×

that are congruent modulo m3, as are χ1 and χ2 (which are determined by χ). It follows
that there is a unique Dirichlet character χ3 of modulus m3 that induces χ, χ1, and χ2.

Thus every pair χ1, χ2 ∈ X has a lower bound χ3 under the partial ordering � that is
compatible with the total ordering of X by period. This implies that X contains a unique
element χ̃ that is minimal, both with respect to the partial ordering � and with respect to
the total ordering by period; it must be primitive, by the transitivity of �.

Definition 18.14. The conductor of a Dirichlet character χ is the period of the unique
primitive Dirichlet character χ̃ that induces χ.

Corollary 18.15. For a Dirichlet character χ of modulus m we have
∑

n∈Z/mZ χ(n) 6= 0
if and only if χ has conductor 1.

Proof. This follows immediately from Lemma 18.12.
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Corollary 18.16. Let M(m) denote the set of Dirichlet characters of modulus m, let X(m)
denote the set of primitive Dirichlet characters of conductor dividing m, and let Ĝ(m) denote
the character group of (Z/mZ)×. We have canonical bijections

M(m)
∼−→ X(m)

∼−→ Ĝ(m)

χ 7−→ χ̃ 7−→ (n 7→ χ̃(n)).

Proof. By Theorem 18.13, the map χ → χ̃ is injective, and it is also surjective: each
χ̃ ∈ X(m) induces the character χ ∈ M(m) by setting χ(n) := χ̃(n) for n ∈ (Z/mZ)×

and extending by zero. As previously noted, the map χ→ (m 7→ χ(m)) defines a bijection
M → Ĝ(m) (a group isomorphism, in fact), and this bijection factors through the map
χ 7→ χ̃, since χ̃(n) = χ(n) for n ∈ (Z/mZ)×.

Remark 18.17. Corollary 18.16 implies that we can make X(m) a group by defining
χ̃1χ̃2 := χ̃1χ2. Note that χ̃1χ2 is not the pointwise product of χ̃1 and χ̃2 (which is typically
not primitive), it is the unique primitive character that induces the pointwise product.

Example 18.18. 12-periodic Dirichlet characters, ordered by period m and conductor c.

m c 0 1 2 3 4 5 6 7 8 9 10 11 mod-12 principal primitive
1 1 1 1 1 1 1 1 1 1 1 1 1 1 no yes yes
2 1 0 1 0 1 0 1 0 1 0 1 0 1 no yes no
3 1 0 1 1 0 1 1 0 1 1 0 1 1 no yes no
3 3 0 1 -1 0 1 -1 0 1 -1 0 1 -1 no no yes
4 4 0 1 0 -1 0 1 0 -1 0 1 0 -1 no no yes
6 1 0 1 0 0 0 1 0 1 0 0 0 1 yes yes no
6 3 0 1 0 0 0 -1 0 1 0 0 0 -1 yes no no

12 4 0 1 0 0 0 1 0 -1 0 0 0 -1 yes no no
12 12 0 1 0 0 0 -1 0 -1 0 0 0 1 yes no yes

The fact that χ(n) ∈ {0,±1} for all 12-periodic Dirichlet characters χ follows from the
fact that the exponent of (Z/mZ)× is 2; thus (imχ) ∩U(1) ⊆ µ2 = {±1}.

18.3 Dirichlet L-functions

Definition 18.19. The Dirichlet L-function associated to a Dirichlet character χ is

L(s, χ) :=
∏
p

(1− χ(p)p−s)−1 =
∑
n≥1

χ(n)n−s.

The sum and product converge absolutely for Re s > 1, since |χ(n)| ≤ 1, thus L(s, χ) is
holomorphic on Re(s) > 1.

For the trivial Dirichlet character 1 have L(s,1) = ζ(s). For the principal character 1m
of modulus m induced by 1 we have

ζ(s) = L(s,1m)
∏
p|m

(1− p−s)−1.

The product on the RHS is finite, hence bounded and nonzero as s→ 1+, so the L-function
L(s,1m) has a simple pole at s = 1 with residue

ress=1 L(s,1m) = lim
s→1

(s− 1)ζ(s)
∏
p|m

(1− p−s) =
∏
p|m

(1− p−1) =
φ(m)

m
.

The L-functions of non-principal Dirichlet characters do not have a pole at s = 1.
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Proposition 18.20. Let χ be a non-principal Dirichlet character of modulus m. Then
L(s, χ) extends to a holomorphic function on Re s > 0.

Proof. Define the function T : R≥0 → C by

T (x) :=
∑

0<n≤x
χ(n).

For any x ∈ R≥0 Lemma 18.15 implies

T (x+m)− T (x) =
∑

x<n≤x+m
χ(n) =

∑
n∈Z/mZ

χ(n) = 0,

since χ is non-principal. Thus T (x) is periodic modulo m and therefore bounded.
Writing L(s, χ) as a Stieltjes integral (see §18.5) and integrating by parts yields

L(s, χ) =
∑
n≥1

χ(n)n−s

=

∫ ∞
0

x−sdT (x)

= x−sT (x)

∣∣∣∣∞
0

−
∫ ∞
0

T (x)d(x−s)

= 0−
∫ ∞
0

T (x)(−sx−s−1)dx

= s

∫ ∞
0

T (x)x−s−1dx.

The RHS is holomorphic on Re s > 0, since it is the limit of the uniformly converging se-
quence of functions φn(s) := s

∫ n
0 T (x)x−s−1dx (here we use the fact that T (x) is bounded),

and is thus the analytic continuation of L(x, χ) to Re(s) > 0.

Remark 18.21. In fact, L(s, χ) extends to a holomorphic function on C whenever χ is
non-principal.

18.4 Primes in arithmetic progressions

We now return to our goal of proving Dirichlet’s theorem on primes in arithmetic progres-
sions. We want to show that for coprime integers a ⊥ m the set S := {p ≡ a mod m} is
infinite, and it suffices to show the sum ∑

p≡ a mod m

p−s

is unbounded as s→ 1+. To convert this to a sum over all primes we use Proposition 18.36
to construct the indicator function

1

φ(m)

∑
χ∈X(m)

χ(p/a) =

{
1 if p ≡ a mod m,

0 otherwise

where p/a is computed modulom and χ ranges over primitive Dirichlet characters of conduc-
tor dividing m (which we identify with the character group of (Z/mZ)× via Corollary 18.16).
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As s→ 1+ we have∑
p≡ a mod m

p−s =
∑
p

p−s
1

φ(m)

∑
χ∈X(m)

χ(p/a)

=
∑

χ∈X(m)

χ(1/a)

φ(m)

∑
p

χ(p)p−s

=
∑

χ∈X(m)

χ(1/a)

φ(m)

(
logL(s, χ) +O(1)

)
=

log ζ(s)

φ(m)
+

∑
χ∈X(m)
χ6=1

χ(1/a)

φ(m)
logL(s, χ) +O(1).

We now make the key claim that so long as χ is not principal, we have

L(1, χ) 6= 0.

This implies that logL(s, χ) = O(1) as s→ 1+ and therefore∑
p≡ a mod m

p−s =
log ζ(s)

φ(m)
+O(1)

is unbounded as s→ 1+, since ζ(s) is. Moreover, Mertens’ second theorem implies∑
p≤x

p≡ a mod m

1

p
∼ log log x

φ(m)
.

This proves that the set S = {p ≡ a mod m} is infinite. Moreover, we have

d(S) = lim
s→1+

∑
p∈S p

−s∑
p p
−s = lim

s→1+

log ζ(s)/φ(m)

log ζ(s)
=

1

φ(m)
.

We will prove the key claim that L(1, χ) 6= 0 for non-principal χ in the next lecture.

18.5 Stieltjes integrals

For the benefit of those who have not seen them before, we recall a few facts about Stieltjes
integrals (also called Riemann-Stieltjes integrals), taken from [1, Ch. 7]. These generalize
the Riemann integral but are less general than the Lebesgue integral; they provide a handy
way for converting sums to integrals that is often used in analytic number theory.

Definition 18.22. Let f and g be (real or complex valued) functions defined on a nonempty
real interval [a, b]. For any partition P = (x0, . . . , xn) of [a, b] and sequence T = (t1, . . . , tn)
with tk ∈ [xk−1, xk], we define the Riemann-Stieltjes sum

S(P, T, f, g) :=

n∑
k=1

f(tk)
(
g(xk)− g(xk−1)

)
We say that f is Riemann-Stieltjes integrable with respect to g and write f ∈ S(g) if there
is a (real or complex) number S such that for every ε > 0 there is a partition Pε of [a, b]
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such that for every refinement P = (x0, . . . , xn) of Pε and every sequence T = (t1, . . . , tn)
with tk ∈ [xk−1, xk] we have |S(P, T, f, g)− S| < ε.9

When such an S exists it is necessarily unique and we denote it by
∫ b
a f dg, the Riemann-

Stieltjes integral of f with respect to g. Improper Riemann-Stieltjes integrals are then defined
as limits ∫ ∞

a
f dg := lim

b→∞

∫ b

a
f dg

(and similarly for the lower limit), and we define
∫ a
b f dg = −

∫ b
a f dg and

∫ a
a f dg = 0.

Taking g(x) = x yields the Riemann integral. The Riemann-Stieltjes integral satisfies
the usual properties of linearity, summability, and integration by parts.

Proposition 18.23. Let f, g, and h be functions on [a, b] and let c1 and c2 be constants.
The following hold:

• If f, g ∈ S(h) then
∫ b
a (c1f + c2g) dh = c1

∫ b
a f dh+ c2

∫ b
a g dh.

• If f ∈ S(g), S(h) then
∫ b
a f d(c1g + c2h) = ci

∫ b
a f dg + c2

∫ b
a f dh.

• If f ∈ S(g) then for any c ∈ [a, b] we have
∫ b
a f dg =

∫ c
a f dg +

∫ b
c f dg.

• If f ∈ S(g) then g ∈ S(f) and
∫ b
a f dg +

∫ b
a g df = f(b)g(b)− f(a)g(a).

• If f = f1 + if2 and g = g1 + ig2 with f1, f2 ∈ S(g1), S(g2) then∫ b

a
f dg =

(∫ b

a
f1 dg1 −

∫ b

a
f2 dg2

)
+ i

(∫ b

a
f2 dg1 +

∫ b

a
f1 dg2

)
.

Proof. See [1, Thm. 7.2-7,7.50].

The last identity allows us to reduce complex-valued integrals to real-valued integrals.
The following proposition allows us to reduce Stieltjes integrals to Riemann integrals.

Proposition 18.24. Let f and g be real-valued functions on [a, b] and suppose g has a
continuous derivative g′ on [a, b]. Then∫ b

a
f dg =

∫ b

a
f(x)g′(x)dx.

Proof. See [1, Thm. 7.8].

A key advantage of the Stieltjes integral
∫ b
a f dg is that neither the integrand f nor

the integrator g is required to be continuous. It suffices for f and g to be of bounded
variation and not share any discontinuities (and they can even share certain discontinuities,
see Theorem 18.26).

Definition 18.25. Let f be a (real or complex valued) function defined on a nonempty
real interval [a, b]. Then f is of bounded variation if there exists a real number M such that

n−1∑
i=0

|f(xi+1)− f(xi)| < M

9This definition (due to Pollard) is more general than that originally given by Stieltjes but is now standard.
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for every partition P = (x0, . . . , xn) of [a, b]. If f has a continuous derivative f ′ on [a, b]

this is equivalent to requiring
∫ b
a |f

′(x)|dx < ∞. Every piecewise monotone function is of
bounded variation. In particular, any step function with finitely many discontinuities on
[a, b] is of bounded variation.

Theorem 18.26. Let f and g be functions on [a, b] of bounded variation such that for every
c ∈ [a, b] the function f is continuous from the left at c and the function g is continuous

from the right at c. Then
∫ b
a f dg and

∫ b
a g df both exist.

Proof. See [2, Thm. 3.7].

Corollary 18.27. Let f and g be functions on [a, b] such that f and g are not both discon-
tinuous from the left or from the right at integers n ∈ [a, b], and let G(x) =

∑
a<n≤x g(n).

Then ∑
a<n≤b

f(n)g(n) =

∫ b

a
f(x) dG(x).

In particular, the integral on the RHS always exists.

Proof. See [1, Thm. 7.11].

As an example of using Stieltjes integrals, let us derive an asymptotic estimate for the
the harmonic sum

H(x) :=
∑

1≤n≤x

1

n
.

Theorem 18.28. For x ∈ R≥1, as x→∞ we have

H(x) = log x+ γ +O
(
1
x

)
where γ = limx→∞(H(x)− log x) = 0.577216 . . . is Euler’s constant.

Proof. Let [t] denote the greatest integer function. Applying Corollary 18.27 with g(t) = 1
and G(t) =

∑
1≤n≤t 1 = [t], we have

H(x) =
∑

1≤n≤x

1

n
=

∫ x

1−

1

t
d[t]

=
[t]

t

∣∣∣∣x
1−
−
∫ x

1−
[t] d

1

t

=
[x]

x
+

∫ x

1−

[t]

t2
dt

=
[x]

x
+

∫ x

1−

1

t
dt−

∫ x

1−

t− [t]

t2
dt

=
[x]

x
+ log x−

∫ x

1−

t− [t]

t2
dt,

where we used integration by parts in the second line and applied Proposition 18.24 to get
the third line. Now let γ = 1−

∫∞
1−(t− [t])/t2 dt. Then

H(x) =
[x]

x
+ log x− 1 + γ +

∫ ∞
x

t− [t]

t2
dt

= log x+ γ +

(
[x]− x
x

+

∫ ∞
x

t− [t]

t2
dt

)
. (2)
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Both summands in the parenthesized quantity in (2) are clearly O( 1x); thus

γ = lim
x→∞

(H(x)− log x) ,

and the theorem follows.

Remark 18.29. We can refine this estimate by applying a similar analysis to the paren-
thesized quantity in (2); the key point is that the error term is an exact expression, not
an asymptotic estimate, and we can continue this process until we obtain an asymptotic
expansion to whatever precision we require. For example, one finds that

H(x) = log x+ γ +
1

2x
− 1

2x2
+

1

120x4
+O

(
1

x6

)
.

18.6 A quick recap of the character theory of finite abelian groups

In this section we recall some standard results on characters of finite abelian groups.

Definition 18.30. A character of a group G is a homomorphism χ : G → U(1).10 The
character group (or dual group) of G is the abelian group

Ĝ := Hom(G,U(1))

under pointwise multiplication: (χ1χ2)(g) := χ1(g)χ2(g). The inverse of χ is given by
complex conjugation: χ−1(g) = χ(g) := χ(g). The identity element of Ĝ is the trivial
character g 7→ 1.

Remark 18.31. This definition generalizes to locally compact abelian groups G, in which
case each character χ : G → U(1) is a homomorphism of topological groups and the dual
group Ĝ is locally compact under the compact-open topology which has a basis of neigh-
borhoods of the identity the sets U(C, V ) := {χ ∈ Ĝ : χ(C) ⊆ V }, where C ranges over
compact subsets of G and V ranges over open neighborhoods of the identity in U(1). The
locally compact group Ĝ is called the Pontryagin dual of G.11 When G is finite it necessarily
has the discrete topology (since it must be Hausdorff), every homomorphism G → U(1) is
automatically continuous, and the compact-open topology on Ĝ is also discrete.

Proposition 18.32. Let G be a finite abelian group with character group Ĝ. Then G ' Ĝ.

Proof. As a finite abelian group we can write G as a direct product of cyclic groups

G = 〈g1〉 × · · · × 〈gn〉 ' Z/n1Z× · · · × Z/nrZ,

with ni = |gi|, and each g ∈ G can be uniquely written as g =
∏
i g
ei
i with 0 ≤ ei < n1.

Now fix (not necessarily distinct) primitive ni-th roots of unity αi ∈ U(1) and for 1 ≤ i ≤ r
define χi ∈ Ĝ via

χi(gj) :=

{
αi if i = j,

1 if i 6= j.

10Some authors call these unitary characters, allowing characters to have image in C×. When G is finite
every character is a unitary character, so this distinction won’t concern us.

11Some authors define the topology on the Pontryagin duality using uniform convergence on compact sets;
for topological groups this is equivalent to the compact-open topology. The unitary group U(1) ' R/Z is
also referred to as the 1-torus or circle group and may be denoted T or S1 and viewed as an additive group.
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Then |χi| = |αi| = ni, and each χ ∈ Ĝ can be written uniquely as
∏
i χ

ei
i with 0 ≤ ei < ni,

where χ(gi) = αeii (because a character is completely determined by its values on generators
and the χi are clearly orthogonal). Therefore

Ĝ = 〈χ1〉 × · · · × 〈χn〉 ' Z/n1Z× · · · × Z/nrZ.

Corollary 18.33. Let G be a finite abelian group. Then g ∈ G is the identity if and only
if χ(g) = 1 for all χ ∈ Ĝ and χ ∈ Ĝ is the identity if and only if χ(g) = 1 for all g ∈ G.

The isomorphism in Proposition 18.32 is not canonical. Indeed, there are #Aut(G)
distinct ways to choose the αi used to construct the isomorphism G ' Ĝ. But there is a
canonical isomorphism from G to the character group of Ĝ, the double dual of G.

Corollary 18.34. Let G be a finite abelian group. The evaluation map

g 7→ (χ 7→ χ(g))

is a canonical isomorphism from G to its double dual.

Proof. It is clear that the map above is a homomorphism, and Proposition 18.32 implies that
G is isomorphic to its dual group Ĝ, which is in turn isomorphic to its dual group, the double
dual of G). So it suffices to show the map is injective, which follows from Corollary 18.33:
if g lies in the kernel then χ(g) = 1 for all χ ∈ Ĝ and g = 1G, by Corollary 18.33,

Corollary 18.34 allows us to view G as the character group of Ĝ by defining g(χ) := χ(g).

Remark 18.35. Corollary 18.34 is a special case of Pontryagin duality, which applies to
any locally compact abelian group G. For infinite groups, G and Ĝ need not be isomorphic;
for example, the character group of Z is isomorphic to U(1) (but in some cases they are,
as when G is R or Qp, or any local field, see [3, XV, Lemma 2.2.1]). But the canonical
isomorphism between G and its double dual always holds.

This is analogous to the situation with vector spaces: a finite dimensional vector space
(which may be an infinite abelian group) is non-canonically isomorphic to its dual space but
canonically isomorphic to its double dual via the evaluation map. We should note that for
a locally compact topological vector space V over a field k, the Pontryagin dual is not the
same thing as the vector space dual: the Pontryagin dual corresponds to Hom(V,U(1)) (mor-
phisms of locally compact groups) while the vector space dual corresponds to Homk(V, k)
(morphisms of topological k-vector spaces). For example, the vector space dual of Q is
isomorphic to Q, as is its double dual, but the Pontryagin dual of Q is uncountable (thus
not isomorphic to Q), even though the Pontryagin double dual is isomorphic to Q.

Proposition 18.36. Let G be a finite abelian group. For all g1, g2 ∈ G we have

〈g1, g2〉 :=
1

#G

∑
χ∈Ĝ

χ(g1)χ(g2) =

{
1 if g1 = g2,

0 if g1 6= g2,

and for all χ1, χ2 ∈ Ĝ we have

〈χ1, χ2〉 :=
1

#G

∑
g∈G

χ1(g)χ2(g) =

{
1 if χ1 = χ2,

0 if χ1 6= χ2.
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Proof. By duality it suffices to consider 〈g1, g2〉. If g1 = g2 then χ(g1)χ(g2) = 1 for all
χ ∈ Ĝ and 〈g1, g2〉 = #Ĝ/#G = 1. If g1 6= g2 then by Corollary 18.33 there exists λ ∈ Ĝ
for which α := λ(g1)λ(g2) = λ(g1g

−1
2 ) 6= 1. We then have

α〈g1, g2〉 =
1

#G

∑
χ∈Ĝ

(λχ)(g1)(λχ)(g2) =
1

#G

∑
χ∈λĜ

χ(g1)χ(g2) = 〈g1, g2〉,

which implies 〈g1, g2〉 = 0, since α 6= 1.

Corollary 18.37. For χ ∈ Ĝ we have
∑

g∈G χ(g) 6= 0 if and only χ is the trivial character.
For g ∈ G we have

∑
χ∈Ĝ χ(g) 6= 0 if and only if g is the trivial element.

Remark 18.38. The orthogonality of characters given by Proposition 18.36 is a special case
of the orthogonality of characters one encounters in Fourier analysis on compact groups;
since G is finite, the weighted sum over G amounts to integrating against its Haar measure
(the counting measure µ normalized so that µ(G) = 1).

We conclude our discussion of character groups with a theorem analogous to the funda-
mental theorem of Galois theory.

Proposition 18.39. Let G be a finite abelian group. There is an inclusion reversing bijec-
tion ϕ between subgroups H of G and subgroups K of Ĝ defined by

ϕ(H) := {χ ∈ Ĝ : χ(h) = 1 for all h ∈ H}.

The inverse bijection φ is given by

φ(K) := {g ∈ G : χ(g) = 1 for all χ ∈ K},

and Ĥ ' Ĝ/ϕ(H) and K ' G/φ(K); in particular, #H = [Ĝ :ϕ(H)] and #K = [G :φ(K)].

Proof. Its clear from the definitions that ϕ and φ are inclusion reversing. Let H be a sub-
group of G. The group K = ϕ(H) consists of the characters of G whose kernel contains H.
It is clear that H ′ := φ(K) contains H, since it is equal to the intersection of these kernels,
and by duality it is similarly clear that K ′ := ϕ(H ′) contains K. We then have H ⊆ H ′

and ϕ(H) ⊆ ϕ(H ′), but ϕ is inclusion reversing so H = H ′; thus φ ◦ ϕ is the identity map,
and by duality, so is ϕ ◦ φ.

The restriction map Ĝ→ Ĥ defined by χ 7→ χ|H is a group homomorphism with kernel
K = ϕ(H). It is surjective because if we let χ1 := 1

Ĝ
then we have

#H#K =
∑
h∈H

∑
χ∈K

χ(h) =
∑
h∈H

∑
χ∈K

χ(h)χ1(h) =
∑
g∈G

∑
χ∈K

χ(g)χ1(g) = #G,

by Proposition 18.36, and therefore #Ĥ#K = #Ĝ (by Proposition 18.32). It follows that
Ĥ ' Ĝ/ϕ(H), and by duality, K ' G/φ(K).
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19 The analytic class number formula

In the previous lecture we proved Dirichlet’s theorem on primes in arithmetic progressions
modulo the claim that the L-function L(s, χ) is holomorphic and nonvanishing at s = 1
for all non-principal Dirichlet characters χ. To establish this claim we will prove a more
general result that has many other applications.

Recall that the Dedekind zeta function of a number field K is defined by

ζK(s) :=
∑
a

N(a)−s =
∏
p

(1−N(p)−s)−1,

where a ranges over nonzero ideals of OK and p ranges over nonzero prime ideals of OK ; as
we showed in the previous lecture the sum and product converge absolutely on Re(s) > 1.

The following theorem is often attributed to Dirichlet, although he originally proved it
only for quadratic fields (this is all he needed to prove his theorem on primes in arithmetic
progressions, but we will use it in a stronger form). The formula for the limit in the theorem
was proved by Dedekind [2, Supplement XI] (as a limit from the right, without an analytic
continuation to a punctured neighborhood of z = 1), and analytic continuation was proved
by Landau [3]. Hecke later showed that, like the Riemann zeta function, the Dedekind zeta
function has an analytic continuation to all of C and satisfies a functional equation [1], but
we won’t take the time to prove this; see Remark §19.13 for details.

Theorem (Analytic Class Number Formula). Let K be a number field of degree n.
The Dedekind zeta function ζK(z) extends to a meromorphic function on Re(z) > 1 − 1

n
that is holomorphic except for a simple pole at z = 1 with residue

lim
z→1+

(z − 1)ζK(z) =
2r(2π)shKRK

wK |DK |1/2
,

where r and s are the number of real and complex places of K, respectively, hK := # clOK
is the class number, RK is the regulator, wK := #µK is the number of roots of unity, and
DK := discOK is the absolute discriminant.

Recall that |DK |1/2 is the covolume of OK as a lattice in KR := K ⊗Q R ' Rr × Cs
(Proposition 14.15), and RK is the covolume of ΛK := Log(O×K) as a lattice in the trace-zero
hyperplane Rr+s0 (see Definition 15.16). The residue of ζK(z) at z = 1 thus reflects both
the additive and multiplicative structure of the ring of integers OK .

Remark 19.1. In practice the class number hK is usually the most difficult quantity in
the analytic class number formula to compute. We can approximate the limit on the LHS
to any desired precision using a finite truncation of either the sum or product defining
ζK(s). Provided we can compute the other quantities to similar precision, this provides a
method for computing (or at least bounding) the class number hK ; this explains the origin
of the term “analytic class number formula”. You will have an opportunity to explore a
computational application of this formula on Problem Set 9.

Example 19.2. For K = Q we have n = 1, r = 1, s = 0, h = 1, w = #{±1} = 2,
D = 1, and the regulator R is the covolume of a lattice in a zero-dimensional vector space,
equivalently, the determinant of a 0× 0 matrix, which is 1. In this case the theorem states
that ζQ(z) = ζ(z) is holomorphic on Re z > 1 − 1

1 = 0 except for a simple pole at z = 1
with residue

lim
z→1+

(z − 1)ζQ(z) =
21(2π)0 · 1 · 1

2 · |1|1/2
= 1.
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19.1 Lipschitz parametrizability

In order to prove the analytic class number formula we need an asymptotic estimate for the
number of nonzero OK-ideals a with absolute norm N(a) bounded by a parameter t ∈ R>0

that we will let tend to infinity; this is necessary for us to understand the behavior of
ζK(z) =

∑
a N(a)−z as z → 1+. Our strategy is to count points in Log(OK ∩K×) that lie

inside a suitably chosen region S of Rr+s that we will than scale by t. In order to bound
this count as a function of t we need a condition on S that ensures that the count grows
smoothly with t; this requires S to have a “reasonable” shape. A sufficient condition for
this is Lipschitz parametrizability.

Definition 19.3. Let X and Y be metric spaces. A function f : X → Y is Lipschitz
continuous if there exists c > 0 such that for all distinct x1, x2 ∈ X

d(f(x1), f(x2)) ≤ c · d(x1, x2).

Every Lipschitz continuous function is uniformly continuous, but the converse need
not hold. For example, the function f(x) =

√
x on [0, 1] is uniformly continuous but not

Lipschitz continuous, since |
√

1/n− 0|/|1/n− 0| =
√
n is unbounded as 1/n→ 0.

Definition 19.4. A set B in a metric space X is d-Lipschitz parametrizable if it is the
union of the images of a finite number of Lipschitz continuous functions fi : [0, 1]d → X.

Before stating our next result, we recall the asymptotic notation

f(t) = g(t) +O(h(t)) (as t→ a),

for real or complex valued functions f, g, h of a real variable t, which means

lim sup
t→a

∣∣∣∣f(t)− g(t)

h(t)

∣∣∣∣ <∞.
Typically a =∞, and this is assumed if a is not specified.

Lemma 19.5. Let S ⊆ Rn be a measurable set whose boundary ∂S := S − S0 is (n − 1)-
Lipschitz parametrizable. Then

#(tS ∩ Zn) = µ(S)tn +O(tn−1),

as t→∞, where µ is the standard Lebesgue measure on Rn.

Proof. It suffices to prove the lemma for positive integers, since #(tS ∩Zn) and µ(S)tn are
both monotonically increasing functions of t and µ(S)(t+ 1)n− µ(S)tn = O(tn−1). We can
partition Rn as the disjoint union of half-open cubes of the form

C(a1, . . . , an) = {(x1, . . . , xn) ∈ Rn : xi ∈ [ai, ai + 1)},

with a1, . . . , an ∈ Z. Let C be the set of all such half-open cubes C. For each t > 0 define

B0(t) := #{C ∈ C : C ⊆ tS},
B1(t) := #{C ∈ C : C ∩ tS 6= ∅}.

For every t > 0 we have
B0(t) ≤ #(tS ∩ Zn) ≤ B1(t).
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We can bound B1(t)−B0(t) by noting that each C(a1, . . . , an) counted by this difference
contains a point (a1, . . . , an) ∈ Zn within a distance

√
n = O(1) of a point in ∂tS = t∂S.

Let f1, . . . , fm be Lipschitz functions [0, 1]n−1 → ∂S whose images cover ∂S, and let
c1, . . . cm be constants such that d(fi(x1), fi(x2)) ≤ cid(x1, x2) for all x1, x2 ∈ [0, 1]n−1. For
any y ∈ ∂S, we have y = fi(x1, . . . , xn−1) for some i, and if we put rj = btxjc ∈ Z so that
0 ≤ xj − rj/t ≤ 1/t, then

d(y, fi(
r1
t , . . . ,

rn−1

t )) ≤ ci · d
(
(x1, . . . , xn−1), (

r1
t , . . . ,

rn−1

t )
)
< ci
√
n/t ≤ c/t,

where c :=
√
nmaxi ci. Thus every y ∈ ∂S lies within a distance c/t of a point in the set

P =
{
fi
(
r1
t , . . . ,

rn−1

t

)
: 1 ≤ i ≤ m, 0 ≤ r1, . . . , rn−1 ≤ t

}
,

which has cardinality m(t+ 1)n−1 = O(tn−1). It follows that every point of ∂tS is within a
distance c of one of the O(tn−1) points in tP. The number of integer lattice points within
a distance

√
n of a point in t∂S is thus also O(tn−1), and therefore

B1(t)−B0(t) = O(tn−1).

We now note that B0(t) ≤ µ(tS) ≤ B1(t) and µ(tS) = tnµ(S); the lemma follows.

Corollary 19.6. Let Λ be a lattice in an R-vector space V ' Rn and let S ⊆ V be a
measurable set whose boundary is (n− 1)-Lipschitz parametrizable. Then

#(tS ∩ Λ) =
µ(S)

covol(Λ)
tn +O(tn−1).

Proof. The case Λ ⊆ Zn is given by the lemma; note that the normalization of the Haar
measure µ is irrelevant, since we are taking a ratio of volumes which is necessarily preserved
under the isomorphism of topological vector spaces V ' Rn. We now note that if the
corollary holds for sΛ, for some s > 0, then it also holds for Λ, since tS ∩ sΛ = (t/s)S ∩ Λ.
For any lattice Λ, we can choose s > 0 so that sΛ is arbitrarily close to an integer lattice (for
example, take s to be the LCM of all denominators appearing in rational approximations
of the coordinates of a basis for Λ), which is necessarily a finite index subgroup of Zn. The
corollary follows.

Remark 19.7. Recall that covol(Λ) = µ(F ) for any fundamental region F for Λ, so the
ratio µ(S)/ covol(Λ) = µ(S)/µ(F ) in Corollary 19.6 does not depend on the normalization
of the Haar measure µ. However, we plan to apply the corollary to Λ = OK and want to
replace covol(OK) with

√
|disc(OK)| = |DK |1/2 via Proposition 14.15, which requires us

to use the normalized Haar measure on KR defined in §14.2.

19.1.1 Counting algebraic integers of bounded norm

Recall from §15.2 that the unit group K×R of KR := K ⊗Q R is the locally compact group

K×R '
∏
v|∞

K×v '
∏

real v|∞

R× ×
∏

complex v|∞

C×.

We have a natural embedding

K× ↪→ K×R
x 7→ (xv),
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where v ranges over the r + s archimedean places of K; this allows us to view K× as a
subgroup of K×R that contains the nonzero elements of OK . In Lecture 15 we defined the
continuous homomorphism

Log : K×R → Rr+s

(xv) 7→ (log ‖xv‖v),

and proved that we have an exact sequence of abelian groups

1 −→ µK −→ O×K
Log−→ ΛK → 0,

in which ΛK is a lattice in the trace-zero hyperplane Rr+s0 := {x ∈ Rr+s : T(x) = 0} (where
T(x) is the sum of the coordinates of x). The regulator RK is the covolume of ΛK in Rr+s0

(see Definition 15.16), where we endow Rr+s0 with the Euclidean measure induced by any
coordinate projection Rr+s → Rr+s−1. By Dirichlet’s unit theorem (Theorem 15.12), we
can write

O×K = U × µK ,

where U ⊆ O×K is free of rank r + s − 1 (the subgroup U is not uniquely determined, but
let us fix a choice).

We want to estimate the quantity

#{a : N(a) ≤ t},

where a ranges over the nonzero ideals of OK , as t→∞. As a first step, let us restrict our
attention to nonzero principal ideals (α) ⊆ OK . We then want to estimate the cardinality
of {(α) : N(α) ≤ t}. We have (α) = (α′) if and only if α/α′ ∈ O×K , so this is equivalent to

{α ∈ K× ∩ OK : N(α) ≤ t}/O×K ,

where for any set S ⊆ K×R , the notation S/O×K denotes the set of equivalence classes of S
under the equivalence relation α ∼ α′ ⇔ α = uα′ for some u ∈ O×K . If we now define

K×R,≤t := {x ∈ K×R : N(x) ≤ t} ⊆ K×R ⊆ KR,

then we want to estimate the cardinality of the finite set(
K×R,≤t ∩ OK

)
/O×K ,

where the intersection takes place in KR and produces a subset of K×R that we partition
into equivalence classes modulo O×K . To simplify matters, let us replace O×K with the free
group U ⊆ O×K ; we then have a wK–to–1 map

(K×R,≤t ∩ OK)/U −→
(
K×R,≤t ∩ OK

)
/O×K .

It suffices to estimate the cardinality of (K×R,≤t ∩ OK)/U and divide the result by wK .

Recall that for x = (xv) ∈ K×R , the norm map N: K×R → R×>0 is defined by

N(x) :=
∏
v|∞

‖xv‖v =
∏
v real

|xv|R
∏

v complex

|xv|2C,
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and satisfies T(Log x) = log N(x) for all x ∈ K×R . We now define a surjective homomorphism

ν : K×R � K×R,1

x 7→ xN(x)−1/n.

The image of K×R,1 under the Log map is precisely the trace zero hyperplane Rr+s0 in Rr+s

in which Log(U) = Log(O×K) = ΛK is a lattice. Let us fix a fundamental domain F for the
lattice ΛK in Rr+s0 so that

S := ν−1
(
Log−1(F )

)
is a set of unique coset representatives for the quotient K×R /U . If we now define

S≤t := {x ∈ S : N(x) ≤ t} ⊆ KR,

we want to estimate the cardinality of the finite set

S≤t ∩ OK .

The set OK is a lattice in the R-vector space KR of dimension n. We have tS≤1 = S≤tn ,
so we can estimate the cardinality of S≤t = t1/nS≤1 via Corollary 19.6 with S = S≤1 and
Λ = OK by replacing t with t1/n, provided that the boundary of S≤1 is (n − 1)-Lipschitz
parametrizable, which we now argue.

The kernel of the Log map is {±1}r ×U(1)s, where U(1) = {z ∈ C : zz̄ = 1} is the unit
circle in C. We thus have a continuous isomorphism of locally compact groups

K×R = (R×)r × (C×)s
∼−→ Rr+s × {±1}r × [0, 2π)s (1)

x = (x1, . . . , xr, z1, . . . , zs) 7−→ (Log x)× (sgnx1, . . . , sgnxr)× (arg z1, . . . , arg zs),

where the map to Rr+s is the Log map, the map to {±1}r is the vector of signs of the r real
components, and the map to [0, 2π)s is the vector of angles arg z such that z/|z| = ei arg z

of the s complex components.
The set S≤1 consists of 2r connected components, one for each element of {±1}r. We

can parametrize each of these component using n real parameters as follows:

• r + s− 1 parameters in [0, 1) that encode a point in F as an R-linear combination of
Log(ε1), . . . ,Log(εr+s−1), where ε1, . . . , εr+s−1 are a basis for U ;

• s parameters in [0, 1) that encode an element of U(1)s;

• a parameter in (0, 1] that encodes the nth-root of the norm.

These parameterizations define a continuously differentiable bijection from the set

C = [0, 1)n−1 × (0, 1] ⊆ [0, 1]n

to each of the 2r disjoint components of S≤1; it can be written out explicitly in terms of
exponentials and the identity function. The boundary ∂C is the boundary of the unit n-
cube, which is clearly (n − 1)-Lipschitz parametrizable; thus each component of S≤1, and
therefore S≤1 itself, is (n− 1)-Lipschitz parametrizable.

We now apply Corollary 19.6 to the lattice OK and the set S≤1 in the n-dimensional
R-vector space KR with t replaced by t1/n, since S≤t = t1/nS≤1. This yields

#(S≤t ∩ OK) =
µ(S≤1)

covol(OK)
(t1/n)n +O

(
(t1/n)n−1

)
=

(
µ(S≤1)

|DK |1/2

)
t+O

(
t1−

1/n
)
. (2)
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Our next task is compute µ(S≤1); as noted in Remark 19.7, we must use the normalized
Haar measure µ on KR defined in §14.2 when doing so. We will use the isomorphism in
(1) to make a change of coordinates, we just need to understand how this affects the Haar
measure µ on KR =

∏
v|∞Kv ' Rr × Cs. In terms of the standard Lebesgue measures

dx and dA on R and C, we have µ = (dx)r(2dA)s, where the 2dA reflects the fact that
the normalized absolute value ‖ ‖v for each complex place v is the square of the Euclidean
absolute value on C. For each factor of K×R =

∏
v|∞Kv ' (R×)r × (C×)s ⊆ Rr × Cs we

define the maps

R× → R× {±1} C× → C× [0, 2π)

x 7→ (log |x|, sgnx) z 7→ (2 log |z|, arg z)

±e` ←[ (`,±1) e`/2+iθ ←[ (`, θ)

dx 7→ e`d`µ{±1} 2dA 7→ 2e`/2d(e`/2)dθ = e`d`dθ,

where d` is the Lebesgue measure on R, µ{±1} is the counting measure on {±1}, and dθ is
the Lebesgue measure on [0, 2π). We thus have

K×R
∼−→ Rr+s × {±1}r × [0, 2π)s

µ 7→ eT(·)µRr+sµr{±1}µ
s
[0,2π),

where the trace function T(·) sums the coordinates of a vector in Rr+s.
We now make one further change of coordinates:

Rr+s → Rr+s−1 × R
x = (x1, . . . , xr+s) 7→ (x1, . . . , xr+s−1, y := T(x))

eT(x)µRr+s 7→ eyµRr+s−1dy.

If we let π : Rr+s → Rr+s−1 denote the coordinate projection, then the measure of π(F ) in
Rr+s−1 is, by definition, the regulator RK (see Definition 15.16).

The Log map gives us a bijection

S≤1
∼−→ F + (−∞, 0]

(
1

n
, . . . ,

1

n
,

2

n
, . . . ,

2

n

)
,

x = N(x)1/nν(x) 7→ Log ν(x) + log N(x)

(
1

n
, . . . ,

1

n
,

2

n
, . . . ,

2

n

)
.

The coordinate y ∈ (−∞, 0] is given by y = T(Log x) = log N(x), so we can view S≤1 as an
infinite union of cosets of Log−1(F ) parameterized by ey = N(x) ∈ (0, 1].

Under our change of coordinates we thus have

K×R
∼−→ Rr+s−1 × R× {±1}r × [0, 2π)s

S≤1 → π(F )× (−∞, 0]× {±1}r × [0, 2π)s.

Since RK = µRr+s−1(π(F )), we have

µ(S≤1) =

∫ 0

−∞
eyRK2r(2π)sdy

= 2r(2π)sRK .

Plugging this into (2) yields

#(S≤t ∩ OK) =

(
2r(2π)sRK
|DK |1/2

)
t+O

(
t1−

1/n
)
. (3)
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19.2 Proof of the analytic class number formula

We are now ready to prove the analytic class number formula. Our main tool is the following
theorem, which uses our analysis in the previous section to give a precise asymptotic estimate
on the number of ideals of bounded norm.

Theorem 19.8. Let K be a number field of degree n As t → ∞, the number of nonzero
OK-ideals a of absolute norm N(a) ≤ t is(

2r(2π)shKRK
wk|DK |1/2

)
t+O

(
t1−

1/n
)
,

where r and s are the number of real and complex places of K, respectively, hK = # clOK
is the class number, RK is the regulator, wK := #µK is the number of roots of unity, and
DK := discOK is the absolute discriminant.

Proof. In order to count the nonzero OK-ideals a of absolute norm N(a) ≤ t we group them
by ideal class. For the trivial class, we just need to count nonzero principal ideals (α),
equivalently, the number of nonzero α ∈ OK with N(α) ≤ t, modulo the unit group O×K .
Dividing (3) by wK to account for the wK-to-1 map

S≤t ∩ OK −→ (K×R,≤t ∩ OK)/O×K ,

we obtain

#{(α) ⊆ OK : N(α) ≤ t} =

(
2r(2π)sRK
wK |DK |1/2

)
t+O

(
t1−

1/n
)
. (4)

To complete the proof we now show that we get the same answer for every ideal class; the
nonzero ideals a of norm N(a) ≤ t are asymptotically equidistributed among ideal classes.

Fix an ideal class [a], with a ⊆ OK nonzero (every ideal class contains an integral ideal,
by Theorem 14.19). Multiplication by a gives a bijection

{ideals b ∈ [a−1] : N(b) ≤ t} ×a−→ {nonzero principal ideals (α) ⊆ a : N(α) ≤ tN(a)}
−→ {nonzero α ∈ a : N(α) ≤ tN(a)}/O×K .

Let S[a],≤t denote the set on the RHS. The estimate in (4) derived from Corollary 19.6
applies to any lattice in KR, not just OK . Replacing OK with a in (4) we obtain

#S[a],≤t =

(
2r(2π)sRK
wk covol(a)

)
tN(a) +O

(
t1−

1/n
)

=

(
2r(2π)sRK

wk covol(OK)N(a)

)
tN(a) +O

(
t1−

1/n
)

=

(
2r(2π)sRK
wk|DK |1/2

)
t+O

(
t1−

1/n
)
,

since covol(a) = N(a) covol(OK), by Corollary 14.16. Note that the RHS does not depend
on the ideal class [a]. Summing over ideal classes yields

#{nonzero ideals b ⊆ OK : N(b) ≤ t} =
∑

[a]∈cl(OK)

#S[a],≤t =

(
2r(2π)shKRK

wK |DK |1/2

)
t+O

(
t1−

1/n
)
,

as claimed.
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Lemma 19.9. Let a1, a2, . . . be a sequence of complex numbers and let σ be a real number.
Suppose that

a1 + · · ·+ at = O(tσ) (as t→∞).

Then the Dirichlet series
∑
ann

−s defines a holomorphic function on Re s > σ.

Proof. Let A(x) :=
∑

0<n≤x an. Writing the Dirichlet sum as a Stieltjes integral (apply
Corollary 18.27 with f(n) = n−s and g(n) = an), for Re(s) > σ we have

∞∑
n=1

ann
−s =

∫ ∞
1−

x−s dA(x)

=
A(x)

xs

∣∣∣∞
1−
−
∫ ∞
1−

A(x) dx−s

= (0− 0)−
∫ ∞
1−

A(x)(−sx−s−1) dx

= s

∫ ∞
1−

A(x)

xs+1
dx.

Note that we used |A(x)| = O(xσ) and Re(s) > σ to conclude limx→∞A(x)/xs = 0. The
integral on the RHS converges locally uniformly on Re(s) > σ and the lemma follows.

Remark 19.10. Lemma 19.9 gives us an abscissa of convergence σ for the Dirichlet series∑
ann

−s; this is analogous to the radius of convergence of a power series.

Lemma 19.11. Let a1, a2, . . . be a sequence of complex numbers that satisfies

a1 + · · ·+ at = ρt+O(tσ) (as t→∞)

for some σ ∈ [0, 1) and ρ ∈ C×. The Dirichlet series
∑
ann

−s converges on Re(s) > 1 and
has a meromorphic continuation to Re(s) > σ that is holomorphic except for a simple pole
at s = 1 with residue ρ.

Proof. Define bn := an − ρ. Then b1 + · · ·+ bt = O(tσ) and∑
ann

−s = ρ
∑

n−s +
∑

bnn
−s = ρ ζ(s) +

∑
bnn
−s.

We have already proved that the Riemann zeta function ζ(s) is holomorphic on Re(s) > 1
and has a meromorphic continuation to Re(s) > 0 that is holomorphic except for a simple
pole at 1 with residue 1. By the previous lemma,

∑
bnn
−s is holomorphic on Re(s) > σ, and

since σ < 1, it is holomorphic at s = 1. So the entire RHS has a meromorphic continuation
to Re(s) > σ that is holomorphic except for the simple pole at 1 coming from ζ(s), and the
residue at s = 1 is ρ · 1 + 0 = ρ.

We are now ready to prove the analytic class number formula.

Theorem 19.12 (Analytic Class Number Formula). Let K be a number field of
degree n. The Dedekind zeta function ζK(z) extends to a meromorphic function on Re(z) >
1− 1

n that is holomorphic except for a simple pole at z = 1 with residue

lim
z→1+

(z − 1)ζK(z) = ρK :=
2r(2π)shKRK
wK |DK |1/2

,

where r and s are the number of real and complex places of K, respectively, hK := # clOK
is the class number, RK is the regulator, wK := µK is the number of roots of unity, and
DK := discOK is the absolute discriminant.
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Proof. We have

ζK(z) =
∑
a

N(a)−z =
∑
t≥1

att
−z,

where a ranges over nonzero ideals of OK , and at := #{a : N(a) = t} with t ∈ Z≥1. If we
now define

ρK :=
2r(2π)shKRK
wK |DK |1/2

,

then by Theorem 19.8 we have

a1 + · · ·+ at = #{a : N(a) ≤ t} = ρKt+O(t1−
1/n) (as t→∞).

Applying Lemma 19.11 with σ = 1 − 1/n, we see that ζK(z) =
∑
att
−z extends to a

meromorphic function on Re(z) > 1− 1/n that is holomorphic except for a simple pole at
z = 1 with residue ρK .

Remark 19.13. As previously noted, Hecke proved that ζK(z) extends to a meromorphic
function on C with no poles other than the simple pole at z = 1, and it satisfies a functional
equation. If we define the gamma factors1

ΓR(z) := π−z/2Γ
(
z
2

)
, and ΓC(z) := ΓR(z)ΓR(z + 1) = 2(2π)−zΓ(z),

and the completed zeta function

ξK(z) := |DK |z/2ΓR(z)rΓC(z)sζK(z),

where r and s are the number of real and complex places of K, respectively, then ξK(z) is
holomorphic except for simple poles at z = 0, 1 and satisfies the functional equation

ξK(z) = ξK(1− z).

In the case K = Q, we have r = 1 and s = 0, so

ξQ(z) = ΓR(z)ζ(z) = π−z/2Γ( z2)ζQ(z),

which is precisely the completed zeta function Z(z) we defined for the Riemann zeta function
ζ(z) = ζQ(z) in Lecture 17 (without any extra factors to remove the zeros at z = 0, 1).

19.3 Cyclotomic zeta functions and Dirichlet L-functions

Having proved the analytic class number formula, we now want to complete the proof of
Dirichlet’s theorem on primes in arithmetic progressions that we began in the previous
lecture. To do this we need to establish a connection between Dirichlet L-functions and
Dedekind zeta functions of cyclotomic fields.

Recall from Problem Set 4 that we have an isomorphism ϕ : Gal(Q(ζm)/Q)
∼−→ (Z/mZ)×

canonically defined by σ(ζm) = ζ
ϕ(σ)
m (independent of the choice of ζm). The canonical

bijection given by Corollary 18.16 allows us to identify the set X(m) of primitive Dirichlet
characters of conductor dividing m with the character group of (Z/mZ)× ' Gal(Q(ζm)/Q).2

1The rightmost equality follows from the duplication formula for Γ(s). In older texts one may find ΓC(s)
defined as (2π)−zΓ(z), which yields the same functional equation.

2As noted in Remark 18.17, the group operation on X(m) is not pointwise multiplication, one multiplies
elements of X(m) by taking the unique primitive character that induces the pointwise product.
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More generally, given any finite set of primitive Dirichlet characters, if we let m be the
LCM of their conductors and consider the subgroup H of X(m) they generate, we may
associate to H the subfield K := Q(ζm)φ(H), where

φ(H) := {σ ∈ Gal(Q(ζm)/Q) : χ(σ) = 1 for all χ ∈ H};

we may then regard H as the character group of Gal(K/Q) via Proposition 18.39. The
same applies if we replace m with any multiple m′, since H ⊆ X(m) ⊆ X(m′) for all m|m′
and we will get the same field K ⊆ Q(ζm) ⊆ Q(ζm′).

Conversely, for each subfield K of a cyclotomic field Q(ζm) there is a corresponding
subgroup

H := {χ ∈ X(m) : χ(σ) = 1 for all σ ∈ Gal(Q(ζm)/K)},

for which K = Q(ζm)φ(H). Note that K/Q is Galois, since Gal(Q(ζm)/Q) is abelian (every
subgroup is normal), and we may view H as the character group of Gal(K/Q). We thus have
a one-to-one correspondence between subgroups H ⊆ X(m) and subfields of K ⊆ Q(ζm) in
which H corresponds to the character group of Gal(K/Q) and K = Q(ζm)φ(H).

We will prove that under this correspondence, the Dedekind zeta function of ζK(s) is
the product of the Dirichlet L-functions L(s, χ) for χ ∈ H. We first note the following.

Proposition 19.14. Let p be a prime, let m be a positive integer, and let m′ = m/pvp(m).
Then Q(ζm′) is the maximal extension of Q in Q(ζm) unramified at p. In particular, if p
does not divide m then Q(ζm) is unramified at p.

Proof. By Corollary 10.20, the extension Qp(ζm′)/Qp is unramified. It follows from Proposi-
tion 12.4 that Q(ζm′)/Q is unramified at p. Applying the same argument to all primes q 6= p
dividing m shows that the extension Q(ζpvp(m)) is ramified only at p. By Corollary 14.25,
there are no nontrivial unramified extensions of Q, so every subfield of Q(ζpvp(m)) that prop-
erly contains Q is ramified at p. Now Q(ζm) is the compositum of Q(ζpvp(m)) and Q(ζm′),

which intersect in Q, so any nontrivial extension of Q(ζ ′m) in Q(ζm) contains a subfield of
Q(ζpvp(m)) properly containing Q which must be ramified at p; the proposition follows.

Theorem 19.15. Let H ⊆ X(m) be a group of primitive Dirichlet characters and let
K = Q(ζm)φ(H) be the corresponding subfield of Q(ζm), with φ(H) defined as above. Then

ζK(s) =
∏
χ∈H

L(s, χ).

Proof. On the LHS we have

ζK(s) =
∏
p

(
1−N(p)−s

)−1
=
∏
p

∏
p|p

(
1−N(p)−s

)−1
,

and on the RHS we have∏
χ∈H

L(s, χ) =
∏
χ∈H

∏
p

(
1− χ(p)p−s

)−1
=
∏
p

∏
χ∈H

(
1− χ(p)p−s

)−1
.

It thus suffices to prove ∏
p|p

(
1−N(p)−s

) ?
=
∏
χ∈H

(
1− χ(p)p−s

)
(5)
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for each prime p.
Since K/Q is Galois, we have [K : Q] = epfpgp, where ep is the ramification index, fp is

the residue field degree, and gp = #{p|p}. On the LHS of (5) we have∏
p|p

(
1−N(p)−s

)
=
(

1− (pfp)−s
)gp

=
(

1− (p−s)fp
)gp

,

which we note does not change if we replace K with the maximal subfield K ′ of K in which p
is unramified (since K/K ′ is totally ramified at every prime of K ′ above p, only ep changes,
not fp or gp). On the RHS of (5), we have χ(p) = 0 for all χ ∈ H with conductor divisible
by p, so we can replace H with the subgroup H ′ of Dirichlet characters with conductors
prime to p. It follows from Proposition 19.14 that K ′ = Q(ζm)φ(H

′) (to see this, note that
if we put m′ = m/pvp(m) then K ′ = K ∩Q(ζm′) and H ′ = H ∩X(m′)). Thus without loss
of generality we assume p 6 | m, so K is unramified at p and we have #H = [K : Q] = fpgp.

Since K/Q is abelian and unramified at p, the Artin map gives us a Frobenius element σp
corresponding to the Frobenius automorphism x 7→ xp of the residue field, which by defi-
nition has order fp, so σp has order fp in Gal(K/Q). Viewing H as the character group of
Gal(K/Q), the map χ 7→ χ(σp) defines a surjective homomorphism from H to the group
of fp-th roots of unity α ∈ U(1), and the kernel of this map has cardinality #H/fp = gp.
Therefore ∏

χ∈H

(
1− χ(p)p−s

)
=
∏
αfp=1

(
1− αp−s

)gp =
(

1− (p−s)fp
)gp

,

where the second equality follows from the identity
∏
αfp=1(1− αT ) = 1− T fp ∈ C[T ].

19.4 Non-vanishing of Dirichlet L-functions with non-principal character

We are now ready to prove the key claim needed to complete our proof of Dirichlet’s theorem
on primes in arithmetic progressions.

Theorem 19.16. Let ψ be any non-principal Dirichlet character. Then L(1, ψ) 6= 0.

Proof. Let ψ be a non-principal Dirichlet character, say of modulus m. Then ψ is induced by
a non-trivial primitive Dirichlet character ψ̃ of conductor m̃ dividing m. The L-functions
of ψ and ψ̃ differ at only finitely many Euler factors (1 − ψ(p)p−s)−1 (corresponding to
primes p dividing m/m̃), and these factors are clearly nonzero at s = 1, since p > 1. We
thus assume without loss of generality that ψ = ψ̃ is primitive.

Let K be the mth cyclotomic field Q(ζm). By Theorem 19.15 we have

ζK(s) =
∏
χ

L(s, χ),

where χ ranges over the primitive Dirichlet characters of conductor dividing m, including ψ.
By the analytic class number formula (Theorem 19.12), the LHS has a simple pole at s = 1,
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and the same must be true of the RHS. Thus

ords=1ζK(s) = ords=1

∏
χ

L(s, χ)

−1 = ords=1L(s,1)
∏
χ6=1

L(s, χ)

−1 = ords=1ζ(s)
∏
χ6=1

L(s, χ)

−1 = −1 +
∑
χ6=1

ords=1L(s, χ).

Each χ 6= 1 in the sum is necessarily non-principal (since it is primitive). We proved in
Proposition 18.20 that for non-principal χ the Dirichlet L-series L(s, χ) is holomorphic on
Re(s) > 0, thus ords=1L(s, χ) ≥ 0 for all χ appearing in the sum, which can therefore be
zero if and only if every term ords=1L(s, χ) is zero. So L(1, χ) 6= 0 for every non-trivial
primitive Dirichlet character χ of conductor dividing m, including ψ.
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20 The Kronecker-Weber theorem

In the previous lecture we established a relationship between finite groups of Dirichlet
characters and subfields of cyclotomic fields. Specifically, we showed that there is a one-to-
one-correspondence between finite groups H of primitive Dirichlet characters of conductor
dividing m and subfields K of Q(ζm) under which H can be viewed as the character group
of the finite abelian group Gal(K/Q) and the Dedekind zeta function of K factors as

ζK(s) =
∏
χ∈H

L(s, χ).

Now suppose we are given an arbitrary finite abelian extension K/Q. Does the character
group of Gal(K/Q) correspond to a group of Dirichlet characters, and can we then factor
the Dedekind zeta function ζK(s) as a product of Dirichlet L-functions?

The answer is yes! This is a consequence of the Kronecker-Weber theorem, which states
that every finite abelian extension of Q lies in a cyclotomic field. This theorem was first
stated in 1853 by Kronecker [2], who provided a partial proof for extensions of odd degree.
Weber [7] published a proof 1886 that was believed to address the remaining cases; in fact
Weber’s proof contains some gaps (as noted in [5]), but in any case an alternative proof was
given a few years later by Hilbert [1]. The proof we present here is adapted from [6, Ch. 14]

20.1 Local and global Kronecker-Weber theorems

We now state the (global) Kronecker-Weber theorem.

Theorem 20.1. Every finite abelian extension of Q lies in a cyclotomic field Q(ζm).

There is also a local version.

Theorem 20.2. Every finite abelian extension of Qp lies in a cyclotomic field Qp(ζm).

We first show that the local version implies the global one.

Proposition 20.3. The local Kronecker-Weber theorem implies the global Kronecker-Weber
theorem.

Proof. Let K/Q be a finite abelian extension. For each ramified prime p of Q, pick a prime
p|p and let Kp be the completion of K at p (the fact that K/Q is Galois means that every p|p
is ramified with the same ramification index; it makes no difference which p we pick). We
have Gal(Kp/Qp) ' Dp ⊆ Gal(K/Q), by Theorem 11.23, so Kp is an abelian extension of
Qp and the local Kronecker-Weber theorem implies that Kp ⊆ Qp(ζmp) for some mp ∈ Z≥1.
Let np := vp(mp), put m :=

∏
p p

np (this is a finite product), and let L = K(ζm). We will
show L = Q(ζm), which implies K ⊆ Q(ζm).

The field L = K · Q(ζm) is a compositum of Galois extensions of Q, and is therefore
Galois over Q with Gal(L/Q) isomorphic to a subgroup of Gal(K/Q)×Gal(Q(ζm)/Q), hence
abelian (as recalled below, the Galois group of a compositum K1 · · ·Kr of Galois extensions
Ki/F is isomorphic to a subgroup of the direct product of the Gal(Ki/F )). Let q be a
prime of L lying above a ramified prime p|p; as above, the completion Lq of L at q is a
finite abelian extension of Qp, since L/Q is finite abelian, and we have Lq = Kp · Qp(ζm).
Let Fq be the maximal unramified extension of Qp in Lq. Then Lq/Fq is totally ramified
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and Gal(Lq/Fq) is isomorphic to the inertia group Ip := Iq ⊆ Gal(L/Q), by Theorem 11.23
(the Iq all coincide because L/Q is abelian).

It follows from Corollary 10.20 that Kp ⊆ Fq(ζpnp ), since Kp ⊆ Qp(ζmp) and Qp(ζmp/pnp )
is unramified, and that Lq = Fq(ζpnp ), since Qp(ζm/pnp ) is unramified. Moreover, we have
Fq ∩Qp(ζpnp ) = Qp, since Qp(ζpnp )/Qp is totally ramified, and it follows that

Ip ' Gal(Lq/Fq) ' Gal(Qp(ζpnp )/Qp) ' (Z/pnpZ)×.

Now let I be the group generated by the union of the groups Ip ⊆ Gal(L/Q) for p|m. Since
Gal(L/Q) is abelian, we have

⋃
Ip ⊆

∏
Ip, thus

#I ≤
∏
p|m

#Ip =
∏
p|m

#(Z/pnpZ)× =
∏
p|m

φ(pnp) = φ(m) = [Q(ζm) : Q].

Each inertia field LIp is unramified at p (see Proposition 7.12), as is LI ⊆ LIp . So LI/Q is
unramified, and therefore LI = Q, by Corollary 14.25. Thus

[L : Q] = [L : LI ] = #I ≤ [Q(ζm) : Q],

and Q(ζm) ⊆ L, so L = Q(ζm) as claimed and K ⊆ L = Q(ζm).

To prove the local Kronecker-Weber theorem we first reduce to the case of cyclic exten-
sions of prime-power degree. Recall that if L1 and L2 are two Galois extensions of a field K
then their compositum L := L1L2 is Galois over K with Galois group

Gal(L/K) ' {(σ1, σ2) : σ1|L1∩L2 = σ2|L1∩L2} ⊆ Gal(L1/K)×Gal(L2/K).

The inclusion on the RHS is an equality if and only if L1 ∩ L2 = K. Conversely, if
Gal(L/K) ' H1 × H2 then by defining L2 := LH1 and L1 := LH2 we have L = L1L2

with L1 ∩ L2 = K, and Gal(L1/K) ' H1 and Gal(L2/K) ' H2.
It follows from the structure theorem for finite abelian groups that we may decompose

any finite abelian extension L/K into a compositum L = L1 · · ·Ln of linearly disjoint cyclic
extensions Li/K of prime-power degree. If each Li lies in a cyclotomic field Q(ζmi), then
so does L. Indeed, L ⊆ Q(ζm1) · · ·Q(ζmn) = Q(ζm), where m := m1 · · ·mn.

To prove the local Kronecker-Weber theorem it thus suffices to consider cyclic extensions
K/Qp of prime power degree `r. There two distinct cases: ` 6= p and ` = p.

20.2 The local Kronecker-Weber theorem for ` 6= p

Proposition 20.4. Let K/Qp be a cyclic extension of degree `r for some prime ` 6= p.
Then K lies in a cyclotomic field Qp(ζm).

Proof. Let F be the maximal unramified extension of Qp in K; then F = Qp(ζn) for some
n ∈ Z≥1, by Corollary 10.19. The extension K/F is totally ramified, and it must be tamely
ramified, since the ramification index is a power of ` 6= p. By Theorem 11.10, we have
K = F (π1/e) for some uniformizer π, with e = [K : F ]. We may assume that π = −pu
for some u ∈ O×F , since F/Qp is unramified: if q|p is the maximal ideal of OF then the
valuation vq extends vp with index eq = 1 (by Theorem 8.20), so vq(−pu) = vp(−p) = 1.
The field K = F (π1/e) lies in the compositum of F ((−p)1/e) and F (u1/e), and we will show
that both fields lie in a cyclotomic extension of Qp.
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The extension F (u1/e)/F is unramified, since vq(disc(xe−u)) = 0 for p - e, so F (u1/e)/Qp

is unramified and F (u1/e) = Qp(ζk) for some k ∈ Z≥1. The field K(u1/e) = K ·Qp(ζk) is a
compositum of abelian extensions, so K(u1/e)/Qp is abelian, and it contains the subexten-
sion Qp((−p)1/e)/Qp, which must be Galois (since it lies in an abelian extension) and totally
ramified (by Theorem 11.5, since it is an Eisenstein extension). The field Qp((−p)1/e) con-
tains ζe (take ratios of roots of xe + p) and is totally ramified, but Qp(ζe)/Qp is unramified
(since p 6 | e), so we must have Qp(ζe) = Qp. Thus e|(p− 1), and by Lemma 20.5 below,

Qp((−p)1/e) ⊆ Qp((−p)1/(p−1)) = Qp(ζp).

It follows that F ((−p)1/e) = F · Qp((−p)1/e) ⊆ Qp(ζn) · Qp(ζp) ⊆ Qp(ζnp). We then have
K ⊆ F (u1/e) · F ((−p)1/e) ⊆ Q(ζk) ·Q(ζnp) ⊆ Q(ζknp) and may take m = knp.

Lemma 20.5. For any prime p we have Qp

(
(−p)1/(p−1)

)
= Qp(ζp).

Proof. Let α = (−p)1/(p−1). Then α is a root of the Eisenstein polynomial xp−1 + p, so the
extension Qp((−p)1/(p−1)) = Qp(α) is totally ramified of degree p−1, and α is a uniformizer
(by Lemma 11.4 and Theorem 11.5). Let π = ζp − 1. The minimal polynomial of π is

f(x) :=
(x+ 1)p − 1

x
= xp−1 + pxp−2 + · · ·+ p,

which is Eisenstein, so Qp(π) = Qp(ζp) is also totally ramified of degree p − 1, and π is a
uniformizer. We have u := −πp−1/p ≡ 1 mod π, so u is a unit in the ring of integers of
Qp(ζp). If we now put g(x) = xp−1 − u then g(1) ≡ 0 mod π and g′(1) = p− 1 6≡ 0 mod π,
so by Hensel’s Lemma 9.15 we can lift 1 to a root β of g(x) in Qp(ζp).

We then have pβp−1 = pu = −πp−1, so (π/β)p−1 + p = 0, and therefore π/β ∈ Qp(ζp) is
a root of the minimal polynomial of α. Since Qp(ζp) is Galois, this implies that α ∈ Qp(ζp),
and since Qp(α) and Qp(ζp) both have degree p− 1, the two fields coincide.

To complete the proof of the local Kronecker-Weber theorem, we need to address the
case ` = p. Before doing so, we first recall some background on Kummer extensions.

20.3 A brief introduction to Kummer theory

Let n be a positive integer and let K be a field of characteristic prime to n that contains a
primitive nth root of unity ζn. While we are specifically interested in the case where K is
a local or global field, in this section K can be any field that satisfies these conditions.

For any a ∈ K, the field L = K( n
√
a) is the splitting field of f(x) = xn − a over K; the

notation n
√
a denotes a particular nth root of a, but it does not matter which root we pick

because all the nth roots of a lie in L (if f(α) = f(β) = 0 then α/β ∈ ζin ∈ K for some
0 ≤ i < n and K(α) = K(β)). The polynomial f(x) is separable, since n is prime to the
characteristic of K, so L is a Galois extension of K, and Gal(L/K) is cyclic, since we have
an injective homomorphism

Gal(L/K) ↪→ 〈ζn〉 ' Z/nZ

σ 7→ σ( n
√
a)

n
√
a

.

This homomorphism is an isomorphism if and only if xn − a is irreducible.
Kummer’s key observation is that the converse holds. In order to prove this we first

recall a basic (but often omitted) lemma from Galois theory, originally due to Dedekind.
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Lemma 20.6. Let L/K be a finite extension of fields. The set AutK(L) is a linearly
independent subset of the L-vector space of functions L→ L.

Proof. Suppose not. Let f := c1σ1 + · · · + crσr = 0 with ci ∈ L, σi ∈ AutK(L), and r
minimal; we must have r > 1, the ci nonzero, and the σi distinct. Choose α ∈ L so
σ1(α) 6= σr(α) (possible since σ1 6= σr). We have f(β) = 0 for all β ∈ L, and the same
applies to f(αβ)− σ1(α)f(β), which yields a shorter relation c′2σ2 + · · ·+ c′rσr = 0, where
c′i = ciσi(α)− ciσ1(α) with c′1 = 0, which is nontrivial because c′r 6= 0, a contradiction.

Corollary 20.7. Let L/K be a cyclic field extension of degree n with Galois group 〈σ〉 and
suppose L contains an nth root of unity ζn. Then σ(α) = ζnα for some α ∈ L.

Proof. The automorphism σ is a linear transformation of L with characteristic polynomial
xn − 1; by Lemma 20.6, this must be its minimal polynomial, since {1, σ1, . . . , σn−1} is
linearly independent. Therefore ζn is eigenvalue of σ, and the lemma follows.

Remark 20.8. Corollary 20.7 is a special case of Hilbert’s Theorem 90, which re-
places ζn with any element u of norm NL/K(u) = 1; see [4, Thm. VI.6.1], for example.

Lemma 20.9. Let K be a field, let n ≥ 1 be prime to the characteristic of K, and assume
ζn ∈ K. If L/K is a cyclic extension of degree n then L = K( n

√
a) for some a ∈ K.

Proof. Let L/K be a cyclic extension of degree n with Gal(L/K) = 〈σ〉. By Corollary 20.7,
there exists an element α ∈ L for which σ(α) = ζnα. We have

σ(αn) = σ(α)n = (ζnα)n = αn,

thus a = αn is invariant under the action of 〈σ〉 = Gal(L/K) and therefore lies in K.
Moreover, the orbit {α, ζnα, . . . , ζn−1n α} of α under the action of Gal(L/K) has order n, so
L = K(α) = K( n

√
a) as desired.

Definition 20.10. Let K be a field with algebraic closure K, let n ≥ 1 be prime to the
characteristic of K, and assume ζn ∈ K. The Kummer pairing is the map

〈·, ·〉 : Gal(K/K)×K× → 〈ζn〉

(σ, a) 7→ σ( n
√
a)

n
√
a

where n
√
a is any nth root of a in ∈ K×. If α and β are two nth roots of a, then (α/β)n = 1,

so α/β ∈ 〈ζn〉 ⊆ K is fixed by σ and σ(β)/β = σ(β)/β · σ(α/β)/(α/β) = σ(α)/α, so the
value of 〈σ, a〉 does not depend on the choice of n

√
a. If a ∈ K×n, then 〈σ, a〉 = 1 for all

σ ∈ Gal(K/K), so the Kummer pairing depends only on the image of a in K×/K×n; thus
we may also view it as a pairing on Gal(K/K)×K×/K×n.

Theorem 20.11. Let K be a field, let n ≥ 1 be prime to the characteristic of K with
ζn ∈ K. The Kummer pairing induces an isomorphism

Φ: K×/K×n → Hom
(
Gal(K/K), 〈ζn〉

)
a 7→

(
σ 7→ 〈σ, a〉

)
.
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Proof. For each a ∈ K× − K×n, if we pick an nth root α ∈ K of a then the extension
K(α)/K will be non-trivial and some σ ∈ Gal(K/K) must act nontrivially on α. For this σ
we have 〈σ, a〉 6= 1, so a 6∈ ker Φ; thus Φ is injective.

Now let f : Gal(K/K) → 〈ζn〉 be a homomorphism, and put d := # im f , H := ker f ,

and L := K
H

. Then Gal(L/K) ' Gal(K/K)/H ' Z/dZ, so L/K is a cyclic extension of
degree d, and Lemma 20.9 implies that L = K( d

√
a) for some a ∈ K. If we put e = n/d

and consider the homomorphisms Φ(ame) for m ∈ (Z/dZ)×, these homomorphisms are
all distinct (because the ame are distinct modulo K×n and Φ is injective), and they all
have the same kernel and image as f (their kernels have the same fixed field L because L
contains all the dth roots of a). There are #(Z/dZ)× = #Aut(Z/dZ) distinct isomorphisms
Gal(K/K)/H ' Z/dZ, one of which corresponds to f , and each corresponds to one of the
Φ(ame). It follows that f = Φ(ame) for some m ∈ (Z/dZ)×, thus Φ is surjective.

Given a finite subgroup A of K×/K×n, we can choose a1, . . . , ar ∈ K× so that the
images āi of the ai in K×/K×n form a basis for the abelian group A; this means

A = 〈ā1〉 × · · · × 〈ār〉 ' Z/n1Z× · · · × Z/nrZ,

where ni|n is the order of āi in A. For each ai, the fixed field of the kernel of Φ(āi) is a cyclic
extension of K isomorphic to Li := K( ni

√
ai), as in the proof of Theorem 20.11. The fields

Li are linearly disjoint over K (because the ai correspond to independent generators of A),
and their compositum L = K( n1

√
a1, . . . nr

√
ar) has Galois group Gal(L/K) ' A, an abelian

group whose exponent divides n; such fields L are called n-Kummer extensions of K.
Conversely, given an n-Kummer extension L/K, we can iteratively apply Lemma 20.9

to put L in the form L = K( n1
√
a1, . . . , nr

√
ar) with each ai ∈ K× and ni|n, and the images

of the ai in K×/K×n then generate a subgroup A corresponding to L as above. We thus
have a 1-to-1 correspondence between finite subgroups of K×/K×n and (finite) n-Kummer
extensions of K (this correspondence also extends to infinite subgroups provided we put a
suitable topology on the groups).

So far we have been assuming that K contains all the nth roots of unity. To help handle
situations where this is not necessarily the case, we rely on the following lemma.

Lemma 20.12. Fix n ∈ Z>1, let F be a field of characteristic prime to n, let K = F (ζn),
and let L = K( n

√
a) for some a ∈ K×. Define the homomorphism ω : Gal(K/F )→ (Z/nZ)×

by ζ
ω(σ)
n = σ(ζn). If L/F is abelian then σ(a)/aω(σ) ∈ K×n for all σ ∈ Gal(K/F ).

Proof. Let G = Gal(L/F ), let H = Gal(L/K) ⊆ G, and let A be the subgroup of K×/K×n

generated by a. The Kummer pairing induces a bilinear pairing H × A → 〈ζn〉 that is
compatible with the Galois action of Gal(K/F ) ' G/H. In particular, we have

〈h, aω(σ)〉 = 〈h, a〉ω(σ) = σ(〈h, a〉) = 〈hσ, σ(a)〉 = 〈h, σ(a)〉

for all σ ∈ Gal(K/F ) and h ∈ H; the Galois action on H is by conjugation (lift σ to G
and conjugate there), but it is trivial because G is abelian (so hσ = h). The isomorphism
Φ induced by the Kummer pairing is injective, so aω(σ) ≡ σ(a) mod K×n.

20.4 The local Kronecker-Weber theorem for ` = p > 2

We are now ready to prove the local Kronecker-Weber theorem in the case ` = p > 2.
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Theorem 20.13. Let K/Qp be a cyclic extension of odd degree pr. Then K lies in a
cyclotomic field Qp(ζm).

Proof. There are two obvious candidates for K, namely, the cyclotomic field Qp(ζppr−1),
which by Corollary 10.19 is an unramified extension of degree pr, and the index p−1 subfield
of the cyclotomic field Qp(ζpr+1), which by Corollary 10.20 is a totally ramified extension
of degree pr (the pr+1-cyclotomic polynomial Φpr+1(x) has degree φ(pr+1) = pr(p− 1) and
remains irreducible over Qp). If K is contained in the compositum of these two fields then
K ⊆ Qp(ζm), where m := (pp

r−1)(pr+1) and the theorem holds. Otherwise, the field K(ζm)
is a Galois extension of Qp with

Gal(K(ζm)/Qp) ' Z/prZ× Z/prZ× Z/(p− 1)Z× Z/psZ,

for some s > 0; the first factor comes from the Galois group of Qp(ζppr−1), the second two
factors come from the Galois group of Qp(ζpr+1) (note Qp(ζpr+1)∩Qp(ζppr−1) = Qp), and the
last factor comes from the fact that we are assuming K 6⊆ Qp(ζm), so Gal(K(ζm)/Qp(ζm))
is nontrivial and must have order ps for some s ∈ [1, r].

It follows that the abelian group Gal(K(ζm)/Qp) has a quotient isomorphic to (Z/pZ)3,
and the subfield of K(ζm) corresponding to this quotient is an abelian extension of Qp with
Galois group isomorphic (Z/pZ)3. By Lemma 20.14 below, no such field exists.

To prove that Qp admits no (Z/pZ)3-extensions our strategy is to use Kummer theory
to show that the corresponding subgroup of Qp(ζp)

×/Qp(ζp)
×p given by Theorem 20.11

must have p-rank 2 and therefore cannot exist. For an alternative proof that uses higher
ramification groups instead of Kummer theory, see Problem Set 10.

Lemma 20.14. For p > 2 no extension of Qp has Galois group isomorphic to (Z/pZ)3.

Proof. Suppose for the sake of contradiction that K is an extension of Qp with Galois group
Gal(K/Qp) ' (Z/pZ)3. Then K/Qp is linearly disjoint from Qp(ζp)/Qp, since the order of
G := Gal(Qp(ζp)/Qp) ' (Z/pZ)× is not divisible by p, and Gal(K(ζp)/Qp(ζp)) ' (Z/pZ)3

is a p-Kummer extension. There is thus a subgroup A ⊆ Qp(ζp)
×/Qp(ζp)

×p isomorphic to
(Z/pZ)3, for which K(ζp) = Qp(ζp, A

1/p), where A1/p := { p
√
a : a ∈ A} (here we identify

elements of A by representatives in Qp(ζp)
× that are determined only up to pth powers).

For any a ∈ A, the extension Qp(ζp, p
√
a)/Qp is abelian, so by Lemma 20.12, we have

σ(a)/aω(σ) ∈ Qp(ζp)
×p (1)

for all σ ∈ G, where ω : G
∼−→ (Z/pZ)× is the isomorphism defined by σ(ζp) = ζ

ω(σ)
p .

The field Qp(ζp) is a totally tamely ramified extension of Qp of degree p−1 with residue
field Z/pZ; as shown in the proof of Lemma 20.5, we may take π := ζp− 1 as a uniformizer.
For each a ∈ A we have

vπ(a) = vπ(σ(a)) ≡ ω(σ)vπ(a) mod p,

thus (1 − ω(σ))vπ(a) ≡ 0 mod p, for all σ ∈ G, hence for all ω(σ) ∈ ω(G) = (Z/pZ)×;
for p > 2, this implies vπ(a) ≡ 0 mod p. Now a is determined only up to pth-powers, so
after multiplying by π−vπ(a) we may assume vπ(a) = 0, and after multiplying by a suitable
power of ζpp−1 = ζp−1, we may assume a ≡ 1 mod π, since the image of ζp−1 generates the
multiplicative group (Z/pZ)× of the residue field.
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We may thus assume that A ⊆ U1/U
p
1 , where U1 := {u ≡ 1 mod π}. Each u ∈ U1 can be

written as a power series in π with integer coefficients in [0, p−1] and constant coefficient 1.
We have ζp ∈ U1, since ζp = 1 + π, and ζbp = 1 + bπ +O(π2) for integers b ∈ [0, p− 1].1

For a ∈ A ⊆ U1, we can choose b so that for some integer c ∈ [0, p− 1] and e ∈ Z≥2 we have

a = ζbp(1 + cπe +O(πe+1)).

For σ ∈ G we have

σ(π)

π
=
σ(ζp − 1)

ζp − 1
=
ζ
ω(σ)
p − 1

ζp − 1
= ζω(σ)−1p + · · ·+ ζp + 1 ≡ ω(σ) mod π,

since each term in the sum is congruent to 1 modulo π = (ζp− 1); here we are representing
ω(σ) ∈ (Z/pZ)× as an integer in [1, p− 1]. Thus σ(π) ≡ ω(σ)π mod π2 and

σ(a) = ζbω(σ)p (1 + cω(σ)eπe +O(πe+1)).

We also have
aω(σ) = ζbω(σ)p (1 + cω(σ)πe +O(πe+1)).

As we showed for a above, any u ∈ U1 can be written as u = ζbpu1 with u1 ≡ 1 mod π2.
Each interior term in the binomial expansion of up1 = (1 +O(π2))p other than leading 1 is a
multiple of pπ2 with vπ(pπ2) = p− 1 + 2 = p+ 1, and it follows that up = up1 ≡ 1 mod πp+1.
Thus every element of Up1 is congruent to 1 modulo πp+1, and as you will show on the
problem set, the converse holds, that is, Up1 = {u ≡ 1 mod πp+1}.

We know from (1) that σ(a)/aω(σ) ∈ Up1 , so σ(a) = aω(σ)(1 +O(πp+1)) and therefore

σ(a) ≡ aω(σ) mod πp+1.

For e ≤ p this is possible only if ω(σ) = ω(σ)e for every σ ∈ G, equivalently, for every
ω(σ) ∈ σ(G) = (Z/pZ)×, but then e ≡ 1 mod (p− 1) and we must have e ≥ p, since e ≥ 2.

We have shown that every a ∈ A is represented by an element ζbp(1+cπp+O(πp+1)) ∈ U1

with b, c ∈ Z, and therefore lies in the subgroup of U1/U
p
1 generated by ζp and (1 + πp),

which is an abelian group of exponent p generated by 2 elements, hence isomorphic to a
subgroup of (Z/pZ)2. But this contradicts A ' (Z/pZ)3.

Remark 20.15. In the proof of Lemma 20.14 above, the elements of Qp(ζp)
×/Qp(ζp)

×p

that lie in A are quite special. For most a ∈ Qp(ζp)
× the extension Qp(ζp, p

√
a)/Qp will

not be abelian, even though the extensions Qp( p
√
a)/Qp(ζp) and Qp(ζp)/Qp both are, and

we typically will not have vπ(a) ≡ 0 mod p (consider a = π). The key point is that we
started with an abelian extension K/Qp, so K(ζp) = K · Qp(ζp) is an abelian extension
containing A1/p; this ensures that for a ∈ A the fields Qp(ζp, p

√
a) are abelian.

Remark 20.16. There is an alternative proof to Lemma 20.14 that is much more explicit.
One can show that for p > 2 the field Qp admits exactly p+ 1 cyclic extensions of degree p:
the unramified extension Qp(ζpp−1) and the extensions Qp[x]/(xp + pxp−1 + p(1 + ap)), for
integers a ∈ [0, p − 1]; see [3, Prop. 2.3.1]. This implies that Qp cannot have a (Z/pZ)3

extension, since this would imply the existence of p2 + p + 1 cyclic extensions of degree p,
one for each index p subgroup of (Z/pZ)3.

1The expression O(πn) denotes a power series in π that is divisible by πn.
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For p = 2 there is an extension of Q2 with Galois group isomorphic to (Z/2Z)3, the
cyclotomic field Q2(ζ24) = Q2(ζ3) · Q2(ζ8), so the proof we used for p > 2 will not work.
However we can apply a completely analogous argument.

Theorem 20.17. Let K/Q2 be a cyclic extension of degree 2r. Then K lies in a cyclotomic
field Q2(ζm).

Proof. The unramified cyclotomic field Q2(ζ22r−1) has Galois group Z/2rZ, and the totally
ramified cyclotomic field Q2(ζ2r+2) has Galois group Z/2Z × Z/2rZ (up to isomorphism).
Let m = (22

r − 1)(2r+2). If K is not contained in Q2(ζm) then

Gal(K(ζm)/Q2) '


Z/2Z× (Z/2rZ)2 × Z/2sZ with 1 ≤ s ≤ r
or

(Z/2rZ)2 × Z/2sZ with 2 ≤ s ≤ r

and thus admits a quotient isomorphic to (Z/2Z)4 or (Z/4Z)3. By Lemma 20.18 below, no
extension of Q2 has either of these Galois groups, thus K must lie in Q2(ζm).

Lemma 20.18. No extension of Q2 has Galois group isomorphic to (Z/2Z)4 or (Z/4Z)3.

Proof. As you proved on Problem Set 4, there are exactly 7 quadratic extensions of Q2; it
follows that no extension of Q2 has Galois group (Z/2Z)4, since this group has 15 subgroups
of index 2 whose fixed fields would yield 15 distinct quadratic extension of Q2.

As you proved on Problem Set 5, there are only finitely many extensions of Q2 of any
fixed degree d, and these can be enumerated by considering Eisenstein polynomials in Q2[x]
of degrees dividing d up to an equivalence relation implied by Krasner’s lemma. One finds
that there are 59 quartic extensions of Q2, of which 12 are cyclic; you can find a list of them
here. It follows that no extension of Q2 has Galois group (Z/4Z)3, since this group has 28
subgroups whose fixed fields would yield 28 distinct cyclic quartic extensions of Q2.
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21 Class field theory: ray class groups and ray class fields

In the previous lecture we proved that every abelian extension L of Q is contained in a
cyclotomic field Q(ζm). The isomorphism Gal(Q(ζm)/Q) ' (Z/mZ)× then allows us to
view Gal(L/Q) as a quotient of (Z/mZ)×. We would like to replace the base field Q with
an arbitrary number field K, but we need analogs of the cyclotomic fields Q(ζm) and the
abelian Galois groups (Z/mZ)×. These analogs are ray class fields, and their Galois groups
are isomorphic to ray class groups. Ray class fields are not, in general, cyclotomic extensions
of K; their construction is rather more complicated. Before defining them, let us first recall
some properties of the Artin map we defined in Lecture 7.

21.1 The Artin map

Let L/K be a finite Galois extension of global fields, and let p be a prime of K. Recall
that the Galois group Gal(L/K) acts on the set {q|p} (primes q of L lying above p) and the
stabilizer of q|p is the decomposition group Dq ⊆ Gal(L/K). By Proposition 7.9, we have
a surjective homomorphism

πq : Dq → Gal(Fq/Fp)

σ 7→ σ := (α 7→ σ(α)),

where α ∈ OL is any lift of α ∈ Fq := OL/q to OL and σ(α) is the reduction of σ(α) ∈ OL
to Fq; kernel of πq is the inertia group Iq. If q is unramified then Iq is trivial and πq is an
isomorphism. The Artin symbol (Definition 7.18) is defined by(

L/K

q

)
:= σq := π−1q (x 7→ x#Fp),

where (x 7→ x#Fp) ∈ Gal(Fq/Fp) is the Frobenius automorphism, a canonical generator for
the cyclic group Gal(Fq/Fp). Equivalently, σq is the unique element of Gal(L/K) for which

σq(x) ≡ x#Fp mod q

for all x ∈ OL. For q|p the Frobenius elements σq are all conjugate (they form the Frobenius
class Frobp), and when L/K is abelian they coincide, in which case we may write σp instead
of σq (or use Frobp = {σp} to denote σp), and we may write the Artin symbol as(

L/K

p

)
:= σp.

Now assume L/K is abelian, let m be an OK-ideal divisible by every ramified prime
of K, and let ImK denote the subgroup of fractional ideals I ∈ IK for which vp(I) = 0 for
all p|m. The Artin map (Definition 7.21) is the homomorphism

ψm
L/K : ImK → Gal(L/K)∏

p6 |m

pnp 7→
∏
p6 |m

(
L/K

p

)np

.

A key ingredient of class field theory that we will prove in this lecture is surjectivity of
the Artin map ψm

L/K . This allows us to identify Gal(L/K) with the quotient ImK/ kerψm
L/K .
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Every p ∈ kerψm
L/K is unramified and has the property that the Frobenius elements σq are

trivial for all q|p, meaning that all the residue field extensions Fq/Fp are trivial. This implies
that p splits completely in L (it is unramified and primes above it have residue degree one).
Conversely, every prime p ∈ ImK that splits completely in L lies in kerψm

L/K .

Proposition 21.1. Let K ⊆ L ⊆ M be a tower of finite abelian extension of global fields
and let m be an OK-ideal divisible by all primes p of K that ramify in M . We have a
commutative diagram

ImK Gal(M/K)

Gal(L/K)

←→
ψm
M/K

←

→ψm
L/K

←→ res

where the vertical map is the homomorphism σ → σ|L induced by restriction.

Proof. It suffices to check commutativity at primes p - m, which are necessarily unramified.
The proposition then follows from Proposition 7.20.

21.2 Class field theory for Q

We now specialize to K = Q. The Kronecker-Weber theorem tells us that every abelian
extension L/K lies in a cyclotomic field Q(ζm). Each σ ∈ Gal(Q(ζm)/Q) is determined by
its action on ζm, and we have an isomorphism

ω : Gal(Q(ζm)/Q)
∼−→ (Z/mZ)×

defined by σ(ζm) = ζ
ω(σ)
m . The primes p that ramify in Q(ζm) are precisely those that

divide m (by Corollary 10.20). For each prime p 6 | m the Frobenius element σp is the
unique σ ∈ Gal(Q(ζm)/Q) for which σ(x) ≡ xp mod q for any (equivalently, all) q|(p).
Thus ω(σp) = p mod m, and it follows that the Artin map induces an inverse isomorphism
(Z/mZ)× → Gal(Q(ζm)/Q): for every integer a coprime to m we have (a) ∈ ImQ and

ω−1(ā) =

(
Q(ζm)/Q

(a)

)
,

where ā = a mod m. As you showed on Problem Set 4, the surjectivity of the Artin map
follows immediately, since a ranges over all integers coprime to m.

Now let L be a subfield of Q(ζm). We cannot apply ω to Gal(L/Q), since Gal(L/Q) is a
quotient of Gal(Q(ζm)/Q), not a subgroup, but the Artin map ImQ → Gal(L/Q) is available;
notice that the modulus m works for L as well as Q(ζm), since any primes that ramify in L
also ramify in Q(ζm) and therefore divide m. By Proposition 21.1, the Artin map factors
through the surjective homomorphism Gal(Q(ζm)/Q) → Gal(L/Q) induced by restriction
and thus induces a surjective homomorphism (Z/mZ)× → Gal(L/Q).

To sum up, we can now say the following about abelian extensions of Q:

• Existence: for each integer m we have a ray class field Q(ζm): an abelian extension
ramified only at p|m with Galois group isomorphic to the ray class group (Z/mZ)×.

• Completeness: every abelian extension of Q lies in a ray class field Q(ζm).
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• Reciprocity: if L is an abelian extension of Q contained in the ray class field Q(ζm),
the Artin map ImQ → Gal(L/Q) induces a surjective homomorphism from the ray class
group (Z/mZ)× to Gal(L/Q), letting us view Gal(L/Q) as a quotient of (Z/mZ)×.

All of these statements will be made more precise; in particular, we will refine the first
two statements so that ray class fields are uniquely determined by the modulus m, and we
will give an explicit description of the kernel of the Artin map that allows us to identify
Gal(L/Q) with a quotient of (Z/mZ)×. But let us first consider how to generalize these
statements to number fields other than Q and define the terms ray class field, and ray class
group. In order to do so, we first need to make the role of the integer m more precise by
introducing the notion of a modulus.

21.3 Moduli and ray class groups

Recall that for a global field K we use MK to denote its set of places (equivalence classes
of absolute values). We generically denote places by the symbol v, but for finite places,
those arising from a discrete valuation associated to a prime p of K (a nonzero prime ideal
of OK), we may write p in place of v. We write v|∞ to indicate that v is an infinite place
(one not arising from a prime of K); recall that when K is a number field all infinite places
are archimedean, and they may be real (Kv ' R) or complex (Kv ' C).

Definition 21.2. Let K be a number field. A modulus (or cycle) m for K is a function
MK → Z≥0 with finite support such that for v|∞ we have m(v) ≤ 1 with m(v) = 0 unless v
is a real place. We view m as a formal product

∏
vm(v) over MK , which we may factor as

m = m0m∞, m0 :=
∏
p6 |∞

pm(p), m∞ :=
∏
v|∞

vm(v),

where m0 is an OK-ideal and m∞ represents a subset of the real places of K; we use #m∞
to denote the number of real places in the support of m. If m and n are moduli for K we
say that m divides n and write m|n if m(v) ≤ n(v) for all v ∈ MK . We define the product
modulus mn by mn(v) := m(v) + n(v) for v -∞ and mn(v) := max(m(v) + n(v), 1) for v | ∞;
we also define gcd(m, n)(v) := min(m(v), n(v) and lcm(m, n)(v) := max(m(v), n(v)). The
zero function is the trivial modulus, with m0 = (1) and #m∞ = 0.
We use IK to denote the ideal class group of OK and define the following notation:1

• a fractional ideal a ∈ IK is coprime to m (or prime to m) if vp(a) = 0 for all p|m0.

• ImK ⊆ IK is the subgroup of fractional ideals coprime to m.

• Km ⊆ K× is the subgroup of elements α ∈ K× for which (α) ∈ ImK .

• Km,1 ⊆ Km is the subgroup of elements α ∈ Km with vp(α− 1) ≥ vp(m0) for all p|m0

and αv > 0 for v|m∞ (here αv is the image of α under K ↪→ Kv ' R).

• Rm
K ⊆ ImK is the subgroup of principal fractional ideals (α) ∈ ImK with α ∈ Km,1.

The groups Rm
K are called rays or ray groups.

1This notation varies from author to author; there is no universally accepted notation for these objects
(in particular, the modulus m may appear as a subscript rather than a superscript). Things will improve
when we come to the adelic/idelic formulation of class field theory where there is more consistency.
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Definition 21.3. Let m be a modulus for a number field K. The ray class group for the
modulus m is the quotient

ClmK := ImK/Rm
K .

A finite abelian extension L/K that is unramified at all places2 not in the support of m for
which the kernel of the Artin map ψm

L/K : ImK → Gal(L/K) is equal to the ray group Rm
K is

a ray class field for the modulus m.

When m is the trivial modulus, the ray class group is the same as the usual class group
ClK := cl(OK), but in general the class group ClK is a quotient of the ray class group ClmK
(as we will prove shortly). While not immediately apparent from the definition, we will see
that ray class fields are uniquely determined by m, so it makes sense to speak of the ray
class field for the modulus m (assuming existence).

Remark 21.4. The definitions above make sense for any global field, but in our ideal-
theoretic treatment of class field theory we will mostly restrict our attention to number
fields. Our adelic/idelic formulation of class field theory will address all global fields.

Remark 21.5. If m(v) = 1 for every real place v of K then ClmK is a narrow ray class
group. The narrow ray class group with m0 = (1) is the narrow class group; the usual class
group ClK = clOK is sometimes called the wide class group to distinguish the two. Note
that the wide class group is a quotient of the narrow class group, thus smaller in general;
this terminology can be confusing, but the thing to remember is that narrow equivalence is
stronger than ordinary equivalence, so there are more narrow equivalence classes, in general.
Of course for number fields with no real places (imaginary quadratic fields, in particular)
there is no distinction.

Example 21.6. ForK = Q with the modulus m = (5) we haveKm = {a/b : a, b 6≡ 0 mod 5}
and Km,1 = {a/b : a ≡ b 6≡ 0 mod 5}. Thus

ImK = {(1), (1/2), (2), (1/3), (2/3), (3/2), (3), (1/4), (3/4), (4/3), (4), (1/6), (6), . . .},
Rm
K = {(1), (2/3), (3/2), (1/4), (4), (6), (1/6), (2/7), (7/2), . . .}.

You might not have expected (2/3) ∈ Rm
K , since 2/3 6∈ Km,1, but note that −2/3 ∈ Km,1

and (−2/3) = (2/3). The ray class group is

ClmK = ImK/Rm
K = {[(1)], [(2)]} ' (Z/5Z)×/{±1},

which is isomorphic to the Galois group of the totally real subfield Q(ζ5)
+ of Q(ζ5), which

is the ray class field for this modulus. If we change the modulus to m = (5)∞ we instead
get Rm

K = {(1), (6), (1/6), (2/7), (7/2), . . .}, ClmK ' (Z/5Z)×, and the ray class field is Q(ζ5).

Lemma 21.7. Let A be a Dedekind domain and let a be an A-ideal. Every ideal class in
cl(A) contains an A-ideal coprime to a.

Proof. Let I be a nonzero fractional ideal of A. For each prime p|a we can pick πp ∈ p such

that vq(πp) = vq(p) for all q|a, by Corollary 3.21. If we then put α :=
∏

p|a π
−vp(I)
p , then

vp(αI) = 0 for all p|a; thus αI is coprime to a and [αI] = [I].

2Archimedean places of K are unramified in L except for real places v with a complex place w of L above
them. But if L is unramified at all p - m0 (necessary for ψm

L/K to be defined), and kerψm
L/K = Rm

K , then L
will necessarily be unramified at all infinite places v - m∞; so in the definition of a ray class field it is enough
for L to be unramified away from m0.
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Now let S be the finite set of primes p for which vp(αI) < 0 and pick πp ∈ p such
that vq(πp) = vq(p) for all q ∈ S and q|a (again using Corollary 3.21). If we now put

a :=
∏

p∈S π
−vp(αI)
p ∈ A, then vp(aαI) ≥ 0 for all p and vp(aαI) = 0 for all p|a. Thus aαI

is an A-ideal coprime to a and [aαI] = [I].

Theorem 21.8. Let m be a modulus for a number field K. We have an exact sequence

1 −→ O×K ∩K
m,1 −→ O×K −→ Km/Km,1 −→ ClmK −→ ClK −→ 1

and a canonical isomorphism

Km/Km,1 ' {±1}#m∞ × (OK/m0)
×.

Proof. Let us consider the composition of the maps Km,1 ⊆ Km and α 7→ (α):

Km,1 f−→ Km g−→ ImK .

The kernel of f is trivial, the kernel of g ◦ f is O×K ∩Km,1 (since (α) = (1) ⇐⇒ α ∈ O×K),
the kernel of g is O×K , the cokernel of f is Km/Km,1, the cokernel of g ◦ f is ClmK = ImK/Rm

K

(by definition), and the cokernel of g is ClK (by Lemma 21.7). Applying the snake lemma
(see [2, Lemma 5.13], for example) to the following commutative diagram with exact rows

1 Km,1 Km Km/Km,1 1

1 ImK ImK 1

←→ ←↩ →f

←→ g◦f

←→

←→ g

←→
←→ π

←→ ←→∼ ← →

yields the exact sequence ker g ◦ f → ker g → kerπ → coker g ◦ f → coker g → cokerπ:

1 −→ O×K ∩K
m,1 −→ O×K −→ Km/Km,1 −→ ClmK −→ ClK −→ 1,

where the initial 1 follows from the fact that f is injective (and kerπ = coker f).
We can write each α ∈ Km as α = a/b with a, b ∈ OK such that (a) and (b) are

coprime to m0 and to each other. The ideals (a) and (b) are uniquely determined by α,
since a/b = a′/b′ ⇒ ab′ = a′b ⇒ (a)(b′) = (a′)(b), and since (a) and (b) are coprime we
must have (a) = (a′) and (b) = (b′) (by unique factorization of ideals).

We now define the homomorphism

ϕ : Km →

∏
v|m∞

{±1}

× (OK/m0)
×

α 7→

∏
v|m∞

sgn(αv)

× (ᾱ),

where ᾱ = āb̄−1 ∈ (OK/m0)
× (here ā, b̄ are the images of a, b ∈ OK in OK/m0, and they

both lie in (OK/m0)
× because (a) and (b) are coprime to m0). The ring (OK/m0)

× is iso-
morphic to

∏
p|m0

(OK/pm(p))×, by the Chinese remainder theorem, and weak approximation

(Theorem 8.5) implies that ϕ is surjective. The kernel of ϕ is clearly Km,1, thus ϕ induces
an isomorphism Km/Km,1 ' {±}#m∞×(OK/m0)

×. This isomorphism is canonical, because
ᾱ depends only on the uniquely determined ideals (a) and (b) (if we replace a with a′ = au
for some u ∈ O×K we must replace b with b′ = bu).
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Corollary 21.9. Let K be a number field and let m be a modulus for K. The ray class
group ClmK is a finite abelian group whose cardinality hmK := #ClmK is given by

hmK =
φ(m)hK

[O×K : O×K ∩Km,1]
,

where hK := #ClK and φ(m) := #(Km/Km,1) = φ(m∞)φ(m0), with

φ(m∞) = 2#m∞ , φ(m0) = #(OK/m0)
× = N(m0)

∏
p|m0

(1−N(p)−1).

In particular, hK divides hmK and hmK divides hKφ(m).

Proof. The exact sequence implies φ(m)/[O×K : O×K ∩Km,1] = hmK/hK , and that both sides
of this equality are integers.

Computing the ray class number hmK is not a trivial problem, but there are algorithms
for doing so; see [1], which considers this problem in detail.

21.4 Polar density

We now want to prove the surjectivity of the Artin map for finite abelian extensions L/K
of number fields (as noted in §21.2, we already know this for K = Q). In order to do so we
first introduce a new way to measure the density of a set of primes that is defined in terms
of a generalization of the Dedekind zeta function. Throughout this section and the next,
all number fields are assumed to lie in some fixed algebraic closure of Q.

Definition 21.10. Let K be a number field and let S be a set of primes of K. The partial
Dedekind zeta function associated to S is the complex function

ζK,S(s) :=
∏
p∈S

(1−N(p)−s)−1,

which converges to a holomorphic function on Re(s) > 1 (by the same argument we used
for ζK(s) in Lecture 18).

If S is finite then ζK,S(s) is certainly holomorphic (and nonzero) on a neighborhood of 1.
If S contains all but finitely many primes of K then it differs from ζK(s) by a holomorphic
factor and therefore extends to a meromorphic function with a simple pole at s = 1, by
Theorem 19.12.

Between these two extremes the function ζK,S(s) may or may not extend to a function
that is meromorphic on a neighborhood of 1, but if it does, or more generally, if some power
of it does, then we can use the order of the pole at 1 (or the absence of a pole) to measure
the density of S.

Definition 21.11. If for some integer n ≥ 1 the function ζnK,S extends to a meromorphic
function on a neighborhood of 1, the polar density of S is defined by

ρ(S) :=
m

n
, m = −ords=1ζ

n
K,S(s)

(so m is the order of the pole at s = 1, if one is present). Note that if ζn1
K,S and ζn2

K,s both
extend to a meromorphic function on a neighborhood of 1 then we necessarily have

n2ords=1ζ
n1
K,S(s) = ords=1ζ

n1n2
K,S = n1ords=1ζ

n2
K,S(s),

18.785 Fall 2019, Lecture #21, Page 6

https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec19.pdf#theorem.2.12


which implies that ρ(S) does not depend on the choice of n. We will show below that
(whenever it is defined) ρ(S) is a rational number in the interval [0, 1].

In Lecture 17 we encountered two other notions of density, the Dirichlet density

d(S) := lim
s→1+

∑
p∈S N(p)−s∑
p N(p)−s

= lim
s→1+

∑
p∈S N(p)−s

log 1
s−1

,

(the equality of the two expressions for d(S) follows from the fact that ζK(s) has a simple
pole at s = 1, see Problem Set 9), and the natural density

δ(S) := lim
x→∞

#{p ∈ S : N(p) ≤ x}
#{p : N(p) ≤ x}

.

On Problem Set 9 you proved that if S has a natural density then it has a Dirichlet density
and the two coincide. We now show that the same is true of the polar density.

Proposition 21.12. Let S be a set of primes of a number field K. If S has a polar density
then it has a Dirichlet density and the two are equal. In particular, ρ(S) ∈ [0, 1] whenever
it is defined.

Proof. Suppose S has polar density ρ(S) = m/n. By taking the Laurent series expansion
of ζnK,S(s) at s = 1 and factoring out the leading nonzero term we can write

ζK,S(s)n =
a

(s− 1)m

1 +
∑
r≥1

ar(s− 1)r

 ,

for some a ∈ C×. We must have a ∈ R>0, since ζK,S(s) ∈ R>0 for s ∈ R>1 and therefore
lims→1+(s− 1)mζK,S(s)n is a positive real number. Taking logs of both sides yields

n
∑
p∈S

N(p)−s ∼ m log
1

s− 1
(as s→ 1+),

which implies that S has Dirichlet density d(S) = m/n (note that log(a) = O(1) plays no
role, since −m log(s− 1)→∞ as s→ 1+).

Corollary 21.13. Let S be a set of primes of a number field K. If S has both a polar
density and a natural density then the two coincide.

We should note that not every set of primes with a natural density has a polar density,
since the later is always a rational number while the former need not be.

Recall that a degree-1 prime in a number field K is a prime with residue field degree 1
over Q, equivalently, a prime p whose absolute norm N(p) = [OK : p] = #Fp is prime.

Proposition 21.14. Let S and T denote sets of primes in a number field K, let P be the
set of all primes of K, and let P1 be the set of degree-1 primes of K. The following hold:

(a) If S is finite then ρ(S) = 0; if P − S is finite then ρ(S) = 1.

(b) If S ⊆ T both have polar densities, then ρ(S) ≤ ρ(T ).

(c) If two sets S and T have finite intersection and any two of the sets S, T , and S ∪ T
have polar densities then so does the third and ρ(S ∪ T ) = ρ(S) + ρ(T ).
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(d) We have ρ(P1) = 1, and ρ(S ∩ P1) = ρ(S) whenever S has a polar density.

Proof. We first note that for any finite set S, the function ζK,S(s) is a finite product of
nonvanishing entire functions and therefore holomorphic and nonzero everywhere (including
at s = 1). If the symmetric difference of S and T is finite, then ζK,S(s)f(s) = ζK,T (s)g(s)
for some nonvanishing functions f(s) and g(s) holomorphic on C. Thus if S and T differ
by a finite set, then ρ(S) = ρ(T ) whenever either set has a polar density

Part (a) follows, since ρ(∅) = 0 and ρ(P) = 1 (note that ζK,P(s) = ζK(s), and
ords=1ζK(s) = −1, by Theorem 19.12).

Part (b) follows from the analogous statement for Dirichlet density proved on Problem
Set 9.

For (c) we may assume S and T are disjoint (by the argument above), in which case
ζK,S∪T (s)n = ζK,S(s)nζK,T (s)n for all n ≥ 1, and the claim follows.

For (d), let P2 := P−P1 so that P = P1tP2. For each rational prime p there are at most
n := [K : Q] (in fact n/2) primes p|p in P2, each of which has absolute norm N(p) ≥ p2. It
follows by comparison with ζ(2s)n that the product defining ζK,P2(s) converges absolutely
to a holomorphic function on Re(s) > 1/2 and is therefore holomorphic (and nonvanishing,
since it is an Euler product) on a neighborhood of 1; thus ρ(P2) = 0 and ρ(P1) = 1. We
therefore have ρ(S ∩ P2) = 0, so ρ(S) = ρ(S ∩ P1) whenever ρ(S) exists, by (c).

For a Galois extension of number fields L/K, let Spl(L/K) denote the set of primes of
K that split completely in L. When K is clear from context we may just write Spl(L).

Theorem 21.15. Let L/K be a Galois extension of number fields of degree n. Then

ρ(Spl(L)) = 1/n.

Proof. Let S be the set of degree-1 primes of K that split completely in L; it suffices to
show ρ(S) = 1/n, by Proposition 21.14. Recall that p splits completely in L if and only if
both the ramification index ep and residue field degree fp are equal to 1. Let T be the set
of primes q of L that lie above some p ∈ S. For each q ∈ T lying above p ∈ S we have
NL/K(q) = pfp = p, so N(q) = N(NL/K(q)) = N(p), thus q is a degree-1 prime, since p is.

On the other hand, if q is any unramified degree-1 prime of L and p = q ∩ OK , then
N(q) = N(NL/K(q)) = N(pfp) is prime, so we must have fp = 1, and ep = 1 since q is
unramified, which implies that p is a degree-1 prime that splits completely in L and is thus
an element of S. Only finitely many primes ramify, so all but finitely many of the degree-1
primes in L lie in T , thus ρ(T ) = 1, by Proposition 21.14. Each p ∈ S has exactly n primes
q ∈ T lying above it (since p splits completely), and we have

ζL,T (s) =
∏
q∈T

(1−N(q)−s)−1 =
∏
q∈T

(1−N(NL/K(q))−s)−1 =
∏
p∈S

(1−N(p)−s)−n = ζK,S(s)n.

It follows that ρ(S) = 1
nρ(T ) = 1

n as desired.

Corollary 21.16. If L/K is a finite extension of number fields with Galois closure M/K
of degree n, then ρ(Spl(L)) = ρ(Spl(M)) = 1/n.

Proof. A prime p of K splits completely in L if and only if it splits completely in all the
conjugates of L in M ; the Galois closure M is the compositum of the conjugates of L, so p
splits completely in L if and only if it splits completely in M .
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Corollary 21.17. Let L/K be a Galois extension of number fields with Galois group G :=
Gal(L/K) and let H be a normal subgroup of G. The set S of primes for which Frobp ⊆ H
has polar density ρ(S) = #H/#G.

Proof. Let F = LH ; then F/K is Galois (since H is normal) and Gal(F/K) ' G/H. For
each unramified prime p of K, the Frobenius class Frobp lies in H if and only if every
σq ∈ Frobp acts trivially on LH = F , which occurs if and only if p splits completely in F .
By Theorem 21.15, the density of this set of primes is 1/[F : K] = #H/#G.

If S and T are sets of primes whose symmetric difference is finite, then either ρ(S) = ρ(T )
or neither set has a polar density. Let us write S ∼ T to indicate that two sets of primes
have finite symmetric difference (this is clearly an equivalence relation), and partially order
sets of primes by defining S - T ⇔ S ∼ S ∩ T (in other words, S − T is finite). If S and T
have polar densities, then S - T implies ρ(S) ≤ ρ(T ), by Proposition 21.14.

Theorem 21.18. If L/K and M/K are two Galois extensions of number fields then

L ⊆M ⇐⇒ Spl(M) - Spl(L)⇐⇒ Spl(M) ⊆ Spl(L),

L = M ⇐⇒ Spl(M) ∼ Spl(L)⇐⇒ Spl(M) = Spl(L),

and the map L 7→ Spl(L) is an injection from the set of finite Galois extensions of K (inside
some fixed algebraic closure) to sets of primes of K that have a positive polar density.

Proof. The implications L ⊆ M ⇒ Spl(M) ⊆ Spl(L) ⇒ Spl(M) - Spl(L) are clear, so it
suffices to show that Spl(M) - Spl(L)⇒ L ⊆M .

A prime p of K splits completely in the compositum LM if and only if it splits completely
in both L and M : the forward implication is clear and for the reverse, note that if p splits
completely in both L and M then it certainly splits completely in L∩M , so we may assume
K = L∩M ; we then have Gal(LM/K) ' Gal(L/K)×Gal(M/K), and if the decomposition
subgroups of all primes above p are trivial in both Gal(L/K) and Gal(M/K) then the same
applies in Gal(LM/K). Thus Spl(LM) = Spl(L) ∩ Spl(M).

It follows that Spl(M) - Spl(L) ⇒ Spl(LM) ∼ Spl(M). By Theorem 21.15, we have
ρ(Spl(M)) = 1/[M : K] and ρ(Spl(LM)) = 1/[LM : K], thus Spl(LM) ∼ Spl(M) implies

[LM : K] = ρ(Spl(LM))−1 = ρ(Spl(M))−1 = [M : K],

in which case LM = M and L ⊆M . This proves Spl(M) - Spl(L)⇒ L ⊆M , so the three
conditions in the first line of biconditionals are all equivalent, and this immediately implies
the second line of biconditionals. The last statement of the theorem is clear, since Spl(L)
has positive polar density, by Theorem 21.15.

21.5 Ray class fields and Artin reciprocity

As a special case of Corollary 21.16, if F/K is a finite extension of number fields in which
all but finitely many primes split completely, then [F :K] = 1 and therefore F = K. We
will use this fact to prove that the Artin map is surjective.

Theorem 21.19. Let L/K be an abelian extension of number fields and m a modulus
divisible by all ramified primes. Then the Artin map ψm

L/K : ImK → Gal(L/K) is surjective.
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Proof. Let H ⊆ Gal(L/K) be the image of ψm
L/K and let F = LH be its fixed field, which

we note is a Galois extension of K, since H is normal (because Gal(L/K) is abelian). For
each prime p ∈ ImK the automorphism ψm

L/K(p) ∈ H acts trivially on F = LH , therefore p
splits completely in F . The group ImK contains all but finitely many primes p of K, so the
polar density of the set of primes of K that split completely in F is 1. Thus [F : K] = 1
and H = Gal(L/K), by Corollary 21.16.

We now show that the kernel of the Artin map ψm
L/K uniquely determines the field L.

Theorem 21.20. Let m be a modulus for a number field K and let L and M be finite abelian
extensions of K unramified at all primes not in the support of m. If kerψm

L/K = kerψm
M/K

then L = M . In particular, ray class fields are unique whenever they exist.

Proof. Let S be the set of primes of K that do not divide m. Each prime p in S is unramified
in both L and M , and p splits completely in L (resp. M) if and only if it lies in the kernel
of ψm

L/K (resp. ψm
M/K). If kerψm

L/K = kerψm
M/K then

Spl(L) ∼ (S ∩ kerψm
L/K) = (S ∩ kerψm

M/K) ∼ Spl(M),

and therefore L = M , by Theorem 21.18.

Theorem 21.19 implies that we have an exact sequence

1→ kerψm
L/K → I

m
K → Gal(L/K)→ 1.

One of the key results of class field theory is that for a suitable choice of the modulus m,
we have Rm

K ⊆ kerψm
L/K . This implies that the Artin map induces an isomorphism between

Gal(L/K) and a quotient of the ray class group ClmK = ImK/Rm
K . When L is the ray class

field for the modulus m, the Artin map allows us to relate subfields of L to quotients of
the ray class group ClmK ' Gal(L/K) in a way that we will make more precise in the next
lecture; this is known as Artin reciprocity.
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22 The main theorems of global class field theory

In this lecture we refine the correspondence between quotients of ray class groups and
subfields of ray class fields given by the Artin map so that we can more precisely state the
main theorems of global class field theory (for number fields) in their ideal-theoretic form.
Let us first recall the notational setup.

We have a number field K and a modulus m : MK → Z≥0 that we view as a formal
product over the places of K; we may write m = m0m∞, where m0 :=

∏
pm(p) is a product

over primes (finite places) of K and m∞ :=
∏
v|∞ v

m(v) defines a subset of the real places
of K (recall that for v|∞ we have m(v) ≤ 1 with m(v) = 0 if v is not real). The moduli for K
are partially ordered by the divisibility relation m|n, which holds if and only if m(v) ≤ n(v)
for all v ∈MK . We then define

• ImK ⊆ IK , the subgroup of fractional ideals prime to m (equivalently, m0);

• Km ⊆ K×, the subgroup of α ∈ K× for which (α) ∈ ImK ;

• Km,1 ⊆ Km, the subgroup of α ∈ Km for which vp(α− 1) ≥ vp(m0) for p|m0

and αv > 0 for v|m∞ (here αv ∈ R is the image of α under the real-embedding v);

• Rm
K ⊆ ImK the subgroup of ideals (α) ∈ ImK with α ∈ Km,1 (the ray group for m);

• ClmK := ImK/Rm
K (the ray class group for m);

• Spl(L) := Spl(L/K), the set of primes of K that split completely in an extension L;

• ψm
L/K : ImK → Gal(L/K), Artin map of an abelian extension L/K unramified at p - m.

In the previous lecture we defined the ray class field of K for the modulus m as a finite
abelian extension L/K unramified at all p - m such that the kernel of the Artin map ψm

L/K
is equal to the the ray group Rm

K . We did not prove that such fields exist, but we did prove
that there is at most one of them; see Theorem 21.20. Let K(m) denote this field.

Assuming the ray class field K(m) exists, it follows from the surjectivity of the Artin
map ψm

K(m)/K : ImK → Gal(K(m)/K) proved in Theorem 21.19 that we have a canonical
isomorphism

ClmK = ImK/Rm
K ' Gal(K(m)/K)

between the ray class group and the Galois group of the ray class field. More generally, if L
is any intermediate field between K and K(m), the kernel of the Artin map is a subgroup
C ⊆ ImK that contains the ray group

Rm
K ⊆ C ⊆ ImK ,

and we have an isomorphism

ImK/C ' ClmK/C ' Gal(L/K)

where C denotes the image of C in ClmK = ImK/Rm
K under the quotient map.

Thus if L is a subfield of K(m) then kerψm
L/K is a subgroup of ImK containing Rm

K

(a congruence subgroup, as defined below). To prove that a given abelian extension L/K
lies in a ray class field, it is enough to show that there exists a modulus m for K such that
Rm
K ⊆ kerψm

L/K , since we then have Spl(K(m)) - Spl(L) and L ⊆ K(m), by Theorem 21.18.
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In this lecture we want to better understand the structure of congruence subgroups, and
to specify a minimal modulus m for which we should expect a given finite abelian extension
L/K to lie in a subfield of the ray class field K(m); this minimal modulus is known as the
conductor of the extension. So far we have not addressed this question even for K = Q (but
see Problem Set 10); our proof of the Kronecker-Weber theorem showed that every abelian
extension lies in some cyclotomic field Q(ζm), but we made no attempt to determine such
an integer m (or more precisely, a modulus m of the form m = (m)∞ or m = (m)).

22.1 Congruence subgroups

Our presentation of congruence subgroups in this section follows [1, 3.3], but our notation
differs slightly.

Definition 22.1. Let K be a number field and let m be a modulus for K. A congruence
subgroup for the modulus m is a subgroup C of ImK that contains Rm

K . We use C to denote
the image of C in ImK/Rm

K = ClmK under the quotient map.

As explained above, congruence subgroups are precisely the groups we expect to arise as
the kernel of an Artin map ψm

L/K : ImK → Gal(L/K) associated to a finite abelian extension

L/K, for a suitable choice of modulus m. The choice of m is critical; as can be seen in
Example 22.2 below, kerψm

L/K need not be a congruence subgroup for the modulus m; there
are constraints on the modulus m that must be satisfied beyond the basic requirement that
m must be divisible by all the primes of K that ramify in L (so that ψm

L/K is defined).

Example 22.2. Let K = Q, and consider the cyclic cubic extension L := Q[x]/(x3−3x−1),
which is ramified only at 3. The Artin map ψm

L/K is well-defined for any modulus m divisible

by (3). The ray class field for m = (3) is Q(ζ3)
+ = Q, and the ray class field for m = (3)∞ is

Q(ζ3) = Q(
√
−3), neither of which contains L, so kerψm

L/K does not contain Rm
K for either

of these moduli and is not a congruence subgroup. On the other hand, L is equal to Q(ζ9)
+,

the ray class field for m = (9), so kerψm
L/K contains (and is equal to) Rm

K , and is thus a

congruence subgroup for the modulus m = (9).

If kerψm
L/K is a congruence subgroup for the modulus m, then kerψn

L/K is a congruence
subgroup for each modulus n divisible by m. If m divides n then Rn

K ⊆ Rm
K and ψn

L/K is
the restriction of ψm

L/K to InK , which contains Rn
K . If m and n are supported on the same

primes, then ImK = InK and ψm
L/K = ψn

L/K , but the ray groups Rm
K and Rn

K may differ.
To deal with these complications, we define an equivalence relation on congruence sub-

groups and show that each equivalence class has a canonical representative whose modulus
divides the modulus of every equivalent congruence subgroup.

Definition 22.3. Let K be a number field with moduli m1 and m2. If C1 is a congruence
subgroup for m1 and C2 is a congruence subgroup for m2, then we say that (C1,m1) and
(C2,m2) are equivalent and write (C1,m1) ∼ (C2,m2) whenever

Im1
K ∩ C2 = Im2

K ∩ C1.

Note that when m1 = m2 this reduces to C1 = C2.

Proposition 22.4. Let K be a number field. The relation (C1,m1) ∼ (C2,m2) is an equiv-
alence relation. If (C1,m1) ∼ (C2,m2) then Im1

K /C1 ' Im2
K /C2 are related by a canonical

isomorphism that preserves cosets of fractional ideals prime to both m1 and m2.
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Proof. The relation ∼ is clearly symmetric, and reflexive. To show that it is transitive, let
C1, C2, C3 be congruence subgroups for moduli m1,m2,m3 and suppose (C1,m1) ∼ (C2,m2)
and (C2,m2) ∼ (C3,m3). Let I ∈ Im3

K ∩ C1 and pick α ∈ Km1m3,1 so that αI ∈ Im1m2m3
K (this

is possible by Lemma 21.7 and Theorem 8.5). Then (α) ∈ Rm1m3
K ⊆ Rm1

K ⊆ C1 and I ⊆ C1,
so αI ∈ C1, and we also have αI ∈ Im1m2m3

K ⊆ Im2
K , so

αI ∈ Im2
K ∩ C1 = Im1

K ∩ C2 ⊆ C2,

since C1 ∼ C2, and αI ∈ Im1m2m3
K ⊆ Im3

K , so

αI ∈ Im3
K ∩ C2 = Im2

K ∩ C3 ⊆ C3,

since C2 ∼ C3. We have (α) ∈ Rm1m3
K ⊆ Rm3

K , so (α) ∈ C3 and therefore (α)−1 ∈ C3, since C3
is a group. Thus α−1αI = I ∈ C3, and we also have I ∈ C1 ⊆ Im1

K , so I ∈ Im1
K ∩ C3. Since

I ∈ Im3
K ∩ C1 was chosen arbitrarily, this proves that

Im3
K ∩ C1 ⊆ I

m1
K ∩ C3.

The reverse inclusion follows by symmetry, so (C1,m1) ∼ (C3,m3) as desired.
For the last statement, for any fractional ideal I ∈ Im1

K we can pick α ∈ Km1,1 so that
αI ∈ Im2

K (via Lemma 21.7 and Theorem 8.5). The image of αI in Im2
K /C2 does not depend on

the choice of α, since for any α′ ∈ Km1,1 with α′I ∈ Im2
K we have (αI)/(α′I) = (α/α′) ∈ Im2

K

and (α/α′) ∈ Rm1
K , so (α/α′) ∈ Im2

K ∩ R
m1
K = Im1

K ∩ R
m2
K ⊆ Rm2

K . This defines a group
homomorphism ϕ : Im1

K → I
m2
K /C2. For I ∈ C1, we have αI ∈ Im2

K ∩ C1 = Im1
K ∩ C2 ⊆ C2, but

for I ∈ Im1
K − C1 we have αI ∈ Im2

K − C1 and therefore αI 6∈ C2, so kerϕ = C1. It follows
that ϕ induces an injective homomorphism Im1

K /C1 → Im2
K /C2, and by symmetry we have

an injective homomorphism in the opposite direction, so Im1
K /C1 ' Im2

K /C2 as claimed.
This isomorphism is independent of the choice of α used to define it (hence canonical),

and for fractional ideals I coprime to both m1 and m2 we can choose α = 1, in which case
the coset of I in Im1

K /C1 will be identified with the coset of I in Im2
K /C2.

We now observe that if C is a congruence subgroup for two moduli m1 and m2, then
(C,m1) ∼ (C,m2). In particular, each subgroup of IK lies in at most one equivalence class
of congruence subgroups. We can thus view the equivalence relation (C1,m1) ∼ (C2,m2) as
an equivalence relation on the congruence subgroups of IK and write C1 ∼ C2 without ambi-
guity. It follows from Proposition 22.4 that each equivalence class of congruence subgroups
uniquely determines a finite abelian group that is the quotient of a ray class group.

Within an equivalence class of congruence subgroups there can be at most one con-
gruence subgroup for each modulus (since C1 ∼ C2 ⇔ C1 = C2 whenever C1 and C2 are
congruence subgroups for the same modulus). The following lemma gives a criterion for
determining when there exists a congruence subgroup of a given modulus within a given
equivalence class.

Lemma 22.5. Let C1 be a congruence subgroup of modulus m1 for a number field K. There
exists a congruence subgroup C2 of modulus m2|m1 equivalent to C1 if and only if

Im1
K ∩R

m2
K ⊆ C1,

in which case C2 = C1Rm2
K .
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Proof. Note that m2|m1 implies Im1
K ⊆ I

m2
K , so C1 ⊆ Im1

K ⊆ I
m2
K .

Suppose C2 ∼ C1 has modulus m2. Then Im1
K ∩ C2 = Im2

K ∩ C1 = C1, and Rm2
K ⊆ C2, so

Im1
K ∩ R

m2
K ⊆ C1 as claimed. Now suppose Im1

K ∩ R
m2
K ⊆ C1, and let C2 := C1Rm2

K . Then C2
is a congruence subgroup of modulus m2 and we have

Im2
K ∩ C1 = C1 = C1(Im1

K ∩R
m2
K ) = Im1

K ∩ C1R
m2
K = Im1

K ∩ C2,

so C1 ∼ C2. The equivalence class of C1 contains at most one congruence subgroup of
modulus m2, so if one exists it must be C2 = C1Rm2

K .

Proposition 22.6. Let C1 ∼ C2 be congruence subgroups of modulus m1 and m2, respec-
tively. There exists a congruence subgroup C ∼ C1 ∼ C2 with modulus n := gcd(m1,m2).

Proof. Put m := lcm(m1,m2) and D := Im2
K ∩ C1 = Im1

K ∩ C2; then

Rm
K = Rm1

K ∩R
m2
K ⊆ D ⊆ I

m
K ,

so D is a congruence subgroup of modulus m, and we have

ImK ∩R
m1
K ⊆ D and ImK ∩R

m2
K ⊆ D,

so D ∼ C1 ∼ C2, by Lemma 22.5. To prove the existence of an equivalent congruence
subgroup C of modulus n it suffices to show ImK ∩Rn

K ⊆ D (again by Lemma 22.5).
So let a = (α) ∈ ImK ∩ Rn

K , and choose β ∈ Km ∩ Km2,1 so that αβ ∈ Km1,1 (this is
possible by Theorem 8.5 because m = lcm(m1,m2) and n = gcd(m1,m2)). Then (β) ∈ D
and βa ∈ ImK ∩ R

m1
K ⊆ D, so β−1βa = a ∈ D. Thus ImK ∩ Rn

K ⊆ D and therefore C = DRn
K

is a congruence subgroup of modulus n equivalent to D ∼ C1 ∼ C2.

Corollary 22.7. Let C be a congruence subgroup of modulus m for a number field K. There
is a unique congruence subgroup in the equivalence class of C whose modulus c divides the
modulus of every congruence subgroup equivalent to C.

Definition 22.8. Let C be a congruence subgroup for a number field K. The unique
modulus c := c(C) given by Corollary 22.7 is the conductor of C, and we say that C is
primitive if C = CRc

K (the unique congruence subgroup of modulus c equivalent to C).

Proposition 22.9. Let C be a primitive congruence subgroup of modulus m for a number
field K. Then m is the conductor of every congruence subgroup of modulus m contained
in C; in particular, m is the conductor of Rm

K .

Proof. Let C0 ⊆ C be a congruence subgroup of modulus m and let c be its conductor. Then
c|m and ImK ∩ Rc

K ⊆ C0 ⊆ C, by Lemma 22.5, and this implies that there is a congruence
subgroup of modulus c equivalent to C, and therefore m|c, so c = m.

The proposition implies that a modulus m occurs as a conductor if and only if Rm
K is

primitive. This does not always hold: consider K = Q and m = (2), for example; the

conductor of R(2)
Q = I(2)Q is (1), since R(2)

Q ∩ I
(1)
Q = I(1)Q ∩ I

(2)
Q implies R(2)

Q ∼ I
(1)
Q . Thus (2)

is not the conductor of any congruence subgroup for Q.
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22.2 Ray class characters

We now want to prove a generalization of Dirichlet’s theorem on primes in arithmetic
progressions. Given a congruence subgroup C for a modulus m we would like to compute
the Dirichlet density d(C) := d({p ∈ C}) of the set of prime ideals p ∈ ImK that lie in C. We
first need to generalize our notion of a Dirichlet character.

Definition 22.10. Let K be a number field and let χ : IK → C be a totally multiplicative
function with finite image; so χ(OK) = 1, χ(IJ) = χ(I)χ(J) for all I, J ∈ IK , and χ
restricts to a homomorphism from a subgroup of IK to a finite subgroup of U(1) whose
kernel we denote kerχ. If m is a modulus for K such that χ−1(U(1)) = ImK and Rm

K ⊆ kerχ,
then χ is a ray class character of modulus m and its kernel is a congruence subgroup of
modulus m. Equivalently, χ is the extension by zero of a character of the finite abelian
group ClmK = ImK/Rm

K defined by setting χ(I) = 0 for I 6∈ ImK .

Example 22.11. For K = Q there is a one-to-one correspondence between Dirichlet char-
acters χ : Z → C and ray class characters χ′ : IQ → C with χ(a) = χ′((a)) for all a ∈ Z≥1.
Each Dirichlet character χ of modulus m corresponds to a ray class character of modulus
m = (m)∞ whose conductor divides (m) if and only if χ is an even Dirichlet character,
meaning that χ(−1) = 1.

Definition 22.12. Let χ1, χ2 be ray class characters of moduli m1,m2 of a number field K,
with m1|m2. If χ2(I) = χ1(I) for all I ∈ Im2

K , then χ2 is induced by χ1. A ray class character
is primitive if it is not induced by any ray class character other than itself.

Definition 22.13. The conductor of a ray class character χ is the conductor c(χ) := c(kerχ)
of its kernel (as a congruence subgroup).

Theorem 22.14. A ray class character is primitive if and only if its kernel is primitive.
Every ray class character χ is induced by a unique primitive ray class character χ̃.

Proof. Let χ be a ray class character of modulus m, let κ : ImK/(kerχ) → U(1) be the
group character induced by χ, and let C be the primitive congruence subgroup equivalent
to kerχ with modulus c = c(χ) dividing m given by Corollary 22.7. By Proposition 22.4,
we have a canonical isomorphism ϕ : IcK/C

∼→ ImK/(kerχ) that we can use to define a ray
class character χ̃ of modulus c as the extension by zero of the character κ ◦ ϕ of IcK/C.
The isomorphism ϕ preserves cosets of fractional ideals in ImK ⊆ IcK , so χ̃(I) = χ(I) for all
I ∈ ImK and χ is induced by χ̃.

If χ2 is a ray class character of conductor m2 induced by a ray class character χ1 of
conductor m1, then kerχ1 ∩ Im2

K = kerχ2 = kerχ2 ∩ Im1
K and kerχ1 ∼ kerχ2, and we also

note that if χ1 6= χ2 then Im1
K 6= I

m2
K and m1 6= m2. It follows that χ̃ is primitive, it is the

unique primitive ray class character that induces χ. Thus χ is primitive if and only if it is
equal to χ̃, which holds if and only if kerχ = ker χ̃ is primitive.

Theorem 22.14 is a direct generalization of Theorem 18.13 for Dirichlet characters. For a
modulus m of K we use X(m) to denote the set of primitive ray class characters of conductor
dividing m, which we note is in bijection with the character group of ClmK , and thus has a
group structure given by χ̃1χ̃2 = χ̃1χ2. Indeed, for each character of ClmK , its extension by
zero is a ray class character χ of modulus m induced by a primitive ray class character χ̃
whose conductor divides m, and each primitive ray class character χ̃ of conductor dividing
m induces a ray class character χ of modulus m that determines a character of ClmK ; these
two maps are inverses, hence bijections. This generalizes Corollary 18.16.
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Definition 22.15. A ray class character χ is principal if kerχ = χ−1(U(1)). We use 1 to
denote the unique primitive principal ray class character.

Remark 22.16. For Dirichlet characters, 1 is the unique Dirichlet character of conductor 1,
but for ray class characters this holds only when the class group ClK is trivial (as when
K = Q). In general, the extension by zero of any character of ClK is a ray class character
of conductor (1) and need not be principal (but is necessarily primitive).

Like Dirichlet characters, each ray class character has an associated L-function.

Definition 22.17. The Weber L-function L(s, χ) of a ray class character χ for a number
field K is the complex function

L(s, χ) :=
∏
p

(
1− χ(p)N(p)−s

)−1
=
∑
a

χ(a)N(a)−s,

where the the product is over prime ideals of OK and the sum is over nonzero OK-ideals;
the product and sum both converge to a non-vanishing holomorphic function on Re(s) > 1
(this follows from comparison with the Dedekind zeta function ζK(s), since |χ(a)| ≤ 1).

Example 22.18. For K = Q, Weber L-functions are Dirichlet L-functions. For any number
field K, the Weber L-function for 1 is the Dedekind zeta function: L(s,1) = ζK(s).

More generally, we have the following theorem, which is analogous to Theorem 19.15
but avoids the need to assume the existence of a ray class field.

Proposition 22.19. Let χ be a ray class character of modulus m for a number field K of
degree n. Then L(s, χ) extends to a meromorphic function on Re(s) > 1 − 1

n that has at
most a simple pole at s = 1 and is holomorphic if χ is non-principal.

Proof. Associated to each ray class γ ∈ ClmK we have a Dirichlet series

ζK,γ(s) :=
∑
a∈γ

N(a)−s

that is holomorphic on Re(s) > 1. For the trivial modulus m, our proof of analytic class
number formula (Theorem 19.12) implies that ζK,γ(s) has a meromorphic continuation to
1 − 1

n with a simple pole at s = 1 and residue ρ = 2r(2π)2RK/(ωK |DK |1/2), independent
of γ. Recall that in our proof of Theorem 19.8 we treated each γ ∈ ClK = cl(OK) separately
and obtained the same value of ρ for each γ, leading to the residue ρK = hKρ that appears
in Theorem 19.12.

The same proof works for ClmK , mutatis mutandi : replace covol(OK) with covol(m0),
replace the regulator RK = covol(π(Log(O×K))) with Rm

K := covol(π(Log(O×K ∩Km,1))), and
replace wK = #µK with wm

K := #(µK ∩Km,1). The exact value of ρ is not important to us
here, the key point is that ζK,γ(s) has a meromorphic continuation to Re(s) > 1 − 1

n with
a simple pole at s = 1 whose residue ρ depends only on K and m (not γ).

We then have

L(s, χ) =
∑
γ∈ClmK

χ(γ)ζK,γ(s)

=
∑
γ∈ClmK

χ(γ)
(
ζK,γ(s)− ρ ζ(s)

)
+
∑
γ∈ClmK

χ(γ)ρ ζ(s),
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The first sum is a finite sum of functions holomorphic on Re(s) > 1 − 1
n (since ζ(s) has

a simple pole at s = 1 with residue 1), and the second sum vanishes whenever χ is non-
principal (by Corollary 18.37). The proposition follows.

We now prove a generalization of Dirichlet’s theorem on primes on arithmetic progres-
sions for arbitrary number fields. We proved the nonvanishing of Dirichlet L-functions
L(1, χ) for non-principal χ using the analytic class number formula for Q(ζm), the ray class
field Q((m)∞), by writing the Dedekind zeta function for Q(ζm) as a product of Dirichlet
L-functions (see Theorem 19.15). A similar approach works for Weber L-functions, assum-
ing the existence of ray class fields K(m): the Dedekind zeta function of K(m) is equal to
the product of the Weber L-functions for χ ∈ X(m). But we will prove the non-vanishing
of L(1, χ) for non-principal χ without assuming the existence of ray class fields.

For a congruence subgroup C, let X(C) denote the set of primitive ray class characters
whose kernels contain C. If C is a congruence subgroup of modulus m then X(C) is a
subgroup of X(m) isomorphic to the character group of ImK/C and we may view X(C) as
the the character group of ImK/C.

Theorem 22.20. Let C be a congruence subgroup of modulus m for a number field K and
let n := [ImK : C]. The set of primes {p ∈ C} has Dirichlet density

d(C) =

{
1
n if L(1, χ) 6= 0 for all χ 6= 1 in X(C),
0 otherwise.

In fact d(C) = 1
n always holds, as we will prove in Corollary 22.22 below, but it is easier

to prove the theorem as stated and then use this to derive the corollary.

Proof. We proceed as in the proof of Dirichlet’s theorem on primes in arithmetic progressions
(see §18.4). We first construct the indicator function for the set {p ∈ C}:

1

n

∑
χ∈X(C)

χ(p) =

{
1 if p ∈ C,
0 otherwise.

Note that summing over χ ∈ X(C) is equivalent to summing over the character group of
ImK/C, so Corollary 18.37 applies: therefore

∑
χ(p) = 0 unless the image of p in ImK/C is the

identity, meaning that p ∈ C, in which case
∑
χ(p) = #X(C) = n.

As s→ 1+ we have
logL(s, χ) ∼

∑
p

χ(p)N(p)−s,

and therefore ∑
χ∈X(C)

logL(s, χ) ∼
∑

χ∈X(C)

∑
p

χ(p)N(p)−s

∼ n
∑
p∈C

N(p)−s.

By Proposition 22.19, we may write

L(s, χ) = (s− 1)e(χ)g(s)
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for some function g(s) that is holomorphic and nonvanishing on a neighborhood of 1, where
e(χ) := ords=1L(s, χ) is −1 when χ = 1, and e(χ) ≥ 0 otherwise. We have

log
1

s− 1
−
∑
χ6=1

e(χ) log
1

s− 1
∼ n

∑
p∈C

N(p)−s.

Dividing both sides by n log 1
s−1 yields

1−
∑

χ6=1 e(χ)

n
∼
∑

p∈C N(p)−s

log 1
s−1

(as s→ 1+),

thus

d(C) = lim
s→1+

∑
p∈C N(p)−s

log 1
s−1

=
1−

∑
χ6=1 e(χ)

n
.

The e(χ) are integers and the Dirichlet density is nonnegative, so either e(χ) = 0 for all
χ 6= 1, in which case L(1, χ) 6= 0 for all χ 6= 1 and d(C) = 1

n , or e(χ) = 1 for exactly one of
the χ 6= 1 and d(C) = 0. (in fact this never happens, as noted above).

Proposition 22.21. Let C be a congruence subgroup of modulus m for a number field K
and let n := [ImK :C]. For every I ∈ ImK the set {p ∈ IC} has Dirichlet density

d(IC) =

{
1
n if L(1, χ) 6= 0 for all characters χ 6= 1 in X(C),
0 otherwise.

Proof. The proof is the same as in Theorem 22.20, except we now use the indicator function

1

n

∑
χ∈X(C)

χ(I)−1χ(p) =

{
1 if p ∈ IC,
0 otherwise,

and obtain∑
χ∈X(C)

χ(I)−1 logL(s, χ) ∼
∑

χ∈X(C)

∑
p

χ(I)−1χ(p)N(p)−s ∼ n
∑
p∈IC

N(p)−s.

The rest of the proof is the same.

Corollary 22.22. Let C be a congruence subgroup of modulus m for a number field K and
let n := [ImK :C]. For every ideal I ∈ ImK the set {p ∈ IC} has Dirichlet density 1/n, and for
every χ 6= 1 in X(C) we have L(1, χ) 6= 0.

Proof. Let I1, . . . , In ∈ ImK be a complete set of coset representatives for C ⊆ ImK . All
but finitely many primes p of K lie in ImK , hence in one of the cosets IjC partitioning ImK ,
therefore

d(I1C) + · · ·+ d(InC) = 1.

By Proposition 22.21, every term in this sum is either 0 or 1/n, and the equality implies
they must all be equal to 1/n, which then implies L(1, χ) 6= 0 for all χ 6= 1 in X(C).
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Corollary 22.23. Let L/K be an abelian extension of number fields and let C be a congru-
ence subgroup for a modulus m of K. If Spl(L) - {p ∈ C} then

[ImK : C] ≤ [L : K],

with equality whenever Spl(L) ∼ {p ∈ C}.

Proof. We know from Theorem 21.15 that Spl(L) has polar density 1/[L :K], and this is also
its Dirichlet density, by Proposition 21.12. The set {p ∈ C} has Dirichlet density 1/[ImK : C],
by Theorem 22.22, and Spl(L) - {p ∈ C} (by assumption), so

1

[L : K]
= d(Spl(L)) ≤ d(C) =

1

[ImK : C]
.

22.3 The conductor of an abelian extension

We now introduce another notion of conductor, one attached to an abelian extension of
number fields, which is defined as a product of local conductors attached to corresponding
abelian extensions of the local field Kv for each place v ∈MK .

Definition 22.24. Let L/K be a finite abelian extension of local fields. The conductor
c(L/K) is defined as follows.1 If K is archimedean then c(L/K) = 1 when K ' R and
L ' C and c(L/K) = 0 otherwise. If K is nonarchimedean and p is the maximal ideal of
its valuation ring OK , then

c(L/K) := min{n : 1 + pn ⊆ NL/K(L×)}

(here 1 + pn is a subgroup of O×K , with 1 + p0 := O×K). If L/K is a finite abelian extension
of global fields then its conductor is the modulus

c(L/K) : MK → Z
v 7→ c(Lw/Kv)

where Kv is the completion of K at v and Lw is the completion of L at a place w|v. (the
fact that L/K is Galois ensures that c(Lw/Kv) is the same for every w|v). As with any
modulus, we may view the finite part of c(L/K) as an OK-ideal and the infinite part as a
subset of ramified infinite places.

It is not hard to show that conductor is supported on ramified places (in particular, it
has finite support, as required for a modulus). More generally, we have the following.

Proposition 22.25. Let L/K be a finite abelian extension of local or global fields. For
each prime p of K we have

vp(c(L/K)) =


0 if and only if p is unramified,

1 if and only if p is ramified tamely,

≥ 2 if and only if p is ramified wildly.

Proof. See Problem Set 11.

1Many authors use f(L/K) rather than c(L/K), we use c to avoid confusion with the residue field degree.
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The finite part of the conductor of an abelian extension divides the discriminant ideal
and is divisible by the same set of primes, but the valuation of the conductor at these
primes is typically smaller than that of the discriminant. For example, the discriminant of
the extension Q(ζp)/Q is (p)p−2, but its conductor is (p)∞.

Lemma 22.26. Let L1/K and L2/K be two finite abelian extensions of a local or global
field K. If L1 ⊆ L2 then c(L1/K) divides c(L2/K).

Proof. If K ' R,C the result is clear, and for nonarchimedean local K we may apply
NL2/K(L×2 ) = NL1/K(NL2/L1

(L×2 )) ⊆ NL1/K(L×1 ). The global case follows.

22.4 Norm groups

We can now identify a candidate for the kernel of the Artin map ψm
L/K : ImK → Gal(L/K).

Recall from Lecture 6 that the norm map NL/K : IL → IK can be defined by∏
i

qni
i 7→

∏
i

pnifi
i ,

where pi := qi ∩ OK and fi := [Fqi :Fpi ] is the residue field degree.

Definition 22.27. Let L/K be a finite abelian extension of number fields and let m be
a modulus for K divisible by the conductor of L/K. The norm group (or Takagi group)
associated to m is the congruence subgroup

Tm
L/K := Rm

KNL/K(ImL ),

where ImL denotes the subgroup of fractional ideals in IL that are coprime to mOL.

Proposition 22.28. Let L/K be a finite abelian extension of number fields and let m be a
modulus for K divisible by the conductor of L/K. Then kerψm

L/K ⊆ T
m
L/K .

Proof. Let p be a prime of K that lies in kerψm
L/K . Then p is coprime to m and splits

completely in L, so ep = fp = 1. There is at least one prime q of L above p, and for this
prime we have NL/K(q) = pfp = p (by Theorem 6.10), so p ∈ NL/K(ImL ) ⊆ Tm

L/K .

To prove Artin reciprocity we need to establish the reverse inclusion, which requires a
different approach (we will prove it for the trivial modulus m over the next two lectures).
But we can record the following theorem, historically known as the “first” fundamental
inequality of class field theory (in modern terminology it is typically known as the second,
even though it was proved first, by Weber).

Theorem 22.29. Let L/K be a finite abelian extension of number fields and let m be a
modulus for K divisible by the conductor of L/K. Then

[ImK : Tm
L/K ] ≤ [L : K].

Proof. Proposition 22.28 implies [ImK : Tm
L/K ] ≤ [ImK : kerψm

L/K ] = [L : K], where the

equality follows from the surjectivity of the Artin map (Theorem 21.19).
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22.5 The main theorems of class field theory (ideal-theoretic version)

We can give a more precise statement of the main theorems of class field theory. Let m be
a modulus for a number field K. The three main theorems of class field theory state that:

• Existence: The ray class field K(m) exists.

• Completeness: If L/K is finite abelian then L ⊆ K(m) if and only c(L/K) |m.
In particular, every finite abelian L/K lies in a ray class field.

• Artin reciprocity: For each subextension L/K of K(m) we have kerψm
L/K = Tm

L/K

with conductor c(L/K)|m and a canonical isomorphism ImK/Tm
L/K ' Gal(L/K).

Artin reciprocity gives us a commutative diagram of canonical bijections:

{abelian L/K with c(L/K) |m} {congruence subgroups C ⊆ ImK}

{quotients of Gal(K(m)/K)} { quotients of ClmK}

←→
L7→Tm

L/K

←→ L7→Gal(L/K) ←→ C7→ImK/C

←→

ψm
L/K

22.6 The Hilbert class field

Definition 22.30. Let K be global field. The Hilbert class field of K is the maximal un-
ramified abelian extension of K (the compositum of all finite unramified abelian extensions
of K inside a fixed separable closure of K).

While it is not obvious from the definition, it follows from the completeness theorem
of class field theory that the Hilbert class field must be the ray class field for the trivial
modulus, and in particular, that it is a finite extension of K. This is a remarkable result
(which we will prove in a later lecture), since infinite unramified extensions of number fields
do exist (they are necessarily nonabelian).

Indeed, one way to construct such an extension is by considering a tower of Hilbert class
fields. Starting with a number field K0 := K, for each integer n ≥ 0 define Kn+1 to be the
be the Hilbert class field of Kn. This yields an infinite tower of finite abelian extensions

K0 ⊆ K1 ⊆ K2 ⊆ · · · ,

and we may then consider the field L :=
⋃
nKn. There are two possibilities: either we

eventually reach a field Kn with class number 1, in which case Km = Kn for all m ≥ n and
L/K is a finite unramified extension of K, or this does not happen and L/K is an infinite
unramified extension of K (which is necessarily nonabelian). It was a longstanding open
question as to whether the latter could occur, but in 1964 Golod and Shafarevich proved
that indeed it can; in particular, the field

K0 = Q(
√
−30030) = Q(

√
−2 · 3 · 5 · 7 · 11 · 13)

is the base of an infinite tower of Hilbert class field extensions. One might ask whether one
can use an imaginary quadratic field of smaller discriminant than this. It is known that no
imaginary quadratic field of discriminant |D| ≤ 420 has an infinite Hilbert class field tower
[3]; they all stabilize at either K2 or K3.
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Extensions arising from Hilbert class field towers are necessarily solvable, since they are
towers of finite abelian extensions. One might ask whether infinite nonsolvable unramified
extensions exist. As shown by Maire [2], they do, and this can happen even when the base
field has class number one and the Hilbert class field tower is trivial. Indeed, the biquadratic
extension

Q(
√

17601097,
√

17380678572169893)

has class number one and its maximal unramified extension is an infinite extension.
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23 Tate cohomology

In this lecture we introduce a variant of group cohomology known as Tate cohomology, and
we define the Herbrand quotient (a ratio of cardinalities of two Tate cohomology groups),
which will play a key role in our proof of Artin reciprocity. We begin with a brief review
of group cohomology, restricting our attention to the minimum we need to define the Tate
cohomology groups we will use. At a number of points we will need to appeal to some stan-
dard results from homological algebra whose proofs can be found in Section 23.6. For those
seeking a more thorough introduction to group cohomology, see [1]; for general background
on homological algebra, we recommend [7].

23.1 Group cohomology

Definition 23.1. Let G be a group. A G-module is an abelian group A equipped with a
G-action compatible with its group structure: g(a + b) = ga + gb for all g ∈ G, a, b ∈ A.1

This implies |ga| = |a| (where |a| := #〈a〉 is the order of a); in particular ga = 0⇔ a = 0.
A trivial G-module is an abelian group with trivial G-action: ga = a for all g ∈ G, a ∈ A

(so every abelian group can be viewed as a trivial G-module). A morphism of G-modules
is a morphism of abelian groups α : A → B satisfying α(ga) = gα(a). Kernels, images,
quotients, and direct sums of G-modules are also G-modules.

Definition 23.2. Let A be a G-module. The G-invariants of A constitute the G-module

AG := {a ∈ A : ga = a for all g ∈ G}

consisting of elements fixed by G. It is the largest trivial G-submodule of A.

Definition 23.3. Let A be a G-module and let n ∈ Z≥0. The group of n-cochains is
the abelian group Cn(G,A) := Map(Gn, A) of maps of sets f : Gn → A under pointwise
addition. We have C0(G,A) ' A, since G0 = {1} is a singleton set. The nth coboundary
map dn : Cn(G,A)→ Cn+1(G,A) is the homomorphism of abelian groups defined by

dn(f)(g0, . . . , gn) := g0f(g1, . . . , gn)− f(g0g1, g2, . . . , gn) + f(g0, g1g2, . . . , gn)

· · ·+ (−1)nf(g0, . . . , gn−2, gn−1gn) + (−1)n+1f(g0, . . . , gn−1).

The group Cn(G,A) contains subgroups of n-cocycles and n-coboundaries defined by

Zn(G,A) := ker dn and Bn(G,A) := im dn−1,

with B0(G,A) := {0}.

The coboundary map satisfies dn+1 ◦ dn = 0 for all n ≥ 0 (this can be verified directly,
but we will prove it in the next section), thus Bn(G,A) ⊆ Zn(G,A) for n ≥ 0 and the
groups Cn(G,A) with connecting maps dn form a cochain complex

0 −→ C0(G,A)
d0−→ C1(G,A)

d1−→ C2(G,A) −→ · · ·

that we may denote CA. In general, a cochain complex (of abelian groups) is simply a
sequence of homomorphisms dn that satisfy dn+1 ◦ dn = 0. Cochain complexes form a
category whose morphisms are commutative diagrams with cochain complexes as rows.

1Here we put the G-action on the left (one can also define right G-modules), and for the sake of readability
we write A additively, even though we will be primarily interested in cases where A is a multiplicative group.
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Definition 23.4. Let A be a G-module. The nth cohomology group of G with coefficients
in A is the abelian group

Hn(G,A) := Zn(G,A)/Bn(G,A).

Example 23.5. We can work out the first few cohomology groups explicitly by writing out
the coboundary maps and computing kernels and images:

• d0 : C0(G,A)→ C1(G,A) is defined by d0(a)(g) := ga− a (note C0(G,A) ' A).

• H0(G,A) ' ker d0 = AG (note B0(G,A) = {0}).
• im d0 = {f : G→ A | ∃a ∈ A : f(g) = ga− a for all g ∈ G}

(principal crossed homomorphisms).

• d1 : C1(G,A)→ C2(G,A) is defined by d1(f)(g, h) := gf(h)− f(gh) + f(g).

• ker d1 = {f : G→ A | f(gh) = f(g) + gf(h) for all g, h ∈ G}
(crossed homomorphisms).

• H1(G,A) = crossed homomorphisms modulo principal crossed homomorphisms.

• If A is a trivial G-module then H1(G,A) ' Hom(G,A).

Lemma 23.6. Let α : A → B be a morphism of G-modules. We have induced group ho-
momorphisms αn : Cn(G,A) → Cn(G,B) defined by f 7→ α ◦ f that commute with the
coboundary maps. In particular, αn maps cocycles to cocycles and coboundaries to cobound-
aries and thus induces homomorphisms αn : Hn(G,A) → Hn(G,B) of cohomology groups,
and we have a morphism of cochain complexes α : CA → CB:

0 C0(G,A) C1(G,A) C2(G,A) · · ·

0 C0(G,B) C1(G,B) C2(G,B) . . .

←→ ←→d
0

←→ α0

←→d
1

←→ α1

←→d
2

←→ α2

←→ ←→d
0 ←→d

1 ←→d
2

Proof. Consider any n ≥ 0. For all f ∈ Cn(G,A), and g0, . . . , gn ∈ G we have

αn+1(dn(f)(g0, . . . , gn)) = αn+1
(
g0f(g1, . . . , gn)− · · ·+ (−1)n+1f(g0, . . . , gn−1)

)
= g0(α ◦ f)(g1, . . . , gn)− · · ·+ (−1)n+1(α ◦ f)(g0, . . . , gn−1)

= dn(α ◦ f)(g0, . . . , gn) = dn(αn(f))(g0, . . . , gn),

thus αn+1 ◦ dn = dn ◦ αn. The lemma follows.

Lemma 23.6 implies that we have a family of functors Hn(G, •) from the category of G-
modules to the category of abelian groups (note that id ◦f = f and (α◦β)◦f = α◦ (β ◦f)),
and also a functor from the category of G-modules to the category of cochain complexes.

Lemma 23.7. Suppose that we have a short exact sequence of G-modules

0 −→ A
α−→ B

β−→ C −→ 0.

Then for every n ≥ 0 we have a corresponding exact sequence of n-cochains

0 −→ Cn(G,A)
αn

−→ Cn(G,B)
βn

−→ Cn(G,C) −→ 0.
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Proof. The injectivity of αn follows from the injectivity of α. If f ∈ kerβn, then β ◦ f = 0
and im f ⊆ kerβ = imα; via the bijection α−1 : imα→ A we can define α−1◦f ∈ Cn(G,A),
and therefore kerβn ⊆ imαn. We also have imαn ⊆ kerβn, since β ◦ α ◦ f = 0 ◦ f = 0
for all f ∈ Cn(G,A), and exactness at Cn(G,B) follows. Every f ∈ Cn(G,C) satisfies
im f ⊆ C = imβ, and we can define h ∈ Cn(G,B) satisfying β◦h = f : for each g0, . . . , gn let
h(g0, . . . , gn) be any element of β−1(f(g0, . . . , gn)). Thus f ∈ imβn and βn is surjective.

Lemmas 23.6 and 23.7 together imply that we have an exact functor from the category
of G-modules to the category of cochain complexes.

Theorem 23.8. Every short exact sequence of G-modules

0 −→ A
α−→ B

β−→ C −→ 0

induces a long exact sequence of cohomology groups

0→ H0(G,A)
α0

−→ H0(G,B)
β0

−→ H0(G,C)
δ0−→ H1(G,A) −→ · · ·

and commutative diagrams of short exact sequences of G-modules induce corresponding com-
mutative diagrams of long exact sequences of cohomology groups.

Proof. Lemmas 23.6 and 23.7 give us the commutative diagram

0 Cn(G,A) Cn(G,B) Cn(G,C) 0

0 Cn+1(G,A) Cn+1(G,B) Cn+1(G,C) 0

←→ ← →αn

←→ dn

← →βn

←→ dn

←→

←→ dn

←→ ←→αn+1 ←→βn+1 ←→

We have Bn(G,A) ⊆ Zn(G,A) ⊆ Cn(G,A)
dn−→ Bn+1(G,A) ⊆ Zn+1(G,A) ⊆ Cn+1(G,A),

thus dn induces a homomorphism dn : Cn(G,A)/Bn(G,A)→ Zn+1(G,A), and similarly for
the G-modules B and C. The fact that αn maps coboundaries to coboundaries and cocycles
to cocycles implies that we have induced maps Cn(G,A)/Bn(G,A)→ Cn(G,B)/Bn(G,B)
and Zn+1(G,A)→ Zn+1(G,B); similar comments apply to βn.

We thus have the following commutative diagram:

Cn(G,A)
Bn(G,A)

Cn(G,B)
Bn(G,B)

Cn(G,C)
Bn(G,C) 0

0 Zn+1(G,A) Zn+1(G,B) Zn+1(G,C)

← →αn

←→ dn

← →βn

←→ dn

← →

←→ dn

←→ ←→αn+1 ←→βn+1

The kernels of the vertical maps dn are (by definition) the cohomology groups Hn(G,A),
Hn(G,B), Hn(G,C), and the cokernels are Hn+1(G,A), Hn+1(G,B), Hn+1(G,C). Apply-
ing the snake lemma yields the exact sequence

Hn(G,A)
αn

−→Hn(G,B)
βn

−→Hn(G,C)
δn−→Hn+1(G,A)

αn+1

−→Hn+1(G,B)
βn+1

−→Hn+1(G,C),

where αn and βn are the homomorphisms in cohomology induced by α and β (coming from
αn and βn in the previous diagram via Lemma 23.6), and the connecting homomorphism δn

given by the snake lemma can be explicitly described as

δn : Hn(G,C)→ Hn+1(G,A)

[f ] 7→ [α−1 ◦ dn(f̂)]
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where [f ] denotes the cohomology class of a cocycle f ∈ Cn(G,C) and f̂ ∈ Cn(G,B) is a
cochain satisfying β ◦ f̂ = f . Here α−1 denotes the inverse of the isomorphism A→ α(A).
The fact that δn is well defined (independent of the choice of f̂) is part of the snake lemma.
The map H0(G,A)→ H0(G,B) is the restriction of α : A→ B to AG, and is thus injective
(recall that H0(G,A) ' AG). This completes the first part of the proof.

For the second part, suppose we have the following commutative diagram of short exact
sequences of G-modules

0 A B C 0

0 A′ B′ C ′ 0

←→ ←→α

←→ φ

←→β

←→ ψ

←→

←→ ϕ

←→ ←→α
′ ←→β

′ ←→
By Lemma 23.6, to verify the commutativity of the corresponding diagram of long exact
sequences in cohomology we only need to check commutativity at squares of the form

Hn(G,C) Hn+1(G,A)

Hn(G,C ′) Hn+1(G,A′)

←→δ
n

←→ ϕn ←→ φn+1

←→δ
′n

(1)

Let f : Gn → C be a cocycle and choose f̂ ∈ Cn(G,B) such that β ◦ f̂ = f . We have

φn+1(δn([f ])) = φn+1([α−1 ◦ dn(f̂)]) = [φ ◦ α−1 ◦ dn(f̂)].

Noting that ϕ◦f = ϕ◦β ◦ f̂ = β′ ◦ψ ◦ f̂ and φ◦α−1 = α′−1 ◦ψ (as maps α(A)→ A′) yields

δ′
n
(ϕn([f ])) = δ′

n
([β′ ◦ ψ ◦ f ]) = [α′

−1 ◦ dn(ψ ◦ f̂)] = [α′−1 ◦ ψ ◦ dn(f̂)] = [φ ◦ α−1 ◦ dn(f̂)],

thus diagram (1) commutes as desired.

Definition 23.9. A family of functors Fn from the category of G-modules to the category
of abelian groups that associates to each short exact sequence of G-modules a long exact
sequence of abelian groups such that commutative diagrams of short exact sequences yield
commutative diagrams of long exact sequences is called a δ-functor. A δ-functor is said
to be cohomological if the connecting homomorphisms in long exact sequences are of the
form δn : Fn(G,C) → Fn+1(G,A). If we instead have δn : Fn+1(G,C) → Fn(G,A) then
the δ-functor is homological.

Theorem 23.54 implies that the family of functors Hn(G, •) is a cohomological δ-functor.
In fact is the universal cohomological δ-functor (it satisfies a universal property that deter-
mines it up to a unique isomorphism of δ-functors), but we will not explore this further.

23.2 Cohomology via free resolutions

Recall that the group ring Z[G] consists of formal sums
∑

g agg indexed by g ∈ G with
coefficients ag ∈ Z, all but finitely many zero. Multiplication is given by Z-linearly extending
the group operation in G; the ring Z[G] is commutative if and only if G is. As an abelian
group under addition, Z[G] is the free Z-module with basis G, equivalently, the group of
finitely supported functions G→ Z under pointwise addition.
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The notion of a G-module defined in the previous section is equivalent to that of a
(left) Z[G]-module: to define multiplication by Z[G] one must define a G-action, and the
G-action on a G-module extends Z-linearly, since every G-module is also a Z-module. The
multiplicative identity 1 of the ring Z[G] is the identity element of G; the additive identity 0
is the empty sum, which acts on A by sending a ∈ A to the identity element of A.2

For any n ≥ 0 we view Z[Gn] as a G-module with G acting diagonally on the left:
g · (g1, . . . , gn) := (gg1, . . . , ggn). This makes Z[G0] = Z a trivial G-module (here we are
viewing the empty tuple as the identity element of the trivial group G0).

Definition 23.10. Let G be a group. The standard resolution of Z by G-modules is the
exact sequence of G-module homomorphisms

· · · −→ Z[Gn+1]
dn−→ Z[Gn] −→ · · · d1−→ Z[G]

d0−→ Z −→ 0,

where the boundary maps dn are defined by

dn(g0, . . . , gn) :=

n∑
i=0

(−1)i(g0, . . . , ĝi, . . . , gn)

and extended Z-linearly (the notation ĝi means omit gi from the tuple). The map d0 sends
each g ∈ G to 1, and extends to the map

∑
g agg 7→

∑
g ag, which is also known as the

augmentation map and may be denoted ε.

Let us verify the exactness of the standard resolution.

Lemma 23.11. The standard resolution of Z by G-modules is exact.

Proof. The map d0 is clearly surjective. To check im dn+1 ⊆ ker dn it suffices to note that
for any g0, . . . , gn ∈ G we have

dn(dn+1(g0, . . . , gn)) =
∑

0≤i≤n

( ∑
0≤j<i

(−1)i+j(g0, . . . , ĝj , . . . , ĝi . . . , gn) +

∑
i<j≤n

(−1)i+j−1(g0, . . . , ĝi, . . . , ĝj , . . . , gn)

)
= 0.

Let Gn+1
1 be the subgroup 1 × Gn of Gn+1, and let h : Z[Gn+1] → Z[Gn+2

1 ] ⊆ Z[Gn+2]
be the Z-linear map defined by (g0, . . . , gn+1) 7→ (1, g0, . . . , gn+1). For x ∈ Z[Gn+1] we have
dn+1(h(x)) ∈ x+ Z[Gn+1

1 ], and if x ∈ ker dn then x− dn+1(h(x)) ∈ ker dn ∩ Z[Gn+1
1 ], since

im dn+1 ⊆ ker dn. To prove ker dn ⊆ im dn+1, it suffices to show ker dn∩Z[Gn+1
1 ] ⊆ im dn+1.

For n = 0 we have ker d0 ∩ Z[G1
1] = {0}, and we now proceed by induction on n ≥ 1.

Let Gn+1
11 := 1 × 1 × Gn−1 ⊆ Gn+1

1 . We can write the free Z-module Z[Gn+1
1 ] as the

internal direct sum Z[Gn+1
1 ] + X, where X is the free Z-module generated by elements of

the form (1, g1, . . . , gn) with g1 6= 1. For g1 6= 1 the image of (1, g1, . . .) under dn has the
form (g1, . . . , gn) + y with y ∈ Gn1 , and it follows that the restriction of dn to X is injective
and thus has trivial kernel. It therefore suffices to show ker dn ∩ Z[Gn+1

11 ] ⊆ im dn+1.
Let x ∈ ker dn ∩ Z[Gn+1

11 ]. If n = 1 then x = d2(h(x)) ∈ im dn+1. For n ≥ 2, let
π : Z[Gn+1]→ Z[Gn−1] be the Z-linear map defined by (g0, g1, g2, . . . , gn) 7→ (g2, . . . , gn). We
have π(x) ∈ ker dn−2 ⊂ im dn−1 (by the inductive hypothesis), and for any y ∈ d−1n−1(π(x))
we have x = dn+1(h11(y)) ∈ im dn+1, where h11 : Z[Gn−1] → Z[Gn+1] is the Z-linear map
defined by (g0, . . . , gn−1) 7→ (1, 1, g0, . . . , gn−1). Therefore ker dn ∩ Z[Gn+1

11 ] ⊆ im dn+1.
2When A is written multiplicatively its identity is denoted 1 and one should think of 0 as acting via

exponentiation (but for the moment we continue to use additive notation and view A as a left Z[G]-module).
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Definition 23.12. Let R be a (not necessarily commutative) ring. A free resolution P of
a (left) R-module M is an exact sequence of free (left) R-modules Pn

· · · dn+1−→ Pn+1
dn−→ Pn

dn−1−→ · · · d1−→ P1
d0−→M −→ 0.

Free resolutions arise naturally as presentations of an R-module. Every R-module M
admits a surjection from a free module (one can always take P1 to be the free R-module with
basis M). This yields an exact sequence P1 →M → 0, and the kernel of the homomorphism
on the left is itself an R-module that admits a surjection from a free R-module P2; continuing
in this fashion yields a free resolution.

Now let A be an abelian group. If we truncate the free resolution P by removing the
R-module M and apply the contravariant left exact functor HomR(•, A) we obtain a cochain
complex of R-modules3

· · ·
d∗n+1←− P ∗n+1

d∗n←− P ∗n
d∗n−1←− · · ·

d∗1←− P ∗1 ←− 0.

where d∗n(ϕ) := ϕ◦dn. The maps d∗n satisfy d∗n+1 ◦d∗n = 0: for all ϕ ∈ HomR(Pn, A) we have

(d∗n+1 ◦ d∗n)(ϕ) = (dn ◦ dn+1)
∗(ϕ) = ϕ ◦ dn ◦ dn+1 = ϕ ◦ 0 = 0.

This cochain complex need not be exact, because the functor HomR(•, A) is not right-
exact,4 so we have potentially nontrivial cohomology groups ker d∗n+1/ im d∗n, which are
denoted ExtnR(M,A). A key result of homological algebra is that (up to isomorphism) these
cohomology groups do not depend on the resolution P , only on A andM ; see Theorem 23.71.

Recall that Z[G] is a free Z-module (with basis G), and for all n ≥ 0 we have

Z[Gn+1] '
⊕

(g1,...,gn)∈Gn

Z[G](1, g1, . . . , gn).

It follows that the standard resolution is a free resolution of Z by Z[G]-modules; note that Z,
like any abelian group, can always be viewed as a trivial G-module, hence a Z[G]-module.

With a free resolution in hand, we now want to consider the cochain complex

0→ HomZ[G](Z[G], A) −→ · · · −→ HomZ[G](Z[Gn], A)
d∗n−→ HomZ[G](Z[Gn+1], A) −→ · · ·

where d∗n is defined by ϕ 7→ ϕ ◦ dn. Let SA denote this cochain complex.

Proposition 23.13. Let A be a G-module. For every n ≥ 0 we have an isomorphism of
abelian groups

Φn : HomZ[G](Z[Gn+1], A)
∼−→ Cn(G,A)

that sends ϕ : Z[Gn+1]→ A to the function f : Gn → A defined by

f(g1, . . . , gn) := ϕ(1, g1, g1g2, . . . , g1g2 · · · gn).

The isomorphisms Φn satisfy Φn+1 ◦ d∗n+1 = dn ◦ Φn for all n ≥ 0 and thus define an
isomorphism of cochain complexes ΦA : SA → CA.

3The intuition here is that P contains a presentation of M that effectively serves as a replacement for M .
4Applying HomZ(•,Z) to 0→ Z→ Q→ Q/Z→ 0 yields 0← Z← 0← 0← 0, for example.
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Proof. We first check that Φn is injective. Let ϕ ∈ ker Φn. Given g0, . . . , gn ∈ G, let
hi := g−1i−1gi for 1 ≤ i ≤ n so that h1 · · ·hi = g−10 gi and observe that

ϕ(g0, . . . , gn) = g0ϕ(1, g−10 g1, . . . , g
−1
0 gn) = g0ϕ(1, h1, h1h2, . . . , h1 · · ·hn) = 0.

so ϕ = 0 as desired. For surjectivity, let f ∈ Cn(G,A) and define ϕ ∈ HomZ[G](Z[Gn+1], A)

via ϕ(g0, . . . , gn) := g0f(g−10 g1, g
−1
1 g2, . . . , g

−1
n−1gn). For any g1, . . . , gn ∈ G we have

Φn(ϕ)(g1, . . . , gn) = ϕ(1, g1, g1g2, . . . , g1g2 · · · gn) = f(g1, . . . , gn),

so f ∈ im Φn and Φn is surjective.
It is clear from the definition that Φn(ϕ1 + ϕ2) = Φn(ϕ1) + Φn(ϕ2), so Φn is a bijective

group homomorphism, hence an isomorphism. Finally, for any ϕ ∈ HomZ[G](Z[Gn+1], A)
and g1, . . . , gn+1 ∈ G we have

Φn+1(d∗n+1(ϕ))(g1, . . . , gn+1) = d∗n+1(ϕ)(1, g1, g1g2, . . . , g1 · · · gn+1)

= ϕ(dn+1(1, g1, g1g2, . . . , g1 · · · gn+1))

=

n+1∑
i=0

(−1)iϕ(1, g1, . . . , g1 · · · gi−1, g1 · · · gi+1, . . . , g1 · · · gn+1)

= g1Φ
n(ϕ)(g2, . . . , gn+1)

+
n∑
i=1

(−1)iΦn(ϕ)(g1, . . . , gi−2, gi−1gi, gi+1, . . . , gn+1)

+ (−1)n+1Φn(ϕ)(g1, . . . , gn)

= dn(Φn(ϕ))(g1, . . . , gn+1),

which shows that Φn+1 ◦ d∗n+1 = d∗n ◦ Φn as claimed.

Corollary 23.14. Let A be a G-module. The cochain complexes SA and CA have the same
cohomology groups, in other words, Hn(G,A) ' ExtnZ[G](Z, A) for all n ≥ 0, and we can

compute Hn(G,A) using any free resolution of Z by G-modules.

Proof. This follows immediately from Proposition 23.13 and Theorem 23.71.

Corollary 23.15. For any G-modules A and B we have

Hn(G,A⊕B) ' Hn(G,A)⊕Hn(G,B)

for all n ≥ 0, and the isomorphism commutes with the natural inclusion and projection
maps for the direct sums on both sides.

Proof. By Lemma 23.73, the functor ExtnZ[G](Z, •) is an additive functor.

Definition 23.16. A category containing finite coproducts (such as direct sums) in which
each set of morphisms between objects has the structure of an abelian group whose addition
distributes over composition (and vice versa) is called an additive category. A functor F
between additive categories is an additive functor if it maps zero objects to zero objects
and satisfies F (X⊕Y ) ' F (X)⊕F (Y ), where the isomorphism commutes with the natural
inclusion and projection maps for the direct sums on both sides.
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Definition 23.17. Let G be a group and let A be an abelian group. The abelian group

CoIndG(A) := HomZ(Z[G], A)

with G-action defined by (gϕ)(z) := ϕ(zg) is the coinduced G-module associated to A.

Warning 23.18. Some texts [3, 5] use IndG(A) instead of CoIndG(A) to denote the G-
module HomZ(Z[G], A) and refer to it is as “induced” rather than “coinduced”. Here we
follow [1, 4, 7] and reserve the notation IndG(A) for the induced G-module Z[G]⊗ZA defined
below (see Definition 23.25). As shown by Lemma 23.27, this clash in terminology is fairly
harmless when G is finite, since we then have IndG(A) ' CoIndG(A).

Lemma 23.19. Let G be a group and A an abelian group. Then H0(G,CoIndG(A)) ' A
and Hn(G,CoIndG(A)) = 0 for all n ≥ 1.

Proof. For all n ≥ 1 we have an isomorphisms of abelian groups

α : HomZ[G](Z[Gn],CoIndG(A))
∼−→ HomZ(Z[Gn], A)

ϕ 7→ (z 7→ ϕ(z)(1))

(z 7→ (y 7→ φ(yz)))←[ φ

Indeed,

α(α−1(φ)) = α(z 7→ (y 7→ φ(yz)))) = (z 7→ φ(z)) = φ,

α−1(α(ϕ)) = α−1(z 7→ ϕ(z)(1)) = (z 7→ (y 7→ ϕ(yz)(1))) = (z 7→ ϕ(z)) = ϕ.

Thus computing Hn(G,CoIndG(A)) using the standard resolution P of Z by G-modules
is the same as computing Hn({1}, A) using the resolution P viewed as a resolution of Z
by {1}-modules (abelian groups); note that Z[Gn] is also a free Z[{1}]-module, and the
G-module morphisms dn in the standard resolution are also {1}-module morphisms (mor-
phisms of abelian groups). Therefore Hn(G,CoIndG(A)) ' Hn({1}, A) for all n ≥ 0.

But we can also compute Hn({1}, A) using the free resolution · · · → 0 → Z → Z → 0,
which implies Hn({1}, A) = 0 for n ≥ 1 and H0({1}, A) ' HomZ(Z, A) ' A.

23.3 Homology via free resolutions

In the previous section we applied the contravariant functor HomZ[G](•, A) to the truncation
of the standard resolution of Z by G-modules to get a cochain complex with cohomology
groups Hn(G,A) ' ExtnZ[G](Z, A). If we do the same thing using the covariant functor

• ⊗Z[G] A we get a chain complex (of Z-modules)

· · · −→ Z[Gn+1]⊗Z[G] A
dn∗−→ Z[Gn]⊗Z[G] A −→ · · · −→ Z[G]⊗Z[G] A −→ 0,

where dn∗ is defined by (g0, . . . , gn)⊗a 7→ dn(g0, . . . , gn)⊗a. One minor technical point: in
order for these tensor products to make sense we need to view Z[Gn] as a right Z[G]-module,
so we define (g1, . . . , gn) · g := (g1g, . . . , gng); the corresponding G-module is isomorphic to
the left Z[G]-module defined above (right action by g corresponds to left action by g−1).

We then have homology groups ker dn∗/ im dn+1∗. As with the groups ExtnZ[G](Z, A), we

get the same homology groups using any free resolution of Z by right Z[G]-modules, and

they are generically denoted Tor
Z[G]
n (Z, A); see Theorem 23.75.
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Definition 23.20. Let A be a G-module. The nth homology group of G with coefficients

in A is the abelian group Hn(G,A) := Tor
Z[G]
n (Z, A). If α : A → B is a morphism of G-

modules, the natural morphism αn : Hn(G,A) → Hn(G,B) is given by x ⊗ a 7→ x ⊗ ϕ(a).
Each Hn(G, •) is a functor from the category of G-modules to the category of abelian groups.

The family of functors Hn(G, •) is a homological δ-functor.

Theorem 23.21. Every short exact sequence of G-modules

0 −→ A
α−→ B

β−→ C −→ 0

induces a long exact sequence of homology groups

· · · −→ H1(G,C)
δ0−→ H0(G,A)

α0−→ H0(G,B)
β0−→ H0(G,C) −→ 0,

and commutative diagrams of short exact sequences of G-modules induce corresponding com-
mutative diagrams of long exact sequences of homology groups.

Proof. The proof is directly analogous to that of Theorem 23.8 (or see Theorem 23.50).

As with Hn(G, •), the functors Hn(G, •) are additive functors.

Corollary 23.22. For any G-modules A and B we have

Hn(G,A⊕B) ' Hn(G,A)⊕Hn(G,B)

for all n ≥ 0, and the isomorphism commutes with the natural inclusion and projection
maps for the direct sums on both sides.

Proof. By Lemma 23.77, the functor Tor
Z[G]
n (Z, •) is an additive functor.

For n = 0 we have

H0(G,A) := Tor
Z[G]
0 (Z, A) = Z⊗Z[G] A,

where we are viewing Z as a (right) Z[G]-module withG acting trivially; see Lemma 23.78 for
a proof of the second equality. This means that

∑
agg ∈ Z[G] acts on Z via multiplication

by the integer
∑
ag. This motivates the following definition.

Definition 23.23. Let G be a group. The augmentation map ε : Z[G]→ Z is the ring ho-
momorphism

∑
agg 7→

∑
ag.

5 The augmentation ideal IG is the kernel of the augmentation
map; it is a free Z-module with basis {g − 1 : g ∈ G}.

The augmentation ideal IG is precisely the annihilator of the Z[G]-module Z; therefore

Z⊗Z[G] A ' A/IGA.

Definition 23.24. Let A be a G-module. The group of G-coinvariants of A is the G-module

AG := A/IGA;

it is the largest trivial G-module that is a quotient of A.

5The augmentation map is the boundary map d0 in the standard resolution of Z by G-modules.

18.785 Fall 2019, Lecture #23, Page 9



We thus have H0(G,A) ' AG and H0(G,A) ' AG.

Definition 23.25. Let G be a group and let A be an abelian group. The abelian group

IndG(A) := Z[G]⊗Z A

with G-action defined by g(z ⊗ a) = (gz)⊗ a is the induced G-module associated to A.

Lemma 23.26. Let G be a group and A an abelian group. Then H0(G, IndG(A)) ' A and
Hn(G, IndG(A)) = 0 for all n ≥ 1.

Proof. Viewing Z[Gn] as a right Z[G]-module and Z[G] as a left Z[G]-module, for all n ≥ 1,

Z[Gn]⊗Z[G] (Z[G]⊗Z A) ' (Z[Gn]⊗Z[G] Z[G])⊗Z A ' Z[Gn]⊗Z A,

by associativity of the tensor product (and the fact that M ⊗R R ' M for any right R-
module M). This implies that computing Hn(G, IndG(A)) using the standard resolution P
of Z by (right) G-modules is the same as computing Hn({1}, A) using the resolution P
viewed as a resolution of Z by {1}-modules (abelian groups). Thus

Hn(G, IndG(A)) = TorZ[G]
n (Z, IndG(A)) ' TorZn(Z, A) = Hn({1}, A).

But we can also compute Hn({1}, A) using the free resolution · · · → 0→ Z→ Z→ 0, which
implies Hn({1}, A) = 0 for n ≥ 1 and H0({1}, A) ' Z⊗A ' A.

Lemma 23.27. Let G be a finite group and A an abelian group. The G-modules IndG(A)
and CoIndG(A) are isomorphic.

Proof. We claim that we have a canonical G-module isomorphism given by

α : CoIndG(A)
∼−→ IndG(A)

ϕ 7→
∑
g∈G

g−1 ⊗ ϕ(g)

(g−1 7→ a)←[ g ⊗ a

where (g−1 7→ a)(h) = 0 for h ∈ G − {g−1}. It is obvious that α and α−1 are inverse
homomorphisms of abelian groups, we just need to check that there are morphisms of G-
modules. For any h ∈ G and ϕ ∈ CoIndG(A) we have

α(hϕ) =
∑
g∈G

g−1 ⊗ (hϕ)(g) = h
∑
g∈G

(gh)−1 ⊗ ϕ(gh) = h
∑
g∈G

g−1 ⊗ ϕ(g) = hα(ϕ),

and for any h ∈ G and g ⊗ a ∈ IndG(A) we have

α−1(h(g ⊗ a)) = α−1(hg ⊗ a) = ((hg)−1 7→ a) = h(g−1 7→ a) = hα−1(g ⊗ a),

since for ϕ = (g−1 7→ a) the identity (hϕ)(z) = ϕ(zh) implies hϕ = ((hg)−1 7→ a).

Corollary 23.28. Let G be a finite group, A be an abelian group, and let B be IndG(A) or
CoIndG(A). Then H0(G,B) ' H0(G,B) ' A and Hn(G,B) = Hn(G,B) = 0 for all n ≥ 1.

Proof. This follows immediately from Lemmas 23.19, 23.26, 23.27.
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23.4 Tate cohomology

We now assume that G is a finite group.

Definition 23.29. The norm element of Z[G] is NG :=
∑

g∈G g.

Lemma 23.30. Let A be a G-module and let NG : A→ A be the G-module endomorphism
a 7→ NGa. We then have IGA ⊆ kerNG and imNG ⊆ AG, thus NG induces a morphism
N̂G : AG → AG of trivial G-modules.

Proof. We have gNG = NG for all g ∈ G, so imNG ⊆ AG, and NG(g− 1) = 0 for all g ∈ G,
so NG annihilates the augmentation ideal IG and IGA ⊆ kerNG. The lemma follows.

Definition 23.31. LetA be aG-module for a finite groupG. For n ≥ 0 the Tate cohomology
and homology groups are defined by

Ĥn(G,A) :=

{
coker N̂G for n = 0

Hn(G,A) for n > 0
Ĥn(G,A) :=

{
ker N̂G for n = 0

Hn(G,A) for n > 0

Ĥ−n(G,A) := Ĥn−1(G,A) Ĥ−n(G,A) := Ĥn−1(G,A).

Note that Ĥ0(G,A) is a quotient of H0(G,A) ' AG (the largest trivial G-module in A) and
Ĥ0(G,A) is a submodule of H0(G,A) ' AG (the largest trivial G-module quotient of A).

Thus any morphism of G-modules induces natural morphisms of Tate cohomology and
homology groups in degree n = 0 (and all other degrees, as we already know). We thus
have functors Ĥn(G, •) and Ĥn(G, •) from the category of G-modules to the category of
abelian groups.

Given that every Tate homology group is also a Tate cohomology group, in practice one
usually refers only to the groups Ĥn(G,A), but the notation Ĥn(G,A) can be helpful to
highlight symmetry.

Theorem 23.32. Let G be a finite group. Every short exact sequence of G-modules

0 −→ A
α−→ B

β−→ C −→ 0

induces a long exact sequence of Tate cohomology groups

· · · −→ Ĥn(G,A)
α̂n

−→ Ĥn(G,B)
β̂n

−→ Ĥn(G,C)
δ̂n−→ Ĥn+1(G,A) −→ · · · ,

equivalently, a long exact sequence of Tate homology groups

· · · −→ Ĥn(G,A)
α̂n−→ Ĥn(G,B)

β̂n−→ Ĥn(G,C)
δ̂n−→ Ĥn−1(G,A) −→ · · · .

Commutative diagrams of short exact sequences of G-modules induce commutative diagrams
of long exact sequences of Tate cohomology groups (equivalently, Tate homology groups).

Proof. It follows from Theorems 23.8 and 23.21 that it is enough to prove exactness at the
terms Ĥ0(G, •) = Ĥ−1(G, •) and Ĥ0(G, •) = Ĥ−1(G, •). We thus consider the diagram

H1(C,G) AG BG CG 0

0 AG BG CG H1(A,G)

←→δ0 ←→α0

←→ N̂G

←→β0

←→ N̂G

← →

←→ N̂G

← → ←→α
0 ←→β

0 ←→δ
0
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whose top and bottom rows are the end and beginning of the long exact sequences in
homology and cohomology given by Theorems 23.21 and 23.8, respectively; here we are
using H0(G, •) ' •G and H0(G, •) ' •G.

For any [a] ∈ AG = A/IGA we have N̂G(α0([a])) = NGα(a) = α(NGa) = α0(N̂G([a])),
so the first square commutes, as does the second (by the same argument). Applying the
snake lemma yields an exact sequence of kernels and cokernels of N̂G

Ĥ0(G,A)
α̂0→ Ĥ0(G,B)

β̂0→ Ĥ0(G,C)
δ̂→ Ĥ0(G,A)

α̂0

→ Ĥ0(G,B)
β̂0

→ Ĥ0(G,C),

where δ̂([c]) = [a] for any a ∈ A, b ∈ B, c ∈ C with α(a) = NGb and β(b) = c ∈ kerNG

(that this uniquely defines the connecting homomorphism δ̂ is part of the snake lemma).
Note that im δ0 = kerα0 = ker α̂0 ⊆ ker N̂G, since α0 is injective, so δ0 gives a well-
defined map δ̂0 : Ĥ1(G,C) → Ĥ0(G,A) that makes the sequence is exact at Ĥ0(G,A).
Similarly, im N̂G ⊆ imβ0 = ker δ0, since β0 is surjective, so δ0 induces a well-defined map
δ̂0 : Ĥ0(G,C)→ H1(A,G) that makes the sequence exact at Ĥ0(G,C).

For the last statement of the theorem, suppose we have the following commutative
diagram of exact sequences of G-modules

0 A B C 0

0 A′ B′ C ′ 0

←→ ←→α

←→ φ

←→β
←→ ψ

←→

←→ ϕ

←→ ←→α
′ ←→β

′ ←→
By Theorems 23.21 and 23.8, we only need to verify the commutativity of the square

Ĥ0(G,C) Ĥ0(G,A)

Ĥ0(G,C
′) Ĥ0(G,A′)

←→δ̂

←→ ϕ0 ←→ φ0

←→δ̂
′

Let a ∈ A, b ∈ B, c ∈ C satisfy α(a) = NGb and β(b) = c ∈ kerNG as in the definition of δ̂
above, so that δ̂([c]) = [a]. Now let a′ = φ(a), b′ = ψ(b), c = ϕ(c). Then

α′(a′) = α′(φ(a)) = ψ(α(a)) = ψ(NGb) = NGψ(b) = NGb
′

β′(b′) = β′(ψ(b)) = ϕ(β(b)) = ϕ(c) = c′ ∈ kerNG,

where we have used NGc
′ = NGϕ(c) = ϕ(NGc) = ϕ(0) = 0. Thus δ̂′([c′]) = [a′] and

φ0(δ̂([c])) = φ0([a]) = [φ(a)] = [a′] = δ̂′([c′]) = δ̂′([ϕ(c)]) = δ̂′(ϕ0([c])),

so φ0 ◦ δ̂ = δ̂′ ◦ ϕ0 as desired.

Theorem 23.32 implies that the family Ĥn(G, •) is a cohomological δ-functor, and that
the family Ĥn(G, •) is a homological δ-functor.

Corollary 23.33. Let G be a finite group. For any G-modules A and B we have

Ĥn(G,A⊕B) ' Ĥn(G,A)⊕ Ĥn(G,B),

for all n ∈ Z, and the isomorphisms commute with the natural inclusion and projection
maps for the direct sums on both sides.
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Proof. For n 6= 0,−1 this follows from Corollaries 23.15 and 23.22. For n = 0,−1 it suffices
to note that NG acts on A ⊕ B component-wise, and the induced morphism N̂G thus acts
on (A⊕B)G = AG ⊕BG component-wise.

Theorem 23.34. Let G be a finite group and let B be an induced or co-induced G-module
associated to some abelian group A. Then Ĥn(G,B) = Ĥn(G,B) = 0 for all n ∈ Z.

Proof. By Corollary 23.28, we only need to show Ĥ0(G,B) = Ĥ0(G,B) = 0, and by
Lemma 23.27 it suffices to consider the case B = IndG(A) = Z[G] ⊗Z A. Equivalently,
we need to show that NG : B → B has kernel IGB and image BG. By definition, the Z[G]-
action on B = Z[G]⊗Z A only affects the factor Z[G], so this amounts to showing that, as
an endomorphism of Z[G], we have kerNG = IG and imNG = Z[G]G. But this is clear:
the action of NG on Z[G] is

∑
g∈G agg 7→ (

∑
g∈G ag)NG. The kernel of this action is the

augmentation ideal IG, and its image is Z[G]G = {
∑

g∈G agg : all ag ∈ Z equal} = NGZ.

Remark 23.35. Theorem 23.34 explains a major motivation for using Tate cohomology.
It is the minimal modification needed to ensure that induced (and co-induced) G-modules
have trivial homology and cohomology in all degrees.

Corollary 23.36. Let G be a finite group and let A be a free Z[G]-module. Then Ĥn(G,A) =
Ĥn(G,A) = 0 for all n ∈ Z.

Proof. Let S be a Z[G]-basis for A and let B be the free Z-module with basis S. Then
A ' IndG(B) and the corollary follows from Theorem 23.34.

23.5 Tate cohomology of cyclic groups

We now assume that G is a cyclic group 〈g〉 of finite order. In this case the augmentation
ideal IG is principal, generated by g − 1 (as an ideal in the ring Z[G], not as a Z-module).
For any G-module A we have a free resolution

· · · −→ Z[G]
NG−→ Z[G]

g−1−→ Z[G]
NG−→ Z[G]

g−1−→ Z[G]
ε−→ Z −→ 0. (2)

The fact that augmentation ideal IG = (g − 1) is principal (because G is cyclic) ensures
imNG = ker(g − 1), making the sequence exact.

The group ring Z[G] is commutative, since G is abelian, so we need not distinguish left
and right Z[G]-modules. For any G-module A we can view Z[G]⊗Z[G] A as a G-module via
g(h⊗a) = gh⊗a = h⊗ga and view HomZ[G](Z[G], A) as a G-module via (gϕ)(h) := ϕ(gh).6

Theorem 23.37. Let G = 〈g〉 be a finite cyclic group and let A be a G-module. For all n ∈ Z
we have Ĥ2n(G,A) ' Ĥ2n−1(G,A) ' Ĥ0(G,A) and Ĥ2n(G,A) ' Ĥ2n−1(G,A) ' Ĥ0(G,A).

Proof. We have canonical G-module isomorphisms HomZ[G](Z[G], A) ' A ' Z[G] ⊗Z[G] A
induced by ϕ 7→ ϕ(1) and a 7→ 1 ⊗ a, respectively, and these isomorphisms preserve the
multiplication-by-g endomorphisms (that is, (gϕ)(1) = gϕ(1) and 1⊗ ga = g(1⊗a)). Using
the free resolution in (2), we can thus compute Hn(G,A) using the cochain complex

0 −→ A
g−1−→ A

NG−→ A
g−1−→ A

NG−→ A · · · ,
6Note that we must have g1g2ϕ(h) = g1(g2ϕ)(h) = (g2ϕ)(g1h) = ϕ(g2g1h) = g2g1ϕ(h) in order for ϕ to

be both a Z[G]-module morphism and an element of a Z[G]-module, so this will not work if G is not abelian.
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and we can compute Hn(G,A) using the chain complex

· · · −→ A
NG−→ A

g−1−→ A
NG−→ A

g−1−→ A −→ 0.

We now observe that AG = ker(g − 1), so for all n ≥ 1 we have

H2n(G,A) = H2n−1(G,A) = ker(g − 1)/ imNG = coker N̂G = Ĥ0(G,A),

so Ĥ2n(G,A) = Ĥ2n−1(G,A) = Ĥ0(G,A) for all n ∈ Z, since Ĥ−2n(G,A) = Ĥ2n−1(G,A)
and Ĥ−2n+1 = Ĥ2n for all n ≥ 0.

We also note that im(g − 1) = IGA, so for all n ≥ 1 we have

H2n(G,A) = H2n−1(G,A) = kerNG/ im(g − 1) = ker N̂G = Ĥ0(G,A),

so Ĥ2n(G,A) = Ĥ2n−1(G,A) = Ĥ0(G,A) for all n ∈ Z, since Ĥ−2n(G,A) = Ĥ2n−1(G,A)
and Ĥ−2n+1 = Ĥ2n for all n ≥ 0.

It follows from Theorem 23.37 that when G is a finite cyclic group, all of the Tate
homology/cohomology groups are determined by Ĥ0(G,A) = ker N̂G = kerNG/ im(g − 1)
and Ĥ0(G,A) = coker N̂G = ker(g − 1)/ imNG. This motivates the following definition.

Definition 23.38. Let G be a finite cyclic group and let A be a G-module. We define
hn(A) := hn(G,A) := #Ĥn(G,A) and hn(A) := hn(G,A) := #Ĥn(G,A). Whenever h0(A)
and h0(A) are both finite, we also define the Herbrand quotient h(A) := h0(A)/h0(A) ∈ Q.

Remark 23.39. Some authors define the Herbrand quotient via h(A) := h0(A)/h1(A) or
h(A) := h0(A)/h−1(A) or h(A) := h2(A)/h1(A), but Theorem 23.37 implies that these
definitions are all the same as ours. The notation q(A) is often used instead of h(A), and
one occasionally sees the Herbrand quotient defined as the reciprocal of our definition (as
in [2], for example), but this is less standard.

Corollary 23.40. Let G be a finite cyclic group. Given an exact sequence of G-modules

0 −→ A
α−→ B

β−→ C −→ 0

we have a corresponding exact hexagon

Ĥ0(G,A) Ĥ0(G,B)

Ĥ0(G,C) Ĥ0(G,C)

Ĥ0(G,B) Ĥ0(G,A)

←→α̂
0

←

→
β̂0

← →δ̂0

←→

δ̂0←

→

β̂0

←→

α̂0

Proof. This follows immediately from Theorems 23.32 and 23.37.

Corollary 23.41. Let G be a finite cyclic group. For any exact sequence of G-modules

0 −→ A
α−→ B

β−→ C −→ 0,

if any two of h(A), h(B), h(C) are defined then so is the third and h(B) = h(A)h(C).
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Proof. Using the exact hexagon given by Corollary 23.40 we can compute the cardinality

h0(A) = #Ĥ0(G,A) = # ker α̂0# im α̂0 = # kerα0# kerβ0.

Applying a similar calculation to Ĥ0(G,C) and Ĥ1(G,B) yields

h0(A)h0(C)h0(B) = # ker α̂0# ker β̂0# ker δ̂0# ker α̂0# ker β̂0# ker δ̂0.

Doing the same for Ĥ0(G,B), Ĥ0(G,A), Ĥ0(G,C) yields

h0(B)h0(A)h0(C) = # ker β̂0# ker δ̂0# ker α̂0# ker β̂0# ker δ̂0# ker α̂0 = h0(A)h0(C)h0(B).

If any two of h(A), h(B), h(C) are defined then at least four of the groups in the exact
hexagon are finite, and the remaining two are non-adjacent, but these two must then also
be finite. In this case we can rearrange the identity above to obtain h(B) = h(A)h(C).

Corollary 23.42. Let G be a finite cyclic group, and let A and B be G-modules. If h(A)
and h(B) are defined then so is h(A⊕B) = h(A)h(B).

Proof. Apply Corollary 23.41 to the split exact sequence 0→ A→ A⊕B → B → 0.

Lemma 23.43. Let G=〈g〉 be a finite cyclic group. If A is an induced or finite G-module
then h(A) = 1.

Proof. If A is an induced G-module then h0(A) = h0(A) = h(A) = 1, by Theorem 23.34.
If A is finite, then the exact sequence

0 −→ AG −→ A
g−1−→ A −→ AG −→ 0

implies #AG = # ker(g − 1) = # coker(g − 1) = #AG, and therefore

h0(A) = # ker N̂G = # coker N̂G = h0(A),

so h(A) = h0(A)/h0(A) = 1.

Corollary 23.44. Let G be a finite cyclic group and let A be a G-module that is a finitely
generated abelian group. Then h(A) = h(A/Ator) whenever either is defined.

Proof. Apply Corollary 23.41 and Lemma 23.43 to 0→ Ator → A→ A/Ator → 0.

Remark 23.45. The hypothesis of Corollary 23.44 actually guarantees that h(A) is defined,
but we won’t prove this here.

Corollary 23.46. Let G be a finite cyclic group and let A be a trivial G-module that is a
finitely generated abelian group. Then h(A) = (#G)r, where r is the rank of A.

Proof. We have A/Ator ' Zr, where Z is a trivial G-module. Then ZG = Z = ZG, and
N̂G : ZG → ZG is multiplication by #G, so h(Z) = # coker N̂G/# ker N̂G = #G. Now apply
Corollaries 23.42 and 23.44.

Lemma 23.47. Let G be a finite cyclic group and let α : A → B be a morphism of G-
modules with finite kernel and cokernel. If either h(A) or h(B) is defined then h(A) = h(B).
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Proof. Applying Corollary 23.41 to the exact sequences

0→ kerα→ A→ imα→ 0

0→ imα→ B → cokerα→ 0

yields h(A) = h(kerα)h(imα) = h(imα) = h(imα)h(cokerα) = h(B), by Lemma 23.43,
since kerα and cokerα are finite. The lemma follows.

Corollary 23.48. Let G be a finite cyclic group and let A be a G-module containing a
sub-G-module B of finite index. Then h(A) = h(B) whenever either is defined.

Proof. Apply Lemma 23.47 to the inclusion B → A.

23.6 A little homological algebra

In an effort to keep these notes self-contained, in this final section we present proofs of
the homological results that were used above. For the sake of concreteness we restrict
our attention to modules, but everything in this section generalizes to suitable abelian
categories. We use R to denote an arbitrary (not necessarily commutative) ring (in previous
section R was the group ring Z[G]). Statements that use the term R-module without
qualification are understood to apply in both the category of leftR-modules and the category
of right R-modules.

23.6.1 Complexes

Definition 23.49. A chain complex C is a sequence of R-module morphisms

· · · d2−→ C2
d1−→ C1

d0−→ C0 −→ 0,

with dn◦dn+1 = 0; the dn are boundary maps. The nth homology group of C is the R-module
Hn(C) := Zn(C)/Bn(C), where Zn(C) := ker dn−1 and Bn(C) := im dn are the R-modules
of cycles and boundaries, respectively; for n < 0 we define Cn = 0 and dn is the zero map.

A morphism of chain complexes f : C → D is a sequence of R-module morphisms
fn : Cn → Dn that commute with boundary maps (so fn◦dn = dn◦fn+1).

7 Such a morphism
necessarily maps cycles to cycles and boundaries to boundaries, yielding natural morphisms
Hn(f) : Hn(C) → Hn(D) of homology groups.8 We thus have a family of functors Hn(•)
from the category of chain complexes to the category of abelian groups. The category of
chain complexes has kernels and cokernels (and thus exact sequences). The set Hom(C,D) of
morphisms of chain complexes C → D is an abelian group under addition: (f+g)n = fn+gn.

The category of chain complexes of R-modules contains direct sums and direct products:
if A and B are chain complexes of R-modules then (A⊕B)n := An⊕Bn and the boundary
maps dn : (A⊕B)n+1 → (A⊕B)n are defined component-wise: dn(a⊕ b) := dn(a)⊕ dn(b).
Because the boundary maps are defined component-wise, the kernel of the boundary map of

7We use the symbols dn to denote boundary maps of both C and D; in general, the domain and codomain
of any boundary or coboundary map should be inferred from context.

8In fact Hn(f) : Hn(C)→ Hn(D) is a morphism of R-modules, but in all the cases of interest to us, either
the homology groups are all trivial (as occurs for exact chain complexes, such as the standard resolution of
Z by Z[G]-modules), or R = Z (as in the chain complexes used to define the Ext and Tor groups below), so
we will generally refer to homology groups rather than homology modules.
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a direct sum is the direct sum of the kernels of the boundary maps on the components, and
similarly for images. It follows that Hn(A ⊕ B) ' Hn(A) ⊕Hn(B), and this isomorphism
commutes with the natural inclusion and projection maps in to and out of the direct sums
on both sides. In other words, Hn(•) is an additive functor (see Definition 23.16). This
extends to arbitrary (possibly infinite) direct sums, and also to arbitrary direct products,
although we will only be concerned with finite direct sums/products.9

Theorem 23.50. Associated to each short exact sequence of chain complexes

0 −→ A
α−→ B

β−→ C −→ 0

is a long exact sequence of homology groups

· · · −→ Hn+1(A)
Hn+1(α)−→ Hn+1(B)

Hn+1(β)−→ Hn+1(C)
δn−→ Hn(A)

Hn(α)−→ Hn(B)
Hn(β)−→ Hn(C) −→ · · ·

and this association maps morphisms of short exact sequences to morphisms of long exact
sequences. In other words, the family of functors Hn(•) is a homological δ-functor.

For n < 0 we have Hn(•) = 0, by definition, so this sequence ends at H0(C)→ 0.

Proof. For any chain complex C, let Yn(C) := Cn/Bn(C). Applying the snake lemma to

Yn+1(A) Yn+1(B) Yn+1(C) 0

0 Zn(A) Zn(B) Zn(C)

←→αn+1

←→ dn

←→βn+1

←→ dn

←→

←→ dn
←→ ← →αn ← →βn

(where αn, βn, dn denote obviously induced maps) yields the exact sequence

Hn+1(A)
αn+1−→ Hn+1(B)

βn+1−→ Hn+1(C)
δn−→ Hn(A)

αn−→ Hn(B)
βn−→ Hn(G).

The verification of the commutativity of diagrams of long exact sequences of homology
groups associated to commutative diagrams of short exact sequences of chain complexes is
as in the proof of Theorem 23.8, mutatis mutandi.

Definition 23.51. Two morphisms f, g : C → D of chain complexes are homotopic if there
exist morphisms hn : Cn → Dn+1 such that fn − gn = dn ◦ hn + hn−1 ◦ dn−1 for all n ≥ 0
(where h−1 := 0); this defines an equivalence relation f ∼ g, since (a) f ∼ f (take h = 0),
(b) if f ∼ g via h then g ∼ f via −h, and (c) if f1 ∼ f2 via h1 and f2 ∼ f3 via h2 then
f1 ∼ f3 via h1 + h2.

Lemma 23.52. Homotopic morphisms of chain complexes f, g : C → D induce they some
morphisms of homology groups Hn(C)→ Hn(D); we have Hn(f) = Hn(g) for all n ≥ 0.

Proof. Let [z] ∈ Hn(C) = Zn(C)/Bn(C) denote the homology class z ∈ Zn(C). We have

fn(z)− gn(z) = dn(hn(z)) + hn−1(dn−1(z)) = dn(hn(z)) + 0 ∈ Bn(D),

thus Hn(f)([z])−Hn(g)([z]) = 0. It follows that Hn(f) = Hn(g) for all n ≥ 0.

9This does not imply that the Ext and Tor functors defined below commute with arbitrary direct sums
and direct products; see Remarks 23.62 and 23.66.
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Definition 23.53. A cochain complex C is a sequence of R-module morphisms

0 −→ C0 d0−→ C1 d1−→ C2 d2−→ · · ·

with dn+1◦dn = 0. The nth cohomology group of C is theR-moduleHn(C) :=Zn(C)/Bn(C),
where Zn(C) := ker dn and Bn(C) := im dn−1 are the R-modules of cocycles and cobound-
aries; for n < 0 we define Cn = 0 and dn is the zero map. A morphism of cochain complexes
f : C → D consists of R-module morphisms fn : Cn → Dn that commute with coboundary
maps, yielding natural morphisms Hn(f) : Hn(C) → Hn(D) and a functors Hn(•) from
the category of cochain complexes to the category of abelian groups. Cochain complexes
form a category with kernels and cokernels, as well as direct sums and direct products
(coboundary maps are defined component-wise). Like Hn(•), the functor Hn(•) is additive
and commutes with arbitrary direct sums and direct products.

The set Hom(C,D) of morphisms of cochain complexes C → D forms an abelian group
under addition: (f + g)n = fn + gn. Morphisms of cochain complexes f, g : C → D are
homotopic if there are morphisms hn : Cn+1 → Dn such that fn−gn = hn ◦dn+dn−1 ◦hn−1
for all n ≥ 0 (where h−1 := 0); this defines an equivalence relation f ∼ g.10

Theorem 23.54. Associated to every short exact sequence of cochain complexes

0 −→ A
α−→ B

β−→ C −→ 0

is a long exact sequence of homology groups

· · · −→ Hn(A)
Hn(α)−→ Hn(B)

Hn(β)−→ Hn(C)
δn−→ Hn+1(A)

Hn+1(α)−→ Hn+1(B)
Hn+1(β)−→ Hn+1(C) −→ · · ·

and this association maps morphisms of short exact sequences of morphisms of long exact
sequences, that is, the family of functors Hn(•) is a cohomological δ-functor.

For n < 0 we have Hn(•) = 0, by definition, so this sequence begins with 0→ H0(A).

Proof. Adapt the proof of Theorem 23.50.

Lemma 23.55. Homotopic morphisms of cochain complexes f, g : C → D induce the same
morphisms of cohomology groups Hn(C)→ Hn(D); we have Hn(f) = Hn(g) for all n ≥ 0.

Proof. Adapt the proof of Lemma 23.52.

23.6.2 Projective resolutions

Recall that a projective R-module is an R-module P with the property that if π : M � N is a
surjective morphism of R-modules, every R-module morphism ϕ : P → N factors through π:

P

M N

←→ ϕ←→∃φ

←�π

Free modules are projective, since we can then fix an R-basis {ei} for P and define φ(ei) by
picking any element of π−1(ϕ(ei)) (note that the φ so constructed is in no way canonical).

10Note the order of composition in the homotopy relations for morphisms of chain/cochain complexes.
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Definition 23.56. Let M be an R-module. A projective resolution of M is an exact chain
complex P with P0 = M and Pn projective for all n > 0.

Every R-module has a projective resolution, since (as noted earlier), every R-module M
has a free resolution (we can always construct d0 : P1 �M by taking P1 to be free module
with basis M , then similarly construct d1 : P2 � ker d0, and so on).

Proposition 23.57. Let M and N be R-modules with projective resolutions P and Q,
respectively. Every R-module morphism α0 : M → N extends to a morphism α : P → Q of
chain complexes that is unique up to homotopy.

Proof. We inductively construct αn for n ≥ 1 (the base case is given). Suppose we have
constructed a commutative diagram of exact sequences

· · · Pn+1 Pn Pn−1 · · · P1 M 0

· · · Qn+1 Qn Pn−1 · · · Q1 N 0

←→dn+1 ←→dn
←→ αn

←→dn−1

←→ αn−1

←→dn−2 ←→d1

←→ ···

←→d0

←→ α1

←→ α0

←→

←→

←→dn+1 ←→dn ←→dn−1 ←→dn−2 ←→d1 ←→d0 ←→

Then dn−1 ◦ αn ◦ dn = αn−1 ◦ dn−1 ◦ dn = 0, so im(αn ◦ dn) ⊆ ker dn−1 = im dn. We now
define αn+1 : Pn+1 → Qn+1 as a pullback of the morphism αn ◦ dn : Pn+1 → im dn along the
surjection dn : Qn+1 → im dn such that dn ◦ αn+1 = αn ◦ dn.

Now suppose β : P → Q is another morphism of projective resolutions with β0 = α0,
and let γ = α − β. To show that α and β are homotopic it suffices to construct maps
hn : Pn → Qn+1 such that dn ◦ hn = γn − hn−1 ◦ dn−1 (where h−1 = d−1 = 0). We have
γ0 = α0 − β0 = 0, so let h0 := 0 and inductively assume dn ◦ hn = γn − hn−1 ◦ dn−1. Then

dn ◦ (γn+1 − hn ◦ dn) = dn ◦ γn+1 − (dn ◦ hn) ◦ dn = γn ◦ dn − (γn − hn−1 ◦ dn−1) ◦ dn = 0,

so im(γn+1−hn ◦dn) ⊆ Bn+1(Q). The R-module Pn+1 is projective, so we can pullback the
morphism (γn+1 − hn ◦ dn) : Pn+1 → Bn+1(Q) along the surjection dn+1 : Qn+1 → Bn+1(Q)
to obtain hn+1 satisfying dn+1 ◦ hn+1 = γn+1 − hn ◦ dn as desired.

23.6.3 Hom and Tensor

If M and N are R-modules, the set HomR(M,N) of R-module morphisms M → N forms
an abelian group under pointwise addition (so (f + g)(m) := f(m) + g(m)) that we may
view as a Z-module. For each R-module A we have a contravariant functor HomR(•, A)
that sends each R-module M to the Z-module

M∗ := HomR(M,A)

and each R-module morphism ϕ : M → N to the Z-module morphism

ϕ∗ : HomR(N,A)→ HomR(M,A)

f 7→ f ◦ ϕ.

To check this, note that

ϕ∗(f + g) = (f + g) ◦ ϕ = f ◦ ϕ+ g ◦ ϕ = ϕ∗(f) + ϕ∗(g),
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so ϕ∗ is a morphism of Z=modules (homomorphism of abelian groups), and

id∗M = (f 7→ f ◦ idM ) = (f 7→ f) = idM∗ ,

(φ ◦ ϕ)∗ = (f 7→ f ◦ φ ◦ ϕ) = (f 7→ f ◦ ϕ) ◦ (f 7→ f ◦ φ) = ϕ∗ ◦ φ∗,

thus HomR(•, A) is a contravariant functor.

Lemma 23.58. Let ϕ : M → N and φ : N → P be morphisms of R-modules. The sequence

M
ϕ−→ N

φ−→ P −→ 0

is exact if and only if for every R-module A the sequence

0 −→ HomR(P,A)
φ∗−→ HomR(N,A)

ϕ∗−→ HomR(M,A)

is exact.

Proof. (⇒): If φ∗(f) = f ◦ φ = 0 then f = 0, since φ is surjective, so φ∗ is injective.
We have ϕ∗ ◦ φ∗ = (ϕ ◦ φ)∗ = 0∗ = 0, so imφ∗ ⊆ kerϕ∗. Let φ−1 : P

∼→ N/ kerφ. Each
g ∈ kerϕ∗ vanishes on imϕ = kerφ inducing ḡ : N/ kerφ→ A with g = ḡ ◦ φ−1 ◦ φ ∈ imφ∗.

(⇐): For A = P/ imφ and π : P → P/ imφ the projective map, we have φ∗(π) = 0
and therefore π = 0, since φ∗ is injective, so P = imφ and φ is surjective. For A = P
we have 0 = (ϕ∗ ◦ φ∗)(idP ) = idP ◦φ ◦ ϕ = φ ◦ ϕ, so imϕ ⊆ kerφ. For A = N/ imϕ, and
π : N → N/ imϕ the projection map, we have π ∈ kerϕ∗ = imφ∗, thus π = φ∗(σ) = σ ◦ φ
for some σ ∈ Hom(P,A). Now π(kerφ) = σ(φ(kerφ)) = 0 implies kerφ ⊆ kerπ = imϕ.

Definition 23.59. A sequence of morphisms 0 → A
f→ B

g→ C → 0 is left exact if it is
exact at A and B (ker f = 0 and im f = ker g), and right exact if it is exact at B and C
(im f = ker g and im g = C). A functor that takes exact sequences to left (resp. right)
exact sequences is said to be left exact (resp. right exact).

Corollary 23.60. For any R-module A the functor HomR(•, A) is left exact.

Proof. This follows immediately from the forward implication in Lemma 23.58.

Corollary 23.61. For any R-module A, the functor HomR(•, A) is an additive functor.

Proof. See [6, Lemma 12.7.2] for a proof that this follows from left exactness; it is easy to
check directly in any case.

Remark 23.62. Corollary 23.61 implies that HomR(•, A) commutes with finite direct sums,
but it does not commute with infinite direct sums (direct products are fine).

Remark 23.63. The covariant functor HomR(A, •) that sends ϕ : M → N to (f 7→ ϕ ◦ f)
is also left exact.

If M is a right R-module and A is a left R-module, the tensor product M ⊗R A is an
abelian group consisting of sums of pure tensors m⊗ a with m ∈M and a ∈ A satisfying:

• m⊗ (a+ b) = m⊗ b+m⊗ b;
• (m+ n)⊗ a = m⊗ a+m⊗ a;

• mr ⊗ a = m⊗ ra.
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For each left R-module A we have a covariant functor • ⊗R A that sends each right R-
module M to the Z-module

M∗ := M ⊗R A,

and each right R-module morphism ϕ : M → N to the Z-module morphism

ϕ∗ : M ⊗R A→ N ⊗R A
m⊗ a 7→ ϕ(m)⊗ a

For each left R-module A we also have a covariant functor HomZ(A, •) that sends each
Z-module B to the right R-module HomZ(A,B) with ϕ(a)r := ϕ(ra) and each Z-module
morphism ϕ : B → C to the right R-module morphism Hom(A,B) → Hom(A,C) defined
by f 7→ ϕ ◦ f . Note that (ϕrs)(a) = ϕ(rsa) = (ϕr)(sa) = ((ϕr)s)(a), so HomZ(A,B) is
indeed a right R-module.

For any abelian group B there is a natural isomorphism of Z-modules

HomZ(M ⊗R A,B)
∼−→ HomR(M,HomZ(A,B)) (3)

ϕ 7→ (m 7→ (a 7→ ϕ(m⊗ a)))

(m⊗ a 7→ φ(m)(a))←[ φ

The functors • ⊗R A and HomZ(A, •) are thus adjoint functors. One can view (3) as a
universal property that determines M ⊗R A up to a unique isomorphism.

Lemma 23.64. For any left R-module the functor • ⊗R A is right exact.

Proof. Let

0 −→M
ϕ−→ N

φ−→ P −→ 0,

be an exact sequence of right R-modules. For any
∑

i pi ⊗ ai ∈ P∗ we can pick ni ∈ N
such that φ(ni) = pi and then φ(

∑
i ni ⊗ a) =

∑
i pi ⊗ a, thus φ∗ is surjective. For any∑

imi ⊗ ai ∈M ⊗R A we have φ∗(ϕ∗(
∑

imi ⊗ ai)) =
∑

i φ(ϕ(mi))⊗ ai =
∑

i 0⊗ ai = 0, so
imϕ∗ ⊆ kerφ∗. To prove imϕ∗ = kerφ∗ it suffices to show that N∗/ imϕ∗ ' P∗, since the
surjectivity of φ∗ implies N∗/ kerϕ∗ ' P∗. For every abelian group B the sequence

0 −→ HomR(P,HomZ(A,B))
φ∗−→ HomR(N,HomZ(A,B))

φ∗−→ HomR(M,HomZ(A,B))

is left exact (by applying Corollary 23.60 to the right R-module HomZ(A,B); note that the
corollary applies to both left and right R-modules). Equivalently, by (3),

0 −→ HomZ(P∗, B)
φ∗∗−→ HomZ(N∗, B)

ϕ∗∗−→ HomZ(M∗, B),

Applying Lemma 23.58 and the surjectivity of φ∗ yields the desired right exact sequence

M∗
ϕ∗−→ N∗

φ−→ P∗ −→ 0.

Corollary 23.65. For any left R-module A, the functor • ⊗R A is an additive functor.

Proof. See [6, Lemma 12.7.2] for a proof that this follows from right exactness; it is easy to
check directly in any case.

Remark 23.66. Corollary 23.65 implies that • ⊗R A commutes with finite direct sums,
and in fact it commutes with arbitrary direct sums (but not direct products).
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Remark 23.67. For any right R-module A the functor A⊗R • is also right exact.

If A is an R-module and C is a chain complex of R-modules, applying the functor
Hom(•, A) to the R-modules Cn and boundary maps dn : Cn+1 → Cn yields a cochain
complex C∗ of Z-modules Cn := C∗n and coboundary maps dn := d∗n,11 and morphisms
f : C → D of chain complexes become morphisms f∗ : C∗ → D∗ of cochain complexes. We
thus also have a contravariant left exact functor from the category of chain complexes to
the category of cochain complexes.

Proposition 23.68. Let A be an R-module and let •∗ denote the application of the functor
Hom(•, A). Let f, g : C → D be homotopic morphisms of chain complexes of R-modules.
Then f∗, g∗ : D∗ → C∗ are homotopic morphisms of cochain complexes of Z-modules.

Proof. The morphisms f and g are homotopic, so their exist morphisms hn : Cn → Dn+1

such that fn− gn = dn ◦ hn + hn−1 ◦ dn−1 for all n ≥ 0. Applying the contravariant functor
Hom(•, A) yields

f∗n − g∗n = h∗n ◦ d∗n + d∗n−1 ◦ h∗n−1,

where h∗n : Dn+1 → Cn for all n ≥ 0, with h−1 = 0. Thus f∗ and g∗ are homotopic.

Proposition 23.69. Let A be a left R-module and let •∗ denote the application of the
functor • ⊗R A. Let f, g : C → D be homotopic morphisms of chain complexes of right R-
modules. Then f∗, g∗ : C∗ → D∗ are homotopic morphisms of chain complexes of Z-modules.

Proof. The morphisms f and g are homotopic, so their exist morphisms hn : Cn → Dn+1

such that fn − gn = dn ◦ hn + hn−1 ◦ dn−1 for all n ≥ 0. Applying the covariant functor
• ⊗R A yields

fn∗ − gn∗ = dn∗ ◦ hn∗ + hn−1∗ ◦ dn−1∗,

where hn∗ : Cn+1 → Dn for all n ≥ 0, with h−1 = 0. Thus f∗ and g∗ are homotopic.

23.6.4 Ext and Tor functors

Definition 23.70. Let P be a projective resolution of an R-module M . The truncation
of P is the chain complex P with P 0 := P1 and Pn := Pn+1 for all n > 0 (which need not
be exact at P 0).

12 Any morphism of projective resolutions f : P → Q induces a morphism
f̄ : P → Q of their truncations with f̄n := fn+1.

Theorem 23.71. Let P , Q be projective resolutions of an R-module M , let A be an R-
module, and let •∗A denote application of HomR(•, A). Then Hn(P

∗
A) ' Hn(Q

∗
A) for n ≥ 0.

Proof. We will drop the subscript A in the proof to ease the notation.
Let f : P → Q and g : Q → P be extensions of the identity morphism idM given by

Proposition 23.57. The composition g ◦ f : P → P is an extension of idM , as is idP , so g ◦ f
is homotopic to idP , by Proposition 23.57. We have (g ◦f)0 = idM = (idP )0, which implies
that g ◦ f = ḡ ◦ f̄ and idP = idP are also homotopic (via the same homotopy; note h0 = 0
in the proof of Proposition 23.57). Similarly, f̄ ◦ ḡ and idQ are homotopic.

Applying HomR(•, A) yields homotopic morphisms f̄∗ : Q
∗ → P

∗
and ḡ∗ : P

∗ → Q
∗
, with

f̄∗ ◦ ḡ∗ homotopic to id∗
P

= idP ∗ and ḡ∗ ◦ f̄∗ homotopic to id∗
Q

= idQ∗ , by Proposition 23.68.

By Lemma 23.55, f̄∗ and ḡ∗ induce isomorphims Hn(P
∗
A) ' Hn(Q

∗
A) for all n ≥ 0.

11This justifies our indexing the boundary maps dn : Cn+1 → Cn rather than dn : Cn → Cn−1.
12The intuition is that the truncation of projective resolution of M can serve as a replacement for M .
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Definition 23.72. Let A and M be R-modules. ExtnR(M,A) is the abelian group Hn(P
∗
A)

uniquely determined by Theorem 23.71 using any projective resolution P of M . If α : A→ B
is a morphism of R-modules the map ϕ 7→ α ◦ ϕ induces a morphism of cochain complexes
P
∗
, A→ P

∗
B and morphisms ExtnR(M,α) : ExtnR(M,A)→ ExtnR(M,B) for each n ≥ 0.

We thus have a family of functors ExtnR(M, •) from the category of R-modules to the
category of abelian groups that is a cohomological δ-functor (by Theorem 23.54).

Lemma 23.73. Let M be an R-module. The functors ExtnR(M, •) are additive functors
and thus commute with finite direct sums and products.

Proof. This follows from Corollary 23.61 and the fact Hn(•) is an additive functor.

Lemma 23.74. For any two R-modules M and A we have Ext0R(M,A) ' HomR(M,A).

Proof. Let · · · → P2 → P1 →M → 0 be a projective resolution of M . Applying HomR(•, A)
yields an exact sequence 0→M∗ → P ∗1 → P ∗2 → · · · , and we observe that

Ext0R(M,A) = H0(P
∗
) = Z0(P

∗
)/B0(P

∗
) = ker(P ∗1 → P ∗2 )/ im(0→ P ∗1 ) 'M∗.

Theorem 23.75. Let P , Q be projective resolutions of a right R-module M . Let A be a left

R-module, and let •A∗ denote application of • ⊗R A. Then Hn(P
A
∗ ) ' Hn(Q

A
∗ ) for n ≥ 0.

Proof. We drop the superscript A in the proof to ease the notation.
Let f : P → Q and g : Q → P be extensions of the identity morphism idM given by

Proposition 23.57. As in the proof of Theorem 23.71, ḡ ◦ f̄ and idP are homotopic, as are
f̄ ◦ ḡ and idQ.

Applying • ⊗R A yields homotopic morphisms f̄∗ : P ∗ → Q∗ and ḡ∗ : Q∗ → P ∗, with
f̄∗ ◦ ḡ∗ homotopic to idP ∗ and f̄∗ ◦ ḡ∗ homotopic to idQ∗

. By Lemma 23.52, f̄∗ and ḡ∗ induce

isomorphisms Hn(P ∗) ' Hn(Q∗) for all n ≥ 0.

Definition 23.76. Let A a left R-module and let M be a right R-module. TorRn (M,A)

is the abelian group Hn(P
A
∗ ) uniquely determined by Theorem 23.75 using any projective

resolution P of M . If α : A→ B is a morphism of left R-modules the map x⊗a 7→ x⊗ϕ(a)

induces a morphism P
A
∗ → P

B
∗ and morphisms TorRn (M,α) : TorRn (M,A)→ ExtRn (M,B) for

each n ≥ 0. This yields a family of functors TorRn (M, •) from the category of left R-modules
to the category of abelian groups that is a homological δ-functor (by Theorem 23.50).

Lemma 23.77. Let M be a right R-module. The functors TorRn (M, •) are additive functors
and thus commute with finite direct sums and products.

Proof. This follows from Corollary 23.65 and the fact Hn(•) is an additive functor.

Lemma 23.78. For any two R-modules M and A we have TorR0 (M,A) 'M ⊗R A.

Proof. Let · · · → P2 → P1 → M → 0 be a projective resolution of M . Applying • ⊗R A
yields the exact sequence · · ·P2∗ → P1∗ →M∗ → 0, and we observe that

TorR0 (M,A) = H0(P ∗) = Z0(P ∗)/B0(P ∗) = ker(P1∗ → 0)/ im(P2∗ → P1∗) 'M∗,

Remark 23.79. One can also define ExtnR(M,A) and TorRn (M,A) using injective resolu-
tions; see [7, §2.7] for a proof that this yields the same results.

18.785 Fall 2019, Lecture #23, Page 23



References

[1] K. Brown, Cohomology of groups, Springer, 1982.

[2] G. J. Janusz, Algebraic number fields, 2nd ed., AMS, 1992.

[3] J. S. Milne, Class field theory , version 4.02, 2013.

[4] J.-P. Serre, Local fields, Springer, 1979.

[5] J.-P. Serre Galois cohomology , Springer, 1997.

[6] Stacks Project Authors, Stacks Project , http://stacks.math.columbia.edu.

[7] C. A. Weibel, An introduction to homological algebra, Cambridge Univ. Press, 1994.

18.785 Fall 2019, Lecture #23, Page 24

https://link.springer.com/book/10.1007/978-1-4684-9327-6
http://bookstore.ams.org/gsm-7
http://www.jmilne.org/math/CourseNotes/cft.html
https://doi.org/10.1007/978-1-4757-5673-9
https://doi.org/10.1007/978-3-642-59141-9
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
https://doi.org/10.1017/CBO9781139644136


18.785 Number theory I
Lecture #24

Fall 2019
11/27/2019

24 Artin reciprocity in the unramified case

Let L/K be an abelian extension of number fields. In Lecture 22 we defined the norm group
Tm
L/K

:= NL/K(ImL )Rm
K (see Definition 22.27) that we claim is equal to the kernel of the Artin

map ψm
L/K : ImK → Gal(L/K), provided that the modulus m is divisible by the conductor

of L (see Definition 22.24). We showed that Tm
L/K contains kerψm

L/K (Proposition 22.28),
and in Theorem 22.29 we proved the inequality

[ImK : Tm
L/K ] ≤ [L : K] = [ImK : kerψm

L/K ] (1)

(the equality follows from the surjectivity of the Artin map proved in Theorem 21.19). It
only remains to prove the reverse inequality

[ImK : Tm
L/K ] ≥ [L : K], (2)

which then yields an isomorphism

ImK/Tm
L/K

∼−→ Gal(L/K) (3)

induced by the Artin map. This result is known as the Artin reciprocity law.
In this lecture we will prove (2) for cyclic extensions L/K when the modulus m is trivial

(which forces L/K to be unramified), and then show that this implies the Artin reciprocity
law for all unramified abelian extensions.

24.1 Some cohomological calculations

If L/K is a finite Galois extension of global fields with Galois group G, then we can naturally
view any of the abelian groups L, L×, OL, O×L , IL, PL as G-modules.

When G = 〈σ〉 is cyclic we can compute the Tate cohomology groups of any of these
G-modules A, and their associated Herbrand quotients h(A). The Herbrand quotient is
defined as the ratio of the cardinalities of

Ĥ0(A) := Ĥ0(G,A) := coker N̂G = AG/ im N̂G =
A[σ − 1]

NG(A)
,

Ĥ0(A) := Ĥ0(G,A) := ker N̂G = AG[N̂G] =
A[NG]

(σ − 1)(A)
,

if both are finite. We can also compute Ĥ0(A) = Ĥ−1(A) ' Ĥ1(A) = H1(A) as 1-cocycles
modulo 1-coboundaries whenever it is convenient to do so. In the interest of simplifying the
notation we omit G from our notation whenever it is clear from context.

For the multiplicative groups O×L , L×, IL,PL, the norm element NG :=
∑n

i=1 σ
i corre-

sponds to the action of the field norm NL/K and ideal norm NL/K that we have previously
defined, provided that we identify the codomain of the norm map with a subgroup of its
domain. For the groups L× and O×L this simply means identifying K× and O×K as subgroups
via inclusion. For the ideal group IK we have a natural extension map IK ↪→ IL defined by
I 7→ IOL that restricts to a map PK ↪→ PL.1 Under this convention taking the norm of an

1The induced map ClK → ClL need not be injective; extensions of non-principal ideals may be principal.
Indeed, when L is the Hilbert class field every OK-ideal extends to a principal OL-ideal; this was conjectured
by Hilbert and took over 30 years to prove. You will get a chance to prove it on Problem Set 10.

Andrew V. Sutherland
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element of IL that is (the extension of) an element of IK corresponds to the map I 7→ I#G,
as it should, and IK is a subgroup of the G-invariants IGL .2

When A is multiplicative, the action of σ − 1 on a ∈ A is (σ − 1)(a) = σ(a)/a, but we
will continue to use the notation (σ− 1)(A) and A[σ− 1] to denote the image and kernel of
this action. Conversely, when A is additive, the action of NG corresponds to the trace map,
not the norm map. In order to lighten the notation, in this lecture we use N to denote both
the (relative) field norm NL/K and the ideal norm NL/K .

Theorem 24.1. Let L/K be a finite Galois extension with Galois group G := Gal(L/K),
and for any G-module A, let Ĥn(A) denote Ĥn(G,A) and let N denote the norm map NL/K .

(i) Ĥ0(L) and Ĥ1(L) are both trivial.

(ii) Ĥ0(L×) ' K×/N(L×) and Ĥ1(L×) is trivial.

Proof. (i) We have LG = K (by definition). The trace map T: L → K is not identically
zero (by Theorem 5.20, since L/K is separable), so it must be surjective, since it is K-linear.
Thus NG(L) = T(L) = K and Ĥ0(L) = K/K = 0.

Now fix α ∈ L with T(α) =
∑

τ∈G τ(α) = 1, consider a 1-cocycle f : G→ L (this means
f(στ) = f(σ) + σ(f(τ))), and put β :=

∑
τ∈G f(τ)τ(α). For all σ ∈ G we have

σ(β) =
∑
τ∈G

σ(f(τ))σ(τ(α)) =
∑
τ∈G

(f(στ)−f(σ))(στ)(α) =
∑
τ∈G

(f(τ)−f(σ))τ(α) = β−f(σ),

so f(σ) = β − σ(β). This implies f is a 1-coboundary, so Ĥ1(L) = H1(L) is trivial.
(ii) We have (L×)G = K×, so Ĥ0(L×) = K×/NGL

× = K×/N(L×). Consider any
nonzero 1-cocycle f : G → L× (now this means f(στ) = f(σ)σ(f(τ))). By Lemma 20.6,
α 7→

∑
τ∈G f(τ)τ(α) is not the zero map. Let β =

∑
τ∈G f(τ)τ(α) ∈ L× be a nonzero

element in its image. For all σ ∈ G we have

σ(β) =
∑
τ∈G

σ(f(τ))σ(τ(α)) =
∑
τ∈G

f(στ)f(σ)−1(στ)(x) = f(σ)−1
∑
τ∈G

f(τ)τ(α) = f(σ)−1β,

so f(σ) = β/σ(β). This implies f is a coboundary, so Ĥ1(L×) = H1(L×) is trivial.

Corollary 24.2 (Hilbert Theorem 90). Let L/K be a finite cyclic extension with Galois
group Gal(L/K) = 〈σ〉. Then N(α) = 1 if and only if α = β/σ(β) for some β ∈ L×.

Proof. By Theorem 23.37, Ĥ1(L×) ' Ĥ−1(L×) = Ĥ0(L×) = L×[NG]/(σ − 1)(L×), and
Theorem 24.1 implies L×[NG] = (σ − 1)(L×). The corollary follows.

Remark 24.3. “Hilbert Theorem 90” refers to Hilbert’s text on algebraic number the-
ory [1], although the result is due to Kummer. The result H1(Gal(L/K), L×) = 0 implied
by Theorem 24.1 is also often called Hilbert Theorem 90; it is due to Noether [2].

Our next goal is to compute the Herbrand quotient of O×L (in the case that L/K is a
finite cyclic extension of number fields). For this we will apply a variant of Dirichlet’s unit
theorem due to Herbrand, but first we need to discuss infinite places of number fields.

If L/K is a Galois extension of global fields, the Galois group Gal(L/K) acts on the
set of places w of L via the action w 7→ σ(w), where σ(w) is the equivalence class of the
absolute value defined by ‖α‖σ(w) := ‖σ(α)‖w. This action permutes the places w lying
above a given place v of K; if v is a finite place corresponding to a prime p of K, this is
just the usual action of the Galois group on the set {q|p}.

2Note that IG
L = IK only when L/K is unramified; see Lemma 24.8 below.
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Definition 24.4. Let L/K be a Galois extension of global fields and let w be a place of L.
The decomposition group of w is its stabilizer in Gal(L/K):

Dw := {σ ∈ Gal(L/K) : σ(w) = w}.

If w corresponds to a prime q of OL then Dw = Dq is also the decomposition group of q.

Now let L/K be a Galois extension of number fields. If we write L ' Q[x]/(f) then
we have a one-to-one correspondence between embeddings of L into C and roots of f in
C. Each embedding of L into C restricts to an embedding of K into C, and this induces
a map that sends each infinite place w of L to the infinite place v of K that w extends.
This map may send a complex place to a real place; this occurs when a pair of distinct
complex conjugate embeddings of L restrict to the same embedding of K (which must be a
real embedding). In this case we say that the place v (and w) is ramified in the extension
L/K, and define the ramification index ev := 2 when this holds (and put ev := 1 otherwise).
This notation is consistent with our notation ev := ep for finite places v corresponding to
primes p of K. Let us also define fv := 1 for v|∞ and put gv := #{w|v} so that the following
formula generalizing Corollary 7.5 holds for all places v of K:

evfvgv = [L : K].

Definition 24.5. For a Galois extension of number fields L/K we define the integers

e0(L/K) :=
∏
v-∞

ev, e∞(L/K) :=
∏
v|∞

ev, e(L/K) := e0(L/K)e∞(L/K).

Let us now write L ' K[x]/(g). Each embedding of K into C gives rise to [L : K]
distinct embeddings of L into C that extend it, one for each root of g (use the embedding
of K to view g as a polynomial in C[x], then pick a root of g in C). The transitive action
of Gal(L/K) on the roots of g induces a transitive action on these embeddings and their
corresponding places. Thus for each infinite place v of K the Galois group acts transitively
on {w|v}, and either every place w above v is ramified (this can occur only when v is
real and [L : K] is divisible by 2), or none are. It follows that each unramified place v of
K has [L : K] places w lying above it, each with trivial decomposition group Dw, while
each ramified (real) place v of K has [L : K]/2 (complex) places w lying above it, each
with decomposition group Dw of order 2 (its non-trivial element corresponds to complex
conjugation in the corresponding embeddings), and the Dw are all conjugate.

Theorem 24.6 (Herbrand unit theorem). Let L/K be a Galois extension of number
fields. Let w1, . . . , wr be the real places of L, let wr+1, . . . , wr+s be the complex places of L.
There exist ε1, . . . , εr+s ∈ O×L such that

(i) σ(εi) = εj if and only if σ(wi) = wj, for all σ ∈ Gal(L/K);

(ii) ε1, . . . , εr+s generate a finite index subgroup of O×L ;

(iii) ε1ε2 · · · εr+s = 1, and every relation among the εi is generated by this one.

Proof. Pick ε1, . . . , εr+s ∈ O×L such that ‖εi‖wj < 1 for i 6= j; the existence of such εi
follows from the strong approximation theorem that we will prove in the next lecture; the
product formula then implies ‖εi‖wi > 1. Now let αi :=

∏
σ∈Dwi

σ(εi) ∈ O×L . We have
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‖αi‖wi =
∏
σ∈Dwi

‖εi‖wi > 1 and ‖αi‖wj =
∏
σ∈Dwi

‖εi‖σ(wj) < 1, since σ ∈ Dwi fixes wi
and permutes the wj with j 6= i. Each αi is fixed by Dwi .

LetG := Gal(L/K). For i = 1, . . . , r+s, let r(i) := min{j : σ(wi) = wj for some σ ∈ G},
so that wr(i) is a distinguished representative of the G-orbit of wi. For i = 1, . . . , r + s let
βi := σ(αr(i)), where σ is any element of G such that σ(wr(i)) = wi. The value of σ(αr(i))

does not depend on the choice of σ because σ1(wr(i)) = σ2(wr(i)) if and only if σ−1
2 σ1 ∈ Dwr(i)

and αr(i) is fixed by Dwr(i)
. The βi then satisfy (i).

The βi also satisfy (ii): a product γj :=
∏
i6=j β

ni
i cannot be trivial because ‖γj‖wj < 1; in

particular, β1, . . . , βr+s−1 generate a subgroup ofO×L isomorphic to Zr+s−1 which necessarily
has finite index in O×L ' Zr+s−1 × µL (see Theorem 15.12). But we must have

∏
i β

ni
i = 1

for some tuple (n1, . . . , nr+s) ∈ Zr+s (with ni = nj whenever wi and wj lie in the same
G-orbit, since every σ ∈ G fixes 1). The set of such tuples spans a rank-1 submodule of
Zr+s from which we choose a generator (n1, . . . , nr+s) (by inverting some βi if necessary, we
can make all the ni positive if we wish). Then εi := βni

i satisfy (i), (ii), (iii) as desired.

Theorem 24.7. Let L/K be a cyclic extension of number fields with Galois group G = 〈σ〉.
The Herbrand quotient of the G-module O×L is

h(O×L ) =
e∞(L/K)

[L : K]
.

Proof. Let ε1, . . . , εr+s ∈ O×L be as in Theorem 24.6, and let A be the subgroup of O×L they
generate, viewed as a G-module. By Corollary 23.48, h(A) = h(O×L ) if either is defined,
since A has finite index in O×L , so we will compute h(A).

For each field embedding φ : K ↪→ C, let Eφ be the free Z-module with basis {ϕ|φ}
consisting of the n := [L : K] embeddings ϕ : L ↪→ C with ϕ|K = φ, equipped with the
G-action given by σ(ϕ) := ϕ◦σ. Let v be the infinite place of K corresponding to φ, and let
Av be the free Z-module with basis {w|v} consisting of places of L that extend v, equipped
with the G-action given by the action of G on {w|v}. Let π : Eφ → Av be the G-module
morphism sending each embedding ϕ|φ to the corresponding place w|v. Let m := #{w|v}
and define τ := σm; then τ is either trivial or has order 2, and in either case generates the
decomposition group Dw for all w|v (since G is abelian). We have an exact sequence

0→ kerπ −→ Eφ
π−→ Av → 0,

with kerπ = (τ − 1)Eφ. If v is unramified then kerπ = 0 and h(Av) = h(Eφ) = 1, since
Eφ ' Z[G] ' IndG(Z), by Lemma 23.43. Otherwise, order {w|v} = {w0, . . . , wm−1} so

kerπ = (τ − 1)Eφ =

 ∑
0≤i<m

ai(wi − wm+i) : ai ∈ Z

 ,

and observe that (kerπ)G = 0, since τ acts on π as negation, and (kerπ)G ' Z/2Z, since
(σ−1) kerπ = {

∑
ai(wi−wm+i) : ai ∈ Z with

∑
ai ≡ 0 mod 2} (which is killed by NG). So

in this case h(kerπ) = 1/2, and therefore h(Av) = h(Eφ)/h(kerπ) = 2, by Corollary 23.41,
and in every case we have h(Av) = ev, where ev ∈ {1, 2} is the ramification index of v.

Now consider the exact sequence of G-modules

0 −→ Z −→
⊕
v|∞

Av
ψ−→ A −→ 1
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where ψ sends each infinite place w1, . . . , wr+s of L to the corresponding ε1, . . . , εr+s ∈ A
given by Theorem 24.6 (each Av contains either n or n/2 of the wi in its Z-basis). The kernel
of ψ is the trivial G-module (

∑
iwi)Z ' Z, since we have ψ(

∑
iwi) =

∏
i εi = 1 and no other

relations among the εi, by Theorem 24.6. We have h(Z) = #G = [L : K], by Corollary 23.46,
and h(

⊕
Av) =

∏
h(Av) =

∏
ev, by Corollary 23.42, so h(A) = e∞(L/K)/[L : K].

Lemma 24.8. Let L/K be a cyclic extension of number fields with Galois group G. For
the G-module IL we have h0(IL) = 1 and h0(IL) = e0(L/K)[IK : N(IL)].

Proof. It is clear that I ∈ IGL ⇔ vσ(q)(I) = vq(I) for all primes q ∈ IL. If we put p := q∩OK ,

then for I ∈ IGL the value of vq(I) is constant on {q|p}, since G acts transitively on this
set. It follows that IGL consists of all products of ideals of the form (pOL)1/ep . Therefore
[IGL : IK ] = e0(L/K) and h0(IL) = [IGL : N(IL)] = e0(L/K)[IK : N(IL)] as claimed.

For each prime q|p we have N(q) = pfp (by Theorem 6.10). Thus if N(I) = OK then

N(
∏

q|p q
vq(I)) = pfp

∑
q|p vq(I) = OK , equivalently,

∑
q|p vq(I) = 0, for every prime p of K.

Order {q|p} as q1, . . . , qr so that qi+1 = σ(qi) and q1 = σ(qr), let ni := vqi(I), and define

Jp := qn1
1 qn1−n2

2 qn1−n2−n3
3 · · · qn1−n2−···−nr

r .

Then

σ(Jp)/Jp = q
n1−(n1−n2)
2 q

n1−n2−(n1−n2−n3)
3 · · · qn1−···−nr−1−(n1−···−nr)

r qn1−···−nr−n1
1

= qn2
2 qn3

3 · · · q
nr
r q−n2−···−nr

1 = qn2
2 qn3

3 · · · q
nr
r qn1

1 =
∏
q|p

qvq(I),

since n1 + · · · + nr = 0 implies n1 = −n2 − · · · − nr. It follows that I = σ(J)/J where
J :=

∏
p-m Jp, thus IL[NG] = (σ − 1)(IL) and h0(IL) = 1.

Theorem 24.9 (Ambiguous class number formula). Let L/K be a cyclic extension
of number fields with Galois group G. The G-invariant subgroup of the G-module ClL has
cardinality

#ClGL =
e(L/K)#ClK
n(L/K) [L : K]

,

where n(L/K) := [O×K : N(L×) ∩ O×K ] ∈ Z≥1.

Proof. The ideal class group ClL is the quotient of IL by its subgroup PL of principal
fractional ideals. We thus have a short exact sequence of G-modules

1 −→ PL −→ IL −→ ClL −→ 1.

The corresponding long exact sequence in (standard) cohomology begins

1 −→ PGL −→ IGL −→ ClGL −→ H1(PL) −→ 1,

since H1(IL) ' Ĥ0(IL) is trivial, by Lemma 24.8. Therefore

#ClGL = [IGL : PGL ] h1(PL). (4)

Using the inclusions PK ⊆ PGL ⊆ IGL we can rewrite the first factor on the RHS as

[IGL : PGL ] =
[IGL : PK ]

[PGL : PK ]
=

[IGL : IK ][IK : PK ]

[PGL : PK ]
=
e0(L/K)#ClK

[PGL : PK ]
, (5)
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where [IGL : IK ] = e0(L/K) follows from the proof of Lemma 24.8.
We now consider the short exact sequence

1 −→ O×L −→ L×
α7→(α)−→ PL −→ 1.

The corresponding long exact sequence in cohomology begins

1 −→ O×K −→ K× −→ PGL −→ H1(O×L ) −→ 1 −→ H1(PL) −→ H2(O×L ) −→ H2(L×), (6)

since H1(L×) is trivial, by Hilbert 90 (Corollary 24.2). We have K×/O×K ' PK , thus

[PGL : PK ] = h1(O×L ) =
h0(O×L )

h(O×L )
=
h0(O×L ) [L : K]

e∞(L/K)
,

by Theorem 24.7. Combining this identity with (4) and (5) yields

#ClGL =
e(L/K)#ClK

[L : K]
· h

1(PL)

h0(O×L )
. (7)

We can write the second factor on the RHS using the second part of the long exact sequence
in (6). Recall that H2(•) = Ĥ2(•) = Ĥ0(•), by Theorem 23.37, thus

H1(PL) ' ker
(
Ĥ0(O×L )→ Ĥ0(L×)

)
' ker(O×K/N(O×L )→ K×/N(L×)),

so h1(PL) = [O×K ∩N(L×) : N(O×L )]. We have h0(O×L ) = [O×K : N(O×L )], thus

h0(O×L )

h1(PL)
= [O×K : N(L×) ∩ O×K ] = n(L/K),

and plugging this into (7) yields the desired formula.

24.2 Proof of Artin reciprocity

We now have the essential ingredients in place to prove our desired inequality for unramified
cyclic extensions of number fields. We first record an elementary lemma.

Lemma 24.10. Let f : A → G be a homomorphism of abelian groups and let B be a
subgroup of A containing the kernel of f . Then A/B ' f(A)/f(B).

Proof. Apply the snake lemma to the commutative diagram and consider the cokernels.

ker f B f(B) 0

0 ker f A f(A) 0.

←↩ →

⇐⇐

←→f

←
↩

→

←→
←
↩→

←→ ←↩ → ←→f ←→

In the following theorem it is crucial that the extension L/K is completely unramified,
including at all infinite places of K; to emphasize this, let us say that an extension of
number fields L/K is totally unramified if e(L/K) = 1.

Theorem 24.11. Let L/K be a totally unramified cyclic extension of number fields. Then

[IK : N(IL)PK ] ≥ [L : K].
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Proof. We have

[IK : N(IK)PK ] =
[IK : PK ]

[N(IL)PK : PK ]
=

#ClK
[N(IL)PK : PK ]

.

The denominator on the RHS can be rewritten as

[N(IL)PK : PK ] = [N(IL) : N(IL) ∩ PK ] (2nd isomorphism theorem)

= [IL : N−1(PK)] (Lemma 24.10)

= [IL/PL : N−1(PK)/PL] (3rd isomorphism theorem)

= [ClL : ClL[NG]]

= #NG(ClL).

Now h0(ClL) = [ClGL : NG(ClL)], and applying Theorem 24.9 yields

[IK : N(IK)PK ] =
#ClK · h0(ClL)

#ClGL
=
h0(ClL)n(L/K)[L : K]

e(L/K)
≥ [L : K],

since e(L/K) = 1, and h0(ClL), n(L/K) ≥ 1.

For a totally unramified extension of number fields L/K, let TL/K := T
(1)
L/K = N(IL)PK .

Corollary 24.12 (Artin reciprocity law). Let L/K be a totally unramified cyclic
extension of number fields. Then [IK : TL/K ] = [L : K] and the Artin map induces an
isomorphism IK/TL/K ' Gal(L/K).

Proof. Theorems 22.29 and 24.11 imply [IK : TL/K ] = [L : K]. We have kerψL/K ⊆ TL/K
(Proposition 22.28), and [IK : kerψL/K ] = #Gal(L/K) = [L : K] = [IK : TL/K ], since ψL/K
is surjective (Theorem 21.19). Therefore kerψL/K = TL/K , and the Corollary follows.

Corollary 24.13. Let L/K be a totally unramified cyclic extension of number fields. Then
#ClGL = #ClK/[L : K] and the Tate cohomology groups of ClL are all trivial.

Proof. By the previous corollary and the proof of Theorem 24.11: we have n(L/K) = 1
and h0(ClL) = 1, and e(L/K) = 1, so #ClGL = #ClL/[L : K] by Theorem 24.9. We also
have h(ClK) = h0(ClL)/h0(ClL) = 1, since ClL is finite, by Lemma 23.43, so h0(ClL) = 1.
Thus Ĥ−1(ClL) and Ĥ0(ClL) are both trivial, and this implies that all the Tate cohomology
groups are trivial, by Theorem 23.37.

Corollary 24.14. Let L/K be a totally unramified cyclic extension of number fields. Then
every unit in O×K is the norm of an element of L.

Proof. We have n(L/K) = [O×K : N(L×) ∩ O×K ] = 1, so O×K = N(L×) ∩ O×K .

24.3 Generalizing to the non-cyclic case

Corollaries 24.13 and 24.14 are specific to unramified cyclic extensions, but Corollary 24.12
(Artin reciprocity) extends to all abelian extensions. Our goal in this section is to show
that for any modulus m for a number field K, if the Artin reciprocity law holds for all
finite cyclic extensions L/K with conductor dividing m, then it holds for all finite abelian
extensions L/K with conductor dividing m.
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Definition 24.15. Let m be a modulus for a number field K and let L/K be a finite
abelian extension ramified only at primes p|m. We say that L is a class field for m if
kerψm

L/K = Tm
L/K , where ψm

L/K : ImK → Gal(L/K) is the Artin map.

Remark 24.16. This definition is stated more strongly than is typical, but it is convenient
for our purposes; we have already proved the surjectivity of the Artin map and that Tm

L/K

contains kerψm
L/K so there is no reason to use an (apparently) weaker definition.

Lemma 24.17. Let m be a modulus for a number field K. If L1 and L2 are class fields
for m then so is their compositum L := L1L2.

Proof. We first note that L = L1L2 is ramified only at primes ramified in either L1 or L2

(since ramification indices are multiplicative in towers), so L is ramified only at primes p|m.
As in the proof of Theorem 21.18, a prime p - m splits completely in L if and only if
it splits completely in L1 and L2, which implies kerψm

L/K = kerψm
L1/K

∩ kerψm
L2/K

. The

norm map is transitive in towers, so if I = NL/K(J) then I = NL1/K(NL/L1
(J)) and

I = NL2/K(NL/L2
(J)), thus N(ImL ) ⊆ N(ImL1

)∩N(ImL2
) and therefore Tm

L/K ⊆ T
m
L1/K

∩Tm
L2/K

.
If L1 and L2 are class fields for m, then

Tm
L/K ⊆ T

m
L1/K

∩ Tm
L2/K

= kerψm
L1/K

∩ kerψm
L2

= kerψm
L/K ,

and kermL/K ⊆ Tm
L/K by Proposition 22.28, so Tm

L/K = kerψm
L/K and the lemma follows.

Corollary 24.18. Let m be a modulus for a number field K. If every finite cyclic extension
of K with conductor dividing m is a class field for m then so is every abelian extension of K
with conductor dividing m.

Proof. Let L/K be a finite abelian extension of conductor c|m. The conductor of any
subextension of L divides c and therefore m, by Lemma 22.26.

If we write G := Gal(L/K) ' H1 × · · ·Hr as a product of cyclic groups and define
Li = LH̄i where H̄i =

∏
j 6=iHj ⊆ G so that Gal(Li/K) ' G/H̄i ' Hi is cyclic, then

L = L1 · · ·Lr is a composition of linearly disjoint cyclic extensions of K, and it follows from
Lemma 24.17 that if the Li are all class fields for m, so is L.

24.4 Class field theory for unramified abelian extensions

For the trivial modulus m = (1), the three main theorems of class field theory stated in
Lecture 22 state that the following hold for every number field K:

• Existence: The ray class field K(1) exists.

• Completeness: Every unramified abelian extension of K is a subfield of K(1).

• Artin reciprocity: For every subextension L/K of K(1) we have kerψL/K = TL/K
and a canonical isomorphism IK/TL/K ' Gal(L/K).

We can now prove all of this, except for the existence of K(1). But if we replace K(1)
with the Hilbert class field H of K (the maximal unramified abelian extension of K) we
can prove an analogous series of statements, including that H is a finite extension of K and
that if K(1) exists it must be equal to H.

Theorem 24.19. Let K be a number field with Hilbert class field H. The following hold:
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• H/K is a finite extension with Gal(H/K) isomorphic to a quotient of ClK .

• K(1) exists if and only if Gal(H/K) ' ClK , in which case K(1) = H.

• Every unramified abelian extension of K is a subfield of H (Completeness).

• For every unramified abelian extension of K we have kerψL/K = TL/K and a canonical
isomorphism IK/TL/K ' Gal(L/K) (Artin reciprocity).

Proof. Corollaries 24.12 and 24.18 together imply the Artin reciprocity law for every un-
ramified abelian extension of K. In particular, every such extension L has Gal(L/K)
isomorphic to a quotient of ClK (since TL/K contains PK). Moreover, distinct unramified
abelian extensions L/K correspond to distinct quotients of ClK , since the primes that split
completely in K are precisely those that lie in the kernel of the Artin map, and this set of
primes uniquely determines L, by Theorem 21.18. It follows that there is a unique quotient
of ClK that corresponds to H, the compositum of all such fields. The theorem follows.
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25 The ring of adeles, strong approximation

25.1 Introduction to adelic rings

Recall that we have a canonical injection

Z ↪→ Ẑ := lim←−
n

Z/nZ '
∏
p

Zp,

that embeds Z into the product of its nonarchimedean completions. Each of the rings Zp
is compact, hence Ẑ =

∏
p Zp is compact (by Tychonoff’s theorem). If we consider the

analogous product
∏
pQp of the completions of Q, each of the local fields Qp is locally

compact (as is Q∞ = R), but the product
∏
pQp is not locally compact.

To see where the problem arises, recall that for any family of topological spaces (Xi)i∈I
(where the index set I is any set), the product topology on X :=

∏
Xi is defined as the

weakest topology that makes all the projection maps πi : X → Xi continuous; it is thus
generated by open sets of the form π−1i (Ui) with Ui ⊆ Xi open. Every open set in X is a
(possibly empty or infinite) union of open sets of the form∏

i∈S
Ui ×

∏
i/∈S

Xi,

with S ⊆ I finite and each Ui ⊆ Xi open (these sets form a basis for the topology on X). In
particular, every open U ⊆ X satisfies πi(U) = Xi for all but finitely many i ∈ I. Unless all
but finitely many of the Xi are compact, the space X cannot possibly be locally compact
for the simple reason that no compact set C in X contains a nonempty open set (if it did
then we would have πi(C) = Xi compact for all but finitely many i ∈ I). Recall that to be
locally compact means that for every x ∈ X there is an open U and compact C such that
x ∈ U ⊆ C.

To address this issue we want to take the product of the fields Qp (or more generally,
the completions of any global field) in a different way, one that yields a locally compact
topological ring. This is the motivation of the restricted product, a topological construction
that was invented primarily for the purpose of solving this number-theoretic problem.

25.2 Restricted products

This section is purely about the topology of restricted products; readers already familiar
with restricted products should feel free to skip to the next section.

Definition 25.1. Let (Xi) be a family of topological spaces indexed by i ∈ I, and let (Ui)
be a family of open sets Ui ⊆ Xi. The restricted product

∐∏
(Xi, Ui) is the topological space∐∏

(Xi, Ui) := {(xi) : xi ∈ Ui for almost all i ∈ I} ⊆
∏

Xi

with the basis of open sets

B :=
{∏

Vi : Vi ⊆ Xi is open for all i ∈ I and Vi = Ui for almost all i ∈ I
}
,

where almost all means all but finitely many.
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For each i ∈ I we have a projection map πi :
∐∏

(Xi, Ui) → Xi defined by (xi) 7→ xi;
each πi is continuous, since if Wi is an open subset of Xi, then π−1i (Wi) is the union of all
basic open sets

∏
Vi ∈ B with Vi = Wi, which is an open set.

As sets, we always have ∏
Ui ⊆

∐∏
(Xi, Ui) ⊆

∏
Xi,

but in general the restricted product topology on
∐∏

(Xi, Ui) is not the same as the subspace
topology it inherits from

∏
Xi; it has more open sets. For example,

∏
Ui is an open set in∐∏

(Xi, Ui), but unless Ui = Xi for almost all i (in which case
∐∏

(Xi, Ui) =
∏
Xi), it is not

open in
∏
Xi, and it is not open in the subspace topology on

∐∏
(Xi, Ui) because it does not

contain the intersection of
∐∏

(Xi, Ui) with any basic open set in
∏
Xi.

Thus the restricted product is a strict generalization of the direct product; the two
coincide if and only if Ui = Xi for almost all i. This is automatically true whenever the
index set I is finite, so only infinite restricted products are of independent interest.

Remark 25.2. The restricted product does not depend on any particular Ui. Indeed,∐∏
(Xi, Ui) =

∐∏
(Xi, U

′
i)

whenever U ′i = Ui for almost all i; note that the two restricted products are not merely
isomorphic, they are identical, both as sets and as topological spaces. It is thus enough to
specify the Ui for all but finitely many i ∈ I.

Each x ∈ X :=
∐∏

(Xi, Ui) determines a (possibly empty) finite set

S(x) := {i ∈ I : xi 6∈ Ui}.

Given any finite S ⊆ I, let us define

XS := {x ∈ X : S(x) ⊆ S} =
∏
i∈S

Xi ×
∏
i6∈S

Ui.

Notice that XS ∈ B is an open set, and we can view it as a topological space in two ways,
both as a subspace of X or as a direct product of certain Xi and Ui. Restricting the basis
B for X to a basis for the subspace XS yields

BS :=
{∏

Vi : Vi ⊆ πi(XS) is open and Vi = Ui = πi(XS) for almost all i ∈ I
}
,

which is the standard basis for the product topology, so the two topologies on XS coincide.
We have XS ⊆ XT whenever S ⊆ T , thus if we partially order the finite subsets S ⊆ I

by inclusion, the family of topological spaces {XS : S ⊆ I finite} with inclusion maps
{iST : XS ↪→ XT |S ⊆ T} forms a direct system, and we have a corresponding direct limit

lim−→
S

XS :=
∐

XS/ ∼,

which is the quotient of the coproduct space (disjoint union)
∐
XS by the equivalence

relation x ∼ iST (x) for all x ∈ S ⊆ T .1 This direct limit is canonically isomorphic to the
restricted product X, which gives us another way to define the restricted product; before
proving this let us recall the general definition of a direct limit of topological spaces.

1The topology on
∐

XS is the weakest topology that makes the injections XS ↪→
∐

XS continuous; its
open sets are disjoint unions of open sets in the XS . The topology on

∐
XS/ ∼ is the weakest topology that

makes the quotient map
∐

XS →
∐

XS/ ∼ continuous; its open sets are images of open sets in
∐

XS .
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Definition 25.3. A direct system (or inductive system) in a category is a family of objects
{Xi : i ∈ I} indexed by a directed set I (see Definition 8.7) and a family of morphisms
{fij : Xi → Xj : i ≤ j} such that each fii is the identity and fik = fjk ◦ fij for all i ≤ j ≤ k.

Definition 25.4. Let (Xi, fij) be a direct system of topological spaces. The direct limit
(or inductive limit) of (Xi, fij) is the quotient space

X = lim−→Xi :=
∐
i∈I

Xi/ ∼,

where xi ∼ fij(xi) for all i ≤ j. It is equipped with continuous maps φi : Xi → X that are
compositions of the inclusion maps Xi ↪→

∐
Xi and quotient maps

∐
Xi �

∐
Xi/ ∼ and

satisfy φi = φj ◦ fij for i ≤ j.
The topological space X = lim−→Xi has the universal property that if Y is another topo-

logical space with continuous maps ψi : Xi → Y that satisfy ψi = ψj ◦ fij for i ≤ j, then
there is a unique continuous map X → Y for which all of the diagrams

Xi Xj

X

Y

← →
fij

←

→
φi←

→
ψi

←→φj ←

→

ψj←→ ∃!

commute (this universal property defines the direct limit in any category with coproducts).

We now prove that that
∐∏

(Xi, Ui) ' lim−→XS as claimed above.

Proposition 25.5. Let (Xi) be a family of topological spaces indexed by i ∈ I, let (Ui) be a
family of open sets Ui ⊆ Xi, and let X :=

∐∏
(Xi, Ui) be the corresponding restricted product.

For each finite S ⊆ I define

XS :=
∏
i∈S

Xi ×
∏
i6∈S

Ui ⊆ X,

and inclusion maps iST : XS ↪→ XT , and let lim−→XS be the corresponding direct limit.
There is a canonical homeomorphism of topological spaces

ϕ : X
∼−→ lim−→XS

that sends x ∈ X to the equivalence class of x ∈ XS(x) ⊆
∐
XS in lim−→XS :=

∐
XS/ ∼,

where S(x) := {i ∈ I : xi 6∈ Ui}.

Proof. To prove that the map ϕ : X → lim−→XS is a homeomorphism, we need to show that
it is (1) a bijection, (2) continuous, and (3) an open map.

(1) For each equivalence class C ∈ lim−→XS :=
∐
XS/ ∼, let S(C) be the intersection of

all the sets S for which C contains an element of
∐
XS in XS . Then S(x) = S(C) for all

x ∈ C, and C contains a unique element for which x ∈ XS(x) ⊆
∐
XS (distinct x, y ∈ XS

cannot be equivalent). Thus ϕ is a bijection.
(2) Let U be an open set in lim−→XS =

∐
XS/ ∼. The inverse image V of U in

∐
XS

is open, as are the inverse images VS of V under the canonical injections ι : XS ↪→
∐
XS .

The union of the VS in X is equal to ϕ−1(U) and is an open set in X; thus ϕ is continuous.
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(3) Let U be an open set in X. Since the XS form an open cover of X, we can cover U
with open sets US := U ∩XS , and then

∐
US is an open set in

∐
XS . Moreover, for each

x ∈
∐
US , if y ∼ x for some y ∈

∐
XS then y and x must correspond to the same element

in U ; in particular, y ∈
∐
US , so

∐
US is a union of equivalence classes in

∐
XS . It follows

that its image in lim−→XS =
∐
XS/ ∼ is open.

Proposition 25.5 gives us another way to construct the restricted product
∐∏

(Xi, Ui):
rather than defining it as a subset of

∏
Xi with a modified topology, we can instead construct

it as a limit of direct products that are subspaces of
∏
Xi.

We now specialize to the case of interest, where we are forming a restricted product
using a family (Xi)i∈I of locally compact spaces and a family of open subsets (Ui) that
are almost all compact. Under these conditions the restricted product

∐∏
(Xi, Ui) is locally

compact, even though the product
∏
Xi is not unless the index set I is finite.

Proposition 25.6. Let (Xi)i∈I be a family of locally compact topological spaces and let
(Ui)i∈I be a corresponding family of open subsets Ui ⊆ Xi almost all of which are compact.
Then the restricted product X :=

∐∏
(Xi, Ui) is locally compact.

Proof. We first note that for each finite set S ⊆ I the topological space

XS :=
∏
i∈S

Xi ×
∏
i6∈S

Ui

can be viewed as a finite product of locally compact spaces, since all but finitely many Ui are
compact, and the product of these is compact (by Tychonoff’s theorem), hence locally com-
pact. A finite product of locally compact spaces is locally compact, since we can construct
compact neighborhoods as products of compact neighborhoods in each factor (in a finite
product, products of open sets are open and products of compact sets are compact); thus
the XS are locally compact, and they cover X (since each x ∈ X lies in XS(x)). It follows
that X is locally compact, since each x ∈ XS has a compact neighborhood x ∈ U ⊆ C ⊆ XS

that is also a compact neighborhood in X (the image of C under the inclusion map XS → X
is certainly compact, and U is open in X because XS is open in X).

25.3 The ring of adeles

Recall that for a global field K (a finite extension of Q or Fq(t)), we use MK to denote the
set of places of K (equivalence classes of absolute values), and for any v ∈ MK we use Kv

to denote the corresponding local field (the completion of K with respect to v). When v is
nonarchimedean we use Ov to denote the valuation ring of Kv, and for archimedean v we
define Ov := Kv.

2

Definition 25.7. Let K be a global field. The adele ring3 of K is the restricted product

AK :=
∐∏

(Kv,Ov)v∈MK
,

which we may view as a subset (but not a subspace!) of
∏
vKv; indeed

AK =
{

(av) ∈
∏

Kv : av ∈ Ov for almost all v
}
.

2Per Remark 25.2, as far as the topology goes it doesn’t matter how we define Ov at the finite number
of archimedean places, but we would like each Ov to be a topological ring, which motivates this choice.

3In French one writes adèle, but it is common practice to omit the accent when writing in English.
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For each a ∈ AK we use av to denote its projection in Kv; we make AK a ring by defining
addition and multiplication component-wise.

For each finite set of places S we have the subring of S-adeles

AK,S :=
∏
v∈S

Kv ×
∏
v 6∈S
Ov,

which is a direct product of topological rings. By Proposition 25.5, AK ' lim−→AK,S is the

direct limit of the S-adele rings, which makes it clear that AK is also a topological ring.4

The canonical embeddings K ↪→ Kv induce a canonical embedding

K ↪→ AK
x 7→ (x, x, x, . . .).

Note that for each x ∈ K we have x ∈ Ov for all but finitely many v. The image of K
in AK is the subring of principal adeles (which of course is also a field).

We extend the normalized absolute value ‖ ‖v of Kv (see Definition 13.17) to AK via

‖a‖v := ‖av‖v,

and define the adelic absolute value (or adelic norm)

‖a‖ :=
∏

v∈MK

‖a‖v ∈ R≥0

which we note converges to zero unless ‖a‖v = 1 for all but finitely many v, in which case
it is effectively a finite product.5 For ‖a‖ 6= 0 this is equal to the size of the MK-divisor
(‖a‖v) we defined in Lecture 15 (see Definition 15.1). For any nonzero principal adele a, we
have a ∈ K× and ‖a‖ = 1, by the product formula (Theorem 13.21).

Example 25.8. For K = Q the adele ring AQ is the union of the rings

R×
∏
p∈S

Qp ×
∏
p6∈S

Zp

where S varies over finite sets of primes (but note that the topology is the restricted product
topology, not the subspace topology in

∏
p≤∞Qp). We can also write AQ as

AQ =

a ∈ ∏
p≤∞

Qp : ‖a‖p ≤ 1 for almost all p

 .

Proposition 25.9. The adele ring AK of a global field K is locally compact and Hausdorff.

Proof. Local compactness follows from Proposition 25.6, since the local fields Kv are all
locally compact and all but finitely many Ov are valuation rings of a nonarchimedean local
field, hence compact (Ov = {x ∈ Kv : ‖x‖v ≤ 1} is a closed ball). The product space

∏
vKv

is Hausdorff, since each Kv is Hausdorff, and the topology on AK ⊆
∏
Kv is finer than the

subspace topology, so AK is also Hausdorff.

4By definition it is a topological space that is also a ring; to be a topological ring is a stronger condition
(the ring operations must be continuous), but this property is preserved by direct limits so all is well.

5For v -∞, if ‖a‖v < 1 then ‖a‖v ≤ 1/2, since ‖a‖v := q−v(av) for some prime power q.
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Proposition 25.9 implies that the additive group of AK (which is sometimes denoted
A+
K to emphasize that we are viewing it as a group rather than a ring) is a locally compact

group, and therefore has a Haar measure that is unique up to scaling, by Theorem 13.14.
Each of the completions Kv is a local field with a Haar measure µv, which we normalize as
follows:

• µv(Ov) = 1 for all nonarchimedean v;

• µv(S) = µR(S) for Kv ' R, where µR(S) is the Lebesgue measure on R;

• µv(S) = 2µC(S) for Kv ' C, where µC(S) is the Lebesgue measure on C ' R× R.

Note that the normalization of µv at the archimedean places is consistent with the measure
µ on KR ' Rr × Cs ' Rn induced by the canonical inner product on KR ⊆ KC that we
defined in Lecture 14 (see §14.2).

We now define a measure µ on AK as follows. We take as a basis for the σ-algebra of
measurable sets all sets of the form

∏
v Bv, where each Bv is a measurable set in Kv with

µv(Bv) <∞ such that Bv = Ov for almost all v (the σ-algebra is then generated by taking
countable intersections, unions, and complements in AK). We then define

µ

(∏
v

Bv

)
:=
∏
v

µv(Bv).

It is easy to verify that µ is a Radon measure, and it is clearly translation invariant since
each of the Haar measures µv is translation invariant and addition is defined component-
wise; note that for any x ∈ AK and measurable set B =

∏
v Bv the set x+B =

∏
v(xv+Bv)

is also measurable, since xv + Bv = Ov whenever xv ∈ Ov and Bv = Ov, and this applies
to almost all v. It follows from uniqueness of the Haar measure (up to scaling) that µ is a
Haar measure on AK which we henceforth adopt as our normalized Haar measure on AK .

We now want to understand the behavior of the adele ring AK under base change. Note
that the canonical embedding K ↪→ AK makes AK a K-vector space, and if L/K is any
finite separable extension of K (also a K-vector space), we may consider the tensor product

AK ⊗K L,

which is also an L-vector space. As a topological K-vector space, the topology on AK ⊗ L
is just the product topology on [L : K] copies of of AK (this applies whenever we take a
tensor product of topological vector spaces, one of which has finite dimension).

Proposition 25.10. Let L be a finite separable extension of a global field K. There is a
natural isomorphism of topological rings

AL ' AK ⊗K L

that makes the following diagram commute

L K ⊗K L

AL AK ⊗K L

←→∼

←→ ←→

←→∼
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Proof. On the RHS the tensor product AK ⊗K L is isomorphic to the restricted product∐∏
v∈MK

(Kv ⊗K L, Ov ⊗OK
OL).

Explicitly, each element of AK ⊗K L is a finite sum of elements of the form (av)⊗ x, where
(av) ∈ AK and x ∈ L, and there is a natural isomorphism of topological rings

AK ⊗K L
∼−→
∐∏

v∈MK

(Kv ⊗K L, Ov ⊗OK
OL)

(av)⊗ x 7→ (av ⊗ x).

Here we are using the general fact that tensor products commute with direct limits (re-
stricted direct products can be viewed as direct limits via Proposition 25.5).6

On the LHS we have AL :=
∐∏
w∈ML

(Lw,Ow). But note that Kv ⊗K L '
∏
w|v Lw,

by Theorem 11.23 and Ov ⊗OK
OL '

∏
w|vOw, by Corollary 11.26. These isomorphisms

preserve both the algebraic and the topological structures of both sides, and it follows that

AK ⊗K L '
∐∏

v∈MK

(Kv ⊗K L, Ov ⊗OK
OL) '

∐∏
w∈ML

(Lw,Ow) = AL

is an isomorphism of topological rings. The image of x ∈ L in AK ⊗K L via the canonical
embedding of L into AK ⊗K L is 1⊗ x = (1, 1, 1, . . .)⊗ x, whose image (x, x, x, . . .) ∈ AL is
equal to the image of x ∈ L under the canonical embedding of L into its adele ring AL.

Corollary 25.11. Let L be a finite separable extension of a global field K of degree n.
There is a natural isomorphism of topological K-vector spaces (and locally compact groups)

AL ' AK ⊕ · · · ⊕ AK

that identifies AK with the direct sum of n copies of AK , and this isomorphism restricts to
an isomorphism L ' K ⊕ · · · ⊕K of the principal adeles of AL with the n-fold direct sum
of the principal adeles of AK .

Theorem 25.12. For each global field L the principal adeles L ⊆ AL form a discrete
cocompact subgroup of the additive group of the adele ring AL.

Proof. Let K be the rational subfield of L (so K = Q or K = Fq(t)). It follows from
Corollary 25.11 that if the theorem holds for K then it holds for L, so we will prove the
theorem for K. Let us identify K with its image in AK (the principal adeles).

To show that the topological group K is discrete in the locally compact group AK , it
suffices to show that 0 is an isolated point. Consider the open set

U = {a ∈ AK : ‖a‖∞ < 1 and ‖a‖v ≤ 1 for all v <∞},

where ∞ denotes the unique infinite place of K (either the real place of Q or the place
corresponding to the nonarchimedean valuation v∞(f/g) = deg g − deg f of Fq(t)). The
product formula (Theorem 13.21) implies ‖a‖ = 1 for all a ∈ K× ⊆ AK , so U ∩K = {0}.

To prove that the quotient AK/K is compact, we consider the set

W := {a ∈ AK : ‖a‖v ≤ 1 for all v}.
6In general, tensor products do not commute with infinite direct products; there is always a natural map

(
∏

n An)⊗B →
∏

n(An ⊗B), but it need be neither a monomorphism or an epimorphism. This is another
motivation for using restricted direct products to define the adeles, so that base change works as it should.
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If we let U∞ := {x ∈ K∞ : ‖x‖∞ ≤ 1}, then

W = U∞ ×
∏
v<∞
Ov ⊆ AK,{∞} ⊆ AK

is a product of compact sets and therefore compact. We will show that W contains a
complete set of coset representatives for K in AK . This implies that AK/K is the image of
the compact set W under the (continuous) quotient map AK → AK/K, hence compact.

Let a = (av) be any element of AK . We wish to show that a = b + c for some b ∈ W
and c ∈ K, which we will do by constructing c ∈ K so that b = a− c ∈W .

For each v < ∞ define xv ∈ K as follows: put xv := 0 if ‖av‖v ≤ 1 (almost all v),
and otherwise choose xv ∈ K so that ‖av − xv‖v ≤ 1 and ‖xv‖w ≤ 1 for w 6= v. To show
that such an xv exists, let us first suppose av = r/s ∈ K with r, s ∈ OK coprime (note
that OK is a PID), and let p be the maximal ideal of Ov. The ideals pv(s) and p−v(s)(s)
are coprime, so we can write r = r1 + r2 with r1 ∈ pv(s) and r2 ∈ p−v(s)(s) ⊆ OK , so that
av = r1/s+ r2/s with v(r1/s) ≥ 0 and w(r2/s) ≥ 0 for all w 6= v. If we now put xv := r2/s,
then ‖av − xv‖v = ‖r1/s‖v ≤ 1 and ‖xv‖w = ‖r2/s‖w ≤ 1 for all w 6= v as desired. We
can approximate any a′v ∈ Kv by such an av ∈ K with ‖a′v − av‖v < ε and construct xv as
above so that ‖av−xv‖v ≤ 1 and ‖a′v−xv‖v ≤ 1 + ε; but for sufficiently small ε this implies
‖a′v − xv‖v ≤ 1, since the nonarchimedean absolute value ‖ ‖v is discrete.

Finally, let x :=
∑

v<∞ xv ∈ K and choose x∞ ∈ OK so that

‖a∞ − x− x∞‖∞ ≤ 1.

For a∞−x ∈ Q∞ ' R, we can take x∞ ∈ Z in the real interval [a∞−x−1, a∞−x+1). For
a∞ − x ∈ Fq(t)∞ ' Fq((t−1)) we can take x∞ ∈ Fq[t] to be the polynomial of least degree
for which a∞ − x− x∞ ∈ Fq[[t−1]].7

Now let c :=
∑

v≤∞ xv ∈ K ⊆ AK , and let b := a− c. Then a = b+ c, with c ∈ K, and
we claim that b ∈W . For each v <∞ we have xw ∈ Ov for all w 6= v and

‖b‖v = ‖a− c‖v =

∥∥∥∥∥∥av −
∑
w≤∞

xw

∥∥∥∥∥∥
v

≤ max (‖av − xv‖v,max({‖xw‖v : w 6= v})) ≤ 1,

by the nonarchimedean triangle inequality. For v =∞ we have ‖b‖∞ = ‖a∞ − c‖∞ ≤ 1 by
our choice of x∞, and ‖b‖v ≤ 1 for all v, so b ∈W as claimed and the theorem follows.

Corollary 25.13. For any global field K the quotient AK/K is a compact group.

Proof. As explained in Remark 14.4, this follows immediately (in particular, the fact that K
is a discrete subgroup of AK implies that it is closed and therefore AK/K is Hausdorff).

25.4 Strong approximation

We are now ready to prove the strong approximation theorem, an important result that has
many applications. We begin with an adelic version of the Blichfeldt-Minkowski lemma.

7Note that while Fq((t−1)) ' Fq((t)), in order to view K = Fq(t) as canonically embedded in its comple-
tion with respect to the absolute value |f |∞ = qdeg f we need to view K∞ as the field of Laurent series in a
uniformizer, which we may take to be t−1 (but not t), and the valuation ring of K∞ is Fq[[−t]] (not Fq[[t]]).
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Lemma 25.14 (Adelic Blichfeldt-Minkowski lemma). Let K be a global field. There
is a positive constant BK such that for any a ∈ AK with ‖a‖ > BK there exists a nonzero
principal adele x ∈ K ⊆ AK for which ‖x‖v ≤ ‖a‖v for all v ∈MK .

Proof. Let b0 := covol(K) be the measure of a fundamental region for K in AK under our
normalized Haar measure µ on AK (by Theorem 25.12, K is cocompact, so b0 is finite).
Now define

b1 := µ
({
z ∈ AK : ‖z‖v ≤ 1 for all v and ‖z‖v ≤ 1

4 if v is archimedean
})
.

Then b1 6= 0, since K has only finitely many archimedean places. Now let BK := b0/b1.
Suppose a ∈ AK satisfies ‖a‖ > BK . We know that ‖a‖v ≤ 1 for all almost all v, so

‖a‖ 6= 0 implies that ‖a‖v = 1 for almost all v. Let us now consider the set

T :=
{
t ∈ AK : ‖t‖v ≤ ‖a‖v for all v and ‖t‖v ≤ 1

4‖a‖v if v is archimedean
}
.

From the definition of b1 we have

µ(T ) = b1‖a‖ > b1BK = b0;

this follows from the fact that the Haar measure on AK is the product of the normalized
Haar measures µv on each of the Kv. Since µ(T ) > b0, the set T is not contained in any
fundamental region for K, so there must be distinct t1, t2 ∈ T with the same image in
AK/K, equivalently, whose difference x = t1− t2 is a nonzero element of K ⊆ AK . We have

‖t1 − t2‖v ≤


max(‖t1‖v, ‖t2‖v) ≤ ‖a‖v nonarch. v;

‖t1‖v + ‖t2‖v ≤ 2 · 14‖a‖v ≤ ‖a‖v real v;

(‖t1 − t2‖1/2v )2 ≤ (‖t1‖1/2v + ‖t2‖1/2v )2 ≤ (2 · 12‖a‖
1/2
v )2 ≤ ‖a‖v complex v.

Here we have used the fact that the normalized absolute value ‖ ‖v satisfies the nonar-
chimedean triangle inequality when v is nonarchimedean, ‖ ‖v satisfies the archimedean

triangle inequality when v is real, and ‖ ‖1/2v satisfies the archimedean triangle inequality
when v is complex. Thus ‖x‖v = ‖t1 − t2‖v ≤ ‖a‖v for all places v ∈MK as desired.

Remark 25.15. Lemma 25.14 should be viewed as an analog of Mikowski’s lattice point
theorem (Thoerem 14.12) and a generalization of Proposition 15.9. In Theorem 14.12 we
have a discrete cocompact subgroup Λ in a real vector space V ' Rn and a sufficiently large
symmetric convex set S that must contain a nonzero element of Λ. In Lemma 25.14 the
lattice Λ is replaced by K, the vector space V is replaced by AK , the symmetric convex
set S is replaced by the set

L(a) := {x ∈ AK : ‖x‖v ≤ ‖a‖v for all v ∈MK},

and sufficiently large means ‖a‖ > BK , putting a lower bound on µ(L(a)). Proposition 15.9
is actually equivalent to Lemma 25.14 in the case that K is a number field: use the MK-
divisor c := (‖a‖v) and note that L(c) = L(a) ∩K.

Theorem 25.16 (Strong Approximation). Let MK = S tT t{w} be a partition of the
places of a global field K with S finite. Fix av ∈ K and εv ∈ R>0 for each v ∈ S. There
exists an x ∈ K for which

‖x− av‖v ≤ εv for all v ∈ S,
‖x‖v ≤ 1 for all v ∈ T,

(note that there is no constraint on ‖x‖w).
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Proof. Let W = {z ∈ AK : ‖z‖v ≤ 1 for all v ∈ MK} as in the proof of Theorem 25.12.
Then W contains a complete set of coset representatives for K ⊆ AK , so AK = K + W .
For any nonzero u ∈ K ⊆ AK we also have AK = K + uW : given c ∈ AK write u−1c ∈ AK
as u−1c = a + b with a ∈ K and b ∈ W and then c = ua + ub with ua ∈ K and ub ∈ uW .
Now choose z ∈ AK such that

0 < ‖z‖v ≤ εv for v ∈ S, 0 < ‖z‖v ≤ 1 for v ∈ T, ‖z‖w > B
∏
v 6=w
‖z‖−1v ,

where B is the constant in the Blichfeldt-Minkowski Lemma 25.14 (this is clearly possible:
every z = (zv) with ‖zv‖v ≤ 1 is an element of AK). We have ‖z‖ > B, so there is a nonzero
u ∈ K ⊆ AK with ‖u‖v ≤ ‖z‖v for all v ∈MK .

Now let a = (av) ∈ AK be the adele with av given by the hypothesis of the theorem for
v ∈ S and av = 0 for v 6∈ S. We have AK = K + uW , so a = x + y for some x ∈ K and
y ∈ uW . Therefore

‖x− av‖v = ‖y‖v ≤ ‖u‖v ≤ ‖z‖v ≤

{
εv for v ∈ S,
1 for v ∈ T,

as desired.

Corollary 25.17. Let K be a global field and let w be any place of K. Then K is dense in
the restricted product

∐∏
v 6=w(Kv,Ov).

Remark 25.18. Theorem 25.16 and Corollary 25.17 can be generalized to algebraic groups;
see [1] for a survey.

References

[1] Andrei S. Rapinchuk, Strong approximation for algebraic groups, Thin groups and
superstrong approximation, MSRI Publications 61, 2013.
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26 The idele group, profinite groups, infinite Galois theory

26.1 The idele group

Let K be a global field. Having introduced the ring of adeles AK in the previous lecture, it
is natural to ask about its unit group

A×K = {(av) ∈ AK : av ∈ K×v for all v ∈MK , and av ∈ O×v for almost all v ∈MK}.

Here O×v := K×v ∩Ov is the unit group of the valuation ring of Kv when v is nonarchimedean
and isomorphic to R× or C× when v is archimedean. As noted in Lecture 25, the definition
of AK does not actually depend on our choice of Ov at the finitely many archimedean places
of K, but the choice we made ensures that every O×v is a topological group.

However, as a subspace of AK , the unit group A×K is not a topological group. Indeed,
the inversion map a 7→ a−1 is not continuous.

Example 26.1. Consider K = Q and for each prime p let a(p) = (1, . . . , 1, p, 1, . . .) ∈ AQ
be the adele with a(p)p = p and a(p)q = 1 for q 6= p. Every basic open set U about 1 in AQ
has the form

U =
∏
v∈S

Uv ×
∏
V 6∈S
Ov,

with S ⊆ MQ finite and 1v ∈ Uv, and it is clear that U contains a(p) for all sufficiently
large p. It follows that limp→∞ a(p) = 1 in the topology of AQ. But notice that U does
not contain a(p)−1 for any sufficiently large p, so limp→∞ a(p)−1 6= 1−1 in AQ. Thus the
function a→ a−1 is not continuous in the subspace topology for A×K .

This problem is not specific to rings of adeles. For a topological ring R there is in
general no reason to expect its unit group R× ⊆ R to be a topological group in the subspace
topology. One notable exception is when R is a subring of a topological field (the definition
of which requires inversion to be continuous), as is the case for the unit group O×K ; this
explains why we have not encountered this problem before now. But the ring of adeles is
not naturally contained in any topological field (note that it is not an integral domain).

There is a standard solution to this problem: give the group R× the weakest topology
that makes it a topological group. This is done by embedding R× in R×R via the map

φ : R× → R×R
r 7→ (r, r−1).

We now declare φ to be a homeomorphism; that is, we endow R× with the topology matching
the subspace topology of φ(R×) ⊂ R×R. The inversion map r 7→ r−1 is continuous in this
topology because it is equal to composition of φ with the projection map R×R→ R onto
its second coordinate, both of which are continuous maps.

We now consider this construction in the case of A×K . The implied topology on A×K has
a basis of open sets of the form

U ′ =
∏
v∈S

Uv ×
∏
v 6∈S
O×v

where Uv ⊆ K×v and S ⊆ MK is finite. To see this, note that in terms of the embedding
φ : A×K → AK × AK defined above, each φ(a) = (a, a−1) lies in a product U × V of basic
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open sets U, V ⊆ AK , and this forces both a and a−1 to lie in Ov, hence in O×v , for almost
all v. The open sets U ′ are precisely the open sets in the restricted product

∐∏
(K×v ,O×v ).

This leads to the following definition.

Definition 26.2. Let K be a global field. The idele group of K is the topological group

IK :=
∐∏

v
(K×v ,O×v )

with multiplication defined component-wise, which we view as the subgroup A×K of AK
endowed with the restricted product topology rather than the subspace topology. The
canonical embedding K ↪→ AK restricts to a canonical embedding K× ↪→ IK , and we define
the idele class group CK := IK/K×, a topological group.

Remark 26.3. In the literature one finds the notations IK and A×K used interchangeably;
they both denote the idele group defined above. But in this lecture we will temporarily use
the notation A×K to denote the unit group of the ring AK in the subspace topology (which
is not a topological group).

Example 26.4. Let us again consider the sequence (a(p)) defined in Example 26.1. This
sequence lies in A×Q and converges to 1 ∈ A×Q under the subspace topology. But this
sequence does not converge to 1 in the topology of IQ. Indeed, consider the basic open
set

∏
vO×v =

∏
p Z×p × R× of IQ. None of the a(p) = (1, . . . , 1, p, 1, . . .) lie in this open

neighborhood of 1, so the sequence (a(p)) cannot converge to 1 in IQ (which means it
cannot converge at all: if it converged to x 6= 1 in IQ it would converge to x 6= 1 in
A×Q ⊆ AQ, which we know is not the case). The counterexample to the continuity of the

inversion map x 7→ x−1 in A×Q is removed in IQ by adding more open sets to the topology;
this makes it easier for maps to be continuous and harder for sequences to converge.

We now define a surjective homomorphism

IK → IK
a 7→

∏
pvp(a)

where the product ranges over primes p of K and vp(a) := vp(av), where v is the equivalence
class of the p-adic absolute value ‖ ‖p. The composition

K× ↪→ IK � IK

has image PK , the subgroup of principal fractional ideals; we thus have a surjective homo-
morphism of the idele class group CK = IK/K× onto the ideal class group ClK = IK/PK
and a commutative diagram of exact sequences:

1 K× IK CK 1

1 PK IK ClK 1

←→ ←→

←�

←→

←�

←→

←�

←→ ←→ ←→ ←→

Proposition 26.5. Let K be a global field. The idele group IK is a locally compact group.

Proof. It is clear that IK is Hausdorff, since its topology is finer than the topology of
A×K ⊆ AK , which is Hausdorff by Proposition 25.9. For each nonarchimedean place v, the
set O×v = {x ∈ K×v : ‖x‖v = 1} is a closed subset of the compact set Ov, hence compact.
This applies to almost all v ∈ MK , and the K×v are all locally compact, so the restricted
product

∐∏
(K×v ,O×v ) = IK is locally compact, by Proposition 25.6.
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Proposition 26.6. Let K be a global field. Then K× is a discrete subgroup of IK .

Proof. We have K× ↪→ K × K ⊆ AK × AK . By Theorem 25.12, K is a discrete subset
of AK , and it follows that K × K is a discrete subset of AK × AK . The image of K× in
AK ×AK lies in the image of A×K ↪→ AK ×AK and in the discrete image of K ↪→ AK ×AK ,
and it follows that K× is discrete in A×K and therefore in IK , since having a finer topology
only makes it easier for a set to be discrete.

We proved last time that K is a discrete cocompact subgroup of AK , so it is natural to
ask whether K× is a cocompact in A×K or IK . The answer is no, K× is not a cocompact
subgroup of IK , thus the idele class group CK , while locally compact, is not compact.

Recall that for a number field K, the unit group O×K is not a cocompact subgroup of
K×R because Log(O×K) is not a (full) lattice in Rr+s ' Log(K×R ); it lies in the trace zero
hyperplane Rr+s0 (see Proposition 15.11). In order to get a cocompact subgroup we need to
restrict IK to a subgroup that corresponds to the trace zero hyperplane.

We have a continuous homomorphism of topological groups

‖ ‖ : IK → R×>0

a 7→ ‖a‖

where ‖a‖ :=
∏
v ‖a‖v is the adelic norm defined in the previous lecture. We have ‖a‖ > 0

for a ∈ IK , since av ∈ O×v for almost all v: this implies that ‖a‖v = 1 for almost all v and
the product

∏
v ‖a‖v is effectively a finite product, and it is nonzero because av ∈ K×v is

nonzero for all v ∈MK .

Definition 26.7. Let K be a global field. The group of 1-ideles is the topological group

I1K := ker ‖ ‖ = {a ∈ IK : ‖a‖ = 1},

which we note contains K×, by the product formula (Theorem 13.21).

A useful feature of the group of 1-ideles is that, unlike the group of ideles, its topology
is the same as the subspace topology it inherits from AK .

Lemma 26.8. The group of 1-ideles I1K is a closed subset of AK and IK , and the two
subspace topologies on I1K coincide.

Proof. We first show that I1K is closed in AK , and therefore also in IK , since it has a finer
topology. Consider any x ∈ AK− I1K . We will construct an open neighborhood Ux of x that
is disjoint from I1K . The union of the Ux is then the open complement of the closed set I1K .
For each ε > 0, finite S ⊆MK , and x ∈ AK we define

Uε(x, S) := {u ∈ AK : ‖u− x‖v < ε for v ∈ S and ‖u‖v ≤ 1 for v 6∈ S},

which is a basic open set of AK (a product of open sets Uv for v ∈ S and Ov for v 6∈ S).
The case ‖x‖ < 1. Let S be a finite set containing the archimedean places v ∈ MK

and all v for which ‖x‖v > 1, such that
∏
v∈S ‖x‖v < 1: such an S exists since ‖x‖ < 1 and

‖x‖v ≤ 1 for almost all v. For all sufficiently small ε > 0 the set Ux := Uε(x, S) is an open
neighborhood of x disjoint from I1K because every y ∈ Ux must satisfy ‖y‖ < 1.

The case ‖x‖ > 1. Let B be twice the product of all the ‖x‖v greater than 1. Let S
be the finite set containing the archimedean places v ∈ MK , all nonarchimedean v with
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residue field cardinality less than 2B, and all v for which ‖x‖v > 1. For all sufficiently small
ε > 0 the set Ux := Uε(x, S) is an open neighborhood of x disjoint from I1K because for
every y ∈ Ux, either ‖y‖v = 1 for all v 6∈ S, in which case ‖y‖ > 1, or ‖y‖v < 1 for some
v 6∈ S, in which case ‖y‖v < 1/(2B) and ‖y‖ < 1.

This proves that I1K is closed in AK , and therefore also in IK . To prove that the subspace
topologies coincide, it suffices to show that for every x ∈ I1K and open U ⊆ IK containing x
there exists open sets V ⊆ IK and W ⊆ AK such that x ∈ V ⊆ U and V ∩I1K = W ∩I1K ; this
implies that every neighborhood basis in the subspace topology of I1K ⊆ IK is a neighborhood
basis in the subspace topology of I1K ⊆ AK (the latter is a priori coarser than the former).

So consider any x ∈ I1K and open neighborhood U ⊆ IK of x. Then U contains a basic
open set

V = {u ∈ AK : ‖u− x‖v < ε for v ∈ S and ‖u‖v = 1 for v 6∈ S},
for some ε > 0 and finite S ⊆MK (take S = {v ∈MK : ‖x‖ 6= 1} and ε > 0 small enough).
If we now put W := Uε(x, S) then x ∈ V ⊆ U and V ∩ I1K = W ∩ I1K as desired.

Theorem 26.9. For any global field K, the group K× is a discrete cocompact subgroup of
the group of 1-ideles I1K .

Proof. By Proposition 26.6, K× is discrete in IK , and therefore discrete in the subspace I1K .
As in the proof of Theorem 25.12, to prove that K× is cocompact in I1K it suffices to

exhibit a compact set W ⊆ AK for which W ∩ I1K surjects onto I1K/K× under the quotient
map (here we are using Lemma 26.8: I1K is closed so W ∩ I1K is compact).

To construct W we first choose a ∈ AK such that ‖a‖ > BK , where BK is the Blichfeldt-
Minkowski constant in Lemma 25.14, and let

W := L(a) = {x ∈ AK : ‖x‖v ≤ ‖a‖v for all v ∈MK}.

Now consider any u ∈ I1K . We have ‖u‖ = 1, so ‖ au‖ = ‖a‖ > BK , and by Lemma 25.14
there is a z ∈ K× for which ‖z‖v ≤

∥∥ a
u

∥∥
v

for all v ∈ MK . Therefore zu ∈ W . Thus every
u ∈ I1K can be written as u = z−1 · zu with z−1 ∈ K× and zu ∈ W ∩ I1K . Thus W ∩ I1K
surjects onto I1K/K× under the quotient map I1K → I1K/K×, which is continuous, and it
follows that I1K/K× is compact.

Definition 26.10. For a global field K the compact group C1
K := I1K/K× is the norm-1

idele class group.

Remark 26.11. When K is a function field the norm-1 idele class group C1
K is totally

disconnected, in addition to being a compact group, and thus a profinite group.

26.2 Profinite groups

In order to state the main theorems of class field theory in our adelic/idelic setup, rather
than considering each finite abelian extension L of a global field K individually, we prefer
to work in Kab, the compositum of all finite abelian extensions of K. This requires us to
understand the infinite Galois group Gal(Kab/K), which is an example of a profinite group.

Definition 26.12. A profinite group is a topological group that is an inverse limit of finite
groups with the discrete topology. Given any topological group G, we can construct a
profinite group by taking the profinite completion

Ĝ := lim←−
N

G/N ⊆
∏
N

G/N
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where N ranges over finite index open normal subgroups, ordered by containment.1 If we
are given a group G without a specified topology, we can make it a topological group by
giving it the profinite topology. This is the weakest topology that makes every finite quotient
discrete and is obtained by taking all cosets of finite-index normal subgroups as a basis.

The profinite completion of G is (by construction) a profinite group, and it comes
equipped with a natural homomorphism φ : G→ Ĝ that sends each g ∈ G to the sequence
of its images (gN ) in the discrete finite quotients G/N , which we may view as an element of∏
N G/N . The homomorphism φ is not necessarily injective; this occurs if and only if the

intersection of all finite-index open normal subgroups of G is the trivial group (such a G is
said to be residually finite), but we always have the following universal property for inverse
limits. For every continuous homomorphism ϕ : G → H with H a profinite group, there is
a unique continuous homomorphism that makes the following diagram commute

G Ĝ

H

←→φ

←

→ϕ

←→ ∃!

There is much one can say about profinite groups but we shall limit ourselves to a few
remarks and statements of the main results we need, deferring most of the proofs to Problem
Set 11. See [4] for a comprehensive treatment of profinite groups.

Remark 26.13. Taking inverse limits in the category of topological groups is the same thing
as taking the inverse limits in the categories of topological spaces and groups independently:
the topology is the subspace topology in the product, and the group operation is the group
operation in the product (defined component-wise). This might seem obvious, but the same
statement does not apply to direct limits, where one must compute the limit in the category
of topological groups, otherwise the group operation in the direct limit of the groups is not
necessarily continuous under the direct limit topology; see [5].2

Remark 26.14. The profinite completion of G as a topological group is not necessarily the
same thing as the profinite completion of G as a group if we forget its topology; this depends
on whether the original topology on G contains the profinite topology or not. In particular,
a profinite group need not equal to its profinite completion as a group; the group Gal(Q/Q)
endowed with the Krull topology is an example (see below). Profinite groups that are
isomorphic to their profinite completions as groups are said to be strongly complete; this is
equivalent to requiring every finite index subgroup to be open (see Corollary 26.19 below). It
is known that if G is finitely generated as a topological group (meaning it contains a finitely
generated dense subgroup), then G is strongly complete [3]. This applies, for example, to
Gal(F̄q/Fq) for any finite field Fq, since the q-power Frobenius automorphism generates a
dense subgroup (it is thus a topological generator).

Remark 26.15. For suitable restricted types of finite groups C (for example, all finite cyclic
groups, or all finite p-groups for some fixed prime p), one can similarly define the notion of
a pro-C group and the pro-C completion of a group by constraining the finite groups in the
inverse system to lie in C. One can also define profinite rings or pro-C rings.

1Recall that an inverse system has objects Xi and morphisms Xi ← Xj for i ≤ j. Here we have objects
G/Ni and morphisms G/Ni ← G/Nj for i ≤ j; we want the indices ordered so that i ≤ j whenever Ni

contains Nj ; containment induces a canonical morphism g +Ni ←[ g +Nj on the quotients.
2For countable direct systems of locally compact groups this issue does not arise [5, Thm. 2.7].
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Example 26.16. Here are a few examples of profinite completions:

1. The profinite completion of any finite group G is isomorphic to G with the discrete
topology; the natural map G→ Ĝ is an isomorphism.

2. The profinite completion of Z is Ẑ := lim←−n Z/nZ =
∏

Zp, where the indices n are

ordered by divisibility; the natural map Z→ Ẑ is injective but not surjective.

3. The profinite completion of Q is trivial because Q has no finite index subgroups other
than itself. The natural map Q→ Q̂ = {1} is surjective but not injective.

Lemma 26.17. Let G be a topological group with profinite completion Ĝ. The image of G
under the natural map φ : G→ Ĝ is dense in Ĝ.

Proof. See Problem Set 11.

We now give a topological characterization of profinite groups that can serve as an
alternative definition.

Theorem 26.18. A topological group is profinite if and only if it is a totally disconnected
compact group.

Proof. See Problem Set 11.

Corollary 26.19. Let G be a profinite group. Then G is naturally isomorphic to its profinite
completion. In fact,

G ' lim←−G/U,

where U ranges over open normal subgroups (ordered by containment).
However, G is isomorphic to its profinite completion as a group (in other words, strongly

complete) if and only if every finite index subgroup of G is open.

Proof. See Problem Set 11 for the first statement. For the second statement, if every finite
index subgroup of G is open then every finite-index normal subgroup is open, meaning
that the topology on G is finer than the profinite topology, and we get the same profinite
completion under both topologies.

Conversely, if G has a finite index subgroup H that is not open, then no subgroup
of H is open (since H is the union of the cosets of any of its subgroups); in particular, the
intersection of all the conjugates of H, which is a normal subgroup N , is not open in G, nor
are any of its subgroups. If the topological group G is isomorphic to its profinite completion
Ĝ as a group, then by the universal property of the profinite completion the natural map
φ : G → Ĝ is an isomorphism, but the image of N under φ is an open subgroup of Ĝ by
construction, which is a contradiction.

26.3 Infinite Galois theory

The key issue that arises when studying Galois groups of infinite algebraic extensions (as
opposed to finite ones) is that the Galois correspondence (the inclusion reversing bijection
between subgroups and subextensions) fails spectacularly. As you proved on Problem Set 5
in the case Gal(Fq/Fq) ' Ẑ '

∏
p Zp, this happens for a simple reason: there are too many

subgroups. For a more extreme example, the absolute Galois group of Q has uncountably
many subgroups of index 2 (all of which are necessarily normal) but Q has only countably
many quadratic extensions, see [2, Aside 7.27].
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Thus not all subgroups of an infinite Galois group Gal(L/K) correspond to subextensions
of L/K. We are going to put a topology on Gal(L/K) that distinguishes those that do.

Lemma 26.20. Let L/K be a Galois extension with Galois group G = Gal(L/K), If F/K
is a normal subextension of L/K, then H = Gal(L/F ) is a normal subgroup of G with fixed
field F , and we have an exact sequence

1→ Gal(L/F )→ Gal(L/K)→ Gal(F/K)→ 1,

where the first map is inclusion, the second map is induced by restriction, and we have

G/H ' Gal(F/K).

This lemma is a list of things we already know to be true for finite Galois extensions,
the point is simply to verify that they also hold for infinite Galois extensions; this seems
prudent given the aforementioned failure of the Galois correspondence.

Proof. If F/K is a normal subextension of L/K then the restriction map σ 7→ σ|F defines a
homomorphism Gal(L/K)→ Gal(F/K) whose kernel is a normal subgroup H = Gal(L/F ).
The fixed field ofH contains F by definition, and it must be equal to F : if we had α ∈ LH−F
we could construct an element of H that sends α to a distinct root α′ 6= α of its minimal
polynomial f over F (this defines an element of Gal(E/F ), where E is the splitting field
of f , which can be extended to Gal(L/F ) = H by embedding L in an algebraic closure and
applying Theorem 4.9). The restriction map is surjective because any σ ∈ Gal(F/K) can
be extended to Gal(L/K), by Theorem 4.9, thus the sequence in the lemma is exact, and
G/H ' Gal(F/K) follows.

Unlike the situation for finite Galois extensions, it can happen that a normal subgroup H
of Gal(L/K) with fixed field F is not equal to Gal(L/F ); it must be contained in Gal(L/F ),
but it could be a proper subgroup. This is exactly what happens for all but a countable
number of the uncountably many index 2 subgroups H of G = Gal(Q/Q); the fixed field of
H is Q but H ( G is not the Galois group of Q/Q, nor is the the Galois group of Q/K for
any subextension K/Q. It is thus necessary to distinguish the subgroups of Gal(L/K) that
are actually Galois groups of a subextension. This is achieved by putting an appropriate
topology on the Galois group.

Definition 26.21. Let L/K be a Galois extension with Galois group G := Gal(L/K). The
Krull topology on G has the basis consisting of all cosets of subgroups HF := Gal(L/F ),
where F ranges over finite normal extensions of K in L.

Under the Krull topology every open normal subgroup necessarily has finite index, but
it is typically not the case that every normal subgroup of finite index is open. Thus the
Krull topology on Gal(L/K) is strictly coarser than the profinite topology, in general (this
holds for Gal(Q/Q), for example). However, the topological group we obtain by putting
the Krull topology on Gal(L/K) is a profinite group.

Theorem 26.22. Let L/K be a Galois extension. Under the Krull topology, the restriction
maps induce a natural isomorphism of topological groups

φ : Gal(L/K)→ lim←−Gal(F/K),

where F ranges over finite Galois extensions of K in L. In particular, Gal(L/K) is a
profinite group whose open normal subgroups are precisely those of the form Gal(L/F ) for
some finite normal extension F/K.
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Proof. Every α ∈ L is algebraic over K, hence lies in some finite normal subextension F/K
(take the normal closure of K(α)). Every automorphism in Gal(L/K) is thus uniquely
determined by its restrictions to finite normal F/K, which implies that φ is injective. Given
an element (σF ) ∈ lim←−Gal(F/K), we can define an automorphism σ ∈ Gal(L/K) by simply
putting σ(α) = σF (α), where F is the normal closure of K(α) (the fact that this actually
gives an automorphism is guaranteed by the inverse system of restriction maps used to
define lim←−Gal(F/K)). Thus φ is surjective.

By Lemma 26.20, if we put G := Gal(L/K) and HF := Gal(L/F ), then we can view φ
as the natural map

φ : G→ lim←−G/HF ,

which is continuous, and we have shown it is a bijection. To prove that φ is an isomorphism
of topological groups it remains only to show that it is an open map. For this it suffices to
show that φ maps open subgroups H ⊆ G to open sets in lim←−G/HF , since every open set
in G is a union of cosets of open subgroups. If H = Gal(L/F ) then

φ(H) = {(σE) : σE |E∩F
= id|E∩F

} = π−1F (id|F ),

where E/K ranges over finite normal subextensions of L/K and πF is the projection map
from the inverse limit to Gal(F/K). The singleton set {id|F } is open in the discrete group
Gal(E/F ), so its inverse image under the continuous projection πF is open in G.

The last statement follows from Corollary 26.19 and Lemma 26.20.

Theorem 26.23 (Fundamental theorem of Galois theory). Let L/K be a Galois extension
and let G := Gal(L/K) be endowed with the Krull topology. The maps F 7→ Gal(L/F )
and H 7→ LH define an inclusion reversing bijection between subextensions F/K of L/K
and closed subgroups H of G. Under this correspondence, subextensions of finite degree n
correspond to subgroups of finite index n, and normal subextensions F/K correspond to
normal subgroups H ⊆ G such that Gal(F/K) ' G/H as topological groups.

Proof. We first note that every open subgroup of G is closed, since it is the complement
of the union of its non-trivial cosets, all of which are open, and closed subgroups of finite
index are open by the same argument.

The correspondence between finite Galois subextensions F/K and finite index closed
normal subgroups H then follows the previous theorem, and we have [F : K] = [G : H]
because G/H ' Gal(F/K), by Lemma 26.20.

If F/K is any finite subextension with normal closure E, then H = Gal(L/F ) contains
the normal subgroup N = Gal(L/E) with finite index. The subgroup N is open and
therefore closed, thus H is closed since it is a finite union of cosets of N . The fixed field
of H is F (by the same argument as in the proof of Lemma 26.20), thus finite subextensions
correspond to closed subgroups of finite index. Conversely, every closed subgroup H of
finite index has a fixed field F of finite degree, since the intersection of its conjugates is
a normal closed subgroup N = Gal(L/E) of finite index whose fixed field E contains F
and has finite degree. The degrees and indices match because [G : N ] = [G : H][H : N ]
and [E : K] = [F : K][E : F ]; by the previous argument for finite normal subextensions,
[E : K] = [G : N ] and [E : F ] = [H : N ] (for the second equality, replace L/K with L/F
and G with H).

Any subextension F/K is the union of its finite subextensions E/K. The intersection
of the corresponding closed finite index subgroups Gal(L/E) is equal to Gal(L/F ), which
is therefore closed. Conversely, every closed subgroup H of G is an intersection of basic
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closed subgroups, all of which have the form Gal(L/E) for some finite subextension E/K,
thus H = Gal(L/F ), where F is the union of the E.

The isomorphism Gal(F/K) ' G/H for normal subextensions/subgroups follows di-
rectly from Lemma 26.20.

Corollary 26.24. Let L/K be a Galois extension and let H be a subgroup of Gal(L/K)
with fixed field F . The closure H of H in the Krull topology is Gal(L/F ).

Proof. The Galois group Gal(L/F ) contains H, since it contains every σ ∈ Gal(L/K) that
fixes F (by definition), and Gal(L/F ) is a closed subgroup of Gal(L/K) with LGal(L/F ) = F ,
by Theorem 26.23. We thus have H ⊆ H ⊆ Gal(L/F ) with the same fixed field F . The last
two groups are closed and therefore equal under the bijection given by Theorem 26.23.

We conclude this section with the following theorem due to Waterhouse [6].

Theorem 26.25 (Waterhouse 1973). Every profinite group G is isomorphic to the Galois
group of some Galois extension L/K.

Proof sketch. Let X be the disjoint union of the finite discrete quotients of G equipped with
the G-action induced by multiplication. Now let k be any field and define L = k(X) as a
purely transcendental extension of k with indeterminates for each element of X. We can
view each σ ∈ G as an automorphism of L that fixes k and sends each x ∈ X to σ(x), and
since G acts faithfully on X, we can view G as a subgroup of Autk(L). Now let K = LG.
Then L/K is a Galois extension with G ' Gal(L/K), by [6, Thm. 1].

Remark 26.26. Although this proof lets us choose any field k we like, we have no way to
control K. In particular, it is not known whether every profinite group G is isomorphic to
a Galois group over K = Q; indeed, this is not even known for all finite groups G.
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27 Local class field theory

In this lecture we give a brief overview of local class field theory. Recall that a local
field is a locally compact field whose topology is induced by a nontrivial absolute value
(Definition 9.1). As we proved in Theorem 9.9, every local field is isomorphic to one of the
following:

• R or C (archimedean, characteristic 0);

• finite extension of Qp (nonarchimedean, characteristic 0);

• finite extension of Fq((t)) (nonarchimedean, characteristic p > 0).

In the nonarchimedean cases, the ring of integers of a local field is a complete DVR with
finite residue field.

The goal of local class field theory is to classify all finite abelian extensions of a given
local field K. Rather than considering each finite abelian extension L/K individually, we
will treat them all at once, by working in the maximal abelian extension of K inside a fixed
separable closure Ksep.

Definition 27.1. Let K be field with separable closure Ksep. The field

Kab :=
⋃

L ⊆ Ksep

L/K finite abelian

L

is the maximal abelian extension of K (in Ksep). We also define

Kunr :=
⋃

L ⊆ Ksep

L/K finite unramified

L,

the maximal unramified extension of K (in Ksep).

The field Kab contains the field Kunr; this is obvious in the archimedean case, where we
have K = Kunr is R or C and Kab = Ksep = C (note that the extension C/R is ramified).
In the nonarchimedean case the inclusion Kunr ⊆ Kab follows from Theorem 10.15, which
implies that Kunr is isomorphic to the algebraic closure of the residue field of K, which is
an abelian extension because it is pro-cyclic (every finite extension of the residue field is
cyclic because the residue field is finite). We thus have a tower of field extensions

K ⊆ Kunr ⊆ Kab ⊆ Ksep.

By Theorem 26.22, the Galois group Gal(Kab/K) is the profinite group

Gal(Kab/K) ' lim←−
L

Gal(L/K),

where L ranges over the finite extensions of K in Kab, ordered by inclusion (note that every
finite extension of K in Kab is normal because every open subgroup of the abelian group
Gal(Kab/K) is a normal subgroup).
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Like all Galois groups, the profinite group Gal(Kab/K) is a totally disconnected compact
group; see Problem Set 11. By Theorem 26.23, we have the Galois correspondence

{ extensions of K in Kab } ←→ { closed subgroups of Gal(Kab/K) }
L 7−→ Gal(Kab/L)

(Kab)H ←−[ H.

Finite abelian extensions L/K correspond to open subgroups of Gal(Kab/K) (which must
have finite index since Gal(Kab/K) is compact).

When K is an archimedean local field its abelian extensions are easy to understand;
either K = R, in which case C is the unique nontrivial abelian extension, or K = C and
there are no nontrivial abelian extensions.

Now suppose K is a nonarchimedean local field with ring of integers OK , maximal
ideal p, and residue field Fp := OK/p. If L/K is a finite unramified extension with residue
field Fq := OL/q, Theorem 10.15 gives us a canonical isomorphism

Gal(L/K) ' Gal(Fq/Fp) = 〈x 7→ x#Fp〉,

between the Galois group of L/K and the Galois group of the residue field extension Fq/Fp.
The group Gal(Fq/Fp) is generated by the Frobenius automorphism x → x#Fp , and we
use FrobL/K ∈ Gal(L/K) to denote the corresponding element of Gal(L/K); note that
FrobL/K is an element, not just a conjugacy class, because Gal(L/K) is abelian. Every finite
unramified extension of local fields L/K thus comes equipped with a canonical generator
FrobL/K for its Galois group (which is necessarily cyclic).

In this local unramified setting, the Artin map is very easy to understand. The ideal
group IK is the infinite cyclic group generated by the prime ideal p, and the Artin map

ψL/K : IK → Gal(L/K)

p 7→ FrobL/K ,

corresponds to the quotient map Z→ Z/nZ, where n := [L : K]. We can extend the Artin
map to K× by defining ψL/K(x) := ψL/K((x)); this map sends every uniformizer π to the
Frobenius element FrobL/K ; note that since OK is a DVR, hence a PID, every ideal in I is
of the form (x) for some x ∈ K×, so defining the Artin map on K× rather than IK does
not lose any information when K is a local field.

27.1 Local Artin reciprocity

Local class field theory is based on the existence of a continuous homomorphism

θK : K× → Gal(Kab/K)

known as the local Artin homomorphism (or local reciprocity map), which is described by
the following theorem.

Theorem 27.2 (Local Artin Reciprocity). Let K be a local field. There is a unique
continuous homomorphism

θK : K× → Gal(Kab/K)

with the property that for each finite extension L/K in Kab, the homomorphism

θL/K : K× → Gal(L/K)

given by composing θK with the natural map resL/K : Gal(Kab/K) � Gal(L/K) satisfies:
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• if K is nonarchimedean and L/K is unramified then θL/K(π) = FrobL/K for every
uniformizer π of OK ;

• θL/K is surjective with kernel NL/K(L×), inducing K×/NL/K(L×) ' Gal(L/K).

The natural map resL/K : Gal(Kab/K) � Gal(L/K) can be viewed as any of

• the map induced by restriction σ 7→ σ|L (note that σ(L) = L because L/K is Galois);

• the quotient map Gal(Kab/K) � Gal(Kab/K)/Gal(Kab/L);

• the projection coming from Gal(Kab/K) = lim←−L Gal(L/K) ⊆
∏
L Gal(L/K) (where

L ranges over finite extensions of K in Kab).

These are equivalent descriptions of the same surjective homomorphism of topological
groups (where the finite group Gal(L/K) has the discrete topology).

We will not have time to prove this theorem, but we would like to understand exactly
what it says. The homomorphisms θL/K form a compatible system, in the sense that if
L1 ⊆ L2 then θL1/K = resL2/L1

◦θL2/K , where resL2/L1
is the natural map from Gal(L2/K)

to Gal(L1/K) = Gal(L2/K)/Gal(L2/L1). Indeed, the maps resL2/L1
are precisely the maps

that appear in the inverse system defining lim←−L Gal(L/K) ' Gal(Kab/K).
It is first worth contrasting local Artin reciprocity with the more complicated global

version of Artin reciprocity that we saw in Lecture 21:

• There is no modulus m; working in Kab addresses all abelian extensions of K at once.

• The ray class groups ClmK are replaced by quotients of K×.

• The Takagi group NL/K(ImL )Rm
K ⊆ ImK is replaced by NL/K(L×) ⊆ K×.

27.2 Norm groups

Definition 27.3. A norm group of a local field K is a subgroup of the form

N(L×) := NL/K(L×) ⊆ K×,

for some finite abelian extension L/K.

Remark 27.4. Removing the word abelian does not change the definition above. If L/K is
any finite extension (not necessarily Galois), then N(L×) = N(F×), where F is the maximal
abelian extension of K in L; this result is known as the Norm Limitation Theorem (see
[1, Theorem III.3.5]). So we could have defined norm groups more generally. This is not
relevant to classifying the abelian extension of K, but it demonstrates a key limitation of
local class field theory (which extends to global class field theory): norm groups tell us
nothing about nonabelian extensions of K.

Theorem 27.2 implies that the Galois group of any finite abelian extension L/K of a
local fields is canonically isomorphic to the quotient K×/NL/K(L×). In order to understand
the finite abelian extensions of a local field K, we just need to understand its norm groups.

Corollary 27.5. The map L 7→ N(L×) defines an inclusion reversing bijection between the
finite abelian extensions L/K in Kab and the norm groups in K× which satisfies

(a) N((L1L2)×) = N(L×1 ) ∩N(L×2 ) and (b) N((L1 ∩ L2)×) = N(L×1 )N(L×2 ).

In particular, every norm group of K has finite index in K×, and every subgroup of K×

that contains a norm group is a norm group.
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Here we write L1L2 for the compositum of L1 and L2 inside Kab (the intersection of all
subfields of Kab that contain both L1 and L2).

Proof. We first note that if L1 ⊆ L2 are two extensions of K then transitivity of the field
norm (Corollary 4.52) implies

NL2/K = NL1/K ◦NL2/L1
,

and therefore N(L×2 ) ⊆ N(L×1 ); the map L 7→ N(L×) thus reverses inclusions.
This immediately implies N((L1L2)×) ⊆ N(L×1 ) ∩ N(L×2 ), since L1, L2 ⊆ L1L2. For the

reverse inclusion, let us consider the commutative diagram

K× Gal(L1L2/K)

Gal(L1/K)×Gal(L2/K)

← →
θL1L2/K

←

→θL1/K
×θL2/K

←
↩→ res×res

By Theorem 27.2, each x ∈ N(L×1 ) ∩ N(L×2 ) ⊆ K× lies in the kernel of θL1/K and θL2/K ,
hence in the kernel of θL1L2/K (by the diagram), and therefore in N((L1L2)×), again by
Theorem 27.2. This proves (a).

We now show that L 7→ N(L×) is a bijection; it is surjective by definition, so we just
need to show it is injective. If N(L×2 ) = N(L×1 ) then by (a) we have

N((L1L2)×) = N(L×1 ) ∩N(L×2 ) = N(L×1 ) = N(L×2 ),

and Theorem 27.2 implies Gal(L1L2/K) ' Gal(L1/K) ' Gal(L2/K), which forces L1 = L2;
thus L 7→ N(L×) is injective.

We now prove (b). The field L1 ∩ L2 is the largest extension of K that lies in both
L1 and L2, while N(L×1 )N(L×2 ) is the smallest subgroup of K× containing both N(L×1 ) and
N(L×2 ); they therefore correspond under the inclusion reversing bijection L 7→ N(L×) and
we have N((L1 ∩ L2)×) = N(L×1 )N(L×2 ) as desired.

The fact that every norm group has finite index in K× follows immediately from the
isomorphism Gal(L/K) ' K×/NL/K(L×) given by Theorem 27.2, since Gal(L/K) is finite.

Finally, let us prove that every subgroup of K× that contains a norm group is a norm
group. Suppose N(L×) ⊆ H ⊆ K×, for some finite abelian L/K, and subgroup H of K×,
and put F := LθL/K(H). We have a commutative diagram

K× Gal(L/K)

Gal(F/K)

←→
θL/K

←

→θF/K

←→ res

in which Gal(L/F ) = θL/K(H) is precisely the kernel of the map Gal(L/K) → Gal(F/K)
induced by restriction. It follows from Theorem 27.2 that

H = ker θF/K = N(F×)

is a norm group as claimed.

Lemma 27.6. Let L/K be any extension of local fields. If N(L×) has finite index in K×

then it is open.
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Proof. The lemma is clear if K is archimedean (either L = K and N(L×) = K×, or
L ' C, K ' R, and [K× : N(L×)] = [R× : R>0] = 2), so assume K is nonarchimedean.
Suppose [K× : N(L×)] < ∞. The unit group O×L is compact, so N(O×L ) is compact (since
N: L× → K× is continuous), thus closed in the Hausdorff space K×. For any α ∈ L,

α ∈ O×L ⇐⇒ |α| = 1⇐⇒ |NL/K(α)| = 1⇐⇒ NL/K(α) ∈ O×K ,

and therefore
N(O×L ) = N(L×) ∩ O×K .

It follows that N(O×L ) is the kernel of the homomorphism O×K ↪→ K× � K×/N(L×) and
therefore [O×K : N(O×L )] ≤ [K× : N(L×)] < ∞. Thus N(O×L ) is a closed subgroup of finite
index in O×K , hence open (its complement is a finite union of closed cosets, hence closed),
and O×K is open1 in K×, so N(O×L ) is open in K×, and therefore N(L×) is open in K×, since
N(L×) is a union of cosets of the open subgroup N(O×L ).

Remark 27.7. If K is a local field of characteristic zero then one can show that in fact
every finite index subgroup of K× is open (whether it is a norm group or not), but this is
not true in positive characteristic.

27.3 The main theorems of local class field theory

Corollary 27.5 implies that all norm groups of K have finite index in K×, and Lemma 27.6
then implies that all norm groups are finite index open subgroups of K×. The existence
theorem of local class field theory states that the converse also holds.

Theorem 27.8 (Local Existence Theorem). Let K be a local field and let H be a finite
index open subgroup of K×. There is a unique extension L/K in Kab with NL/K(L×) = H.

The local Artin homomorphism θK : K× → Gal(Kab/K) is not an isomorphism; indeed,
it cannot be, because Gal(Kab/K) is compact and K× is not. However, the local existence
theorem implies that after taking profinite completions the local Artin homomorphism be-
comes an isomorphism.

Theorem 27.9 (Main Theorem of Local Class Field Theory). Let K be a local
field. The local Artin homomorphism induces a canonical isomorphism

θ̂K : K̂×
∼−→ Gal(Kab/K)

of profinite groups.

Proof. The Galois group Gal(Kab/K) is a profinite group, isomorphic to the inverse limit

Gal(Kab/K) ' lim←−
L

Gal(L/K), (1)

where L ranges over the finite extensions of K in Kab ordered by inclusion; see Theo-
rem 26.22. It follows from Lemma 27.6, Theorem 27.8, and the definition of the profinite
completion, that

K̂× ' lim←−
L

K×/N(L×), (2)

1Recall that in a nonarchimedean local field, |K×| is discrete in R>0 and we can always pick ε > 0 so
that O×

K = {x ∈ K× : 1− ε < |x| < 1 + ε}, which is clearly open in the metric topology induced by | |.
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where L ranges over finite abelian extensions of K (in Ksep). By local Artin reciprocity
(Theorem 27.2), for each finite abelian extension L/K we have an isomorphism

θL/K : K×/N(L×)
∼−→ Gal(L/K),

and these isomorphisms commute with inclusion maps between finite abelian extensions
of K. We thus have an isomorphism of the inverse systems appearing in (1) and (2).
The isomorphism is canonical because the Artin homomorphism θK is unique and the
isomorphisms in (1) and (2) are both canonical.

In view of Theorem 27.9, we would like to better understand the profinite group K̂×.

If K is archimedean then K̂× is either trivial or the cyclic group of order 2, so let us assume
that K is nonarchimedean. If we pick a uniformizer π for the maximal ideal p of OK , then
we can uniquely write each x ∈ K× in the form uπv(x), with u ∈ O×K and v(x) ∈ Z. This
defines an isomorphism

K×
∼−→ O×K × Z

x 7−→ (x/πv(x), v(x)).

Taking profinite completions (which commutes with products), we obtain an isomorphism

K̂× ' O×K × Ẑ,

since the unit group

O×K ' F×p × (1 + p) ' F×p × lim←−
n

OK/(1 + pn)

is already profinite (hence isomorphic to its profinite completion, by Corollary 26.19). Note

that the isomorphism K̂× ' O×K × Ẑ is far from canonical; it depends on our choice of π,
and there are uncountably many π to choose from.

We have a commutative diagram of exact sequences of topological groups

1 O×K K× Z 0

1 Gal(Kab/Kunr) Gal(Kab/K) Gal(Kunr/K) 1

← → ← →

←→ o

← →v

←→ θK

← →
←
↩

→ φ

←→ ←→ ←→res ←→

in which the bottom row is the profinite completion of the top row. The map φ on the right
is given by

Z ↪→ Ẑ ' Gal(Fp/Fp) ' Gal(Kunr/K),

and sends 1 to the sequence of Frobenius elements (FrobL/K) in the profinite group

Gal(Kunr/K) ' lim←−
L

Gal(L/K) ⊆
∏
L

Gal(L/K),

where L ranges over finite unramified extensions of K; here we are using the canonical
isomorphisms Gal(L/K) ' Gal(Fq/Fp) given by Theorem 10.15. The Frobenius element
φ(1) is a topological generator for Gal(Kunr/K), meaning that it generates a dense subset.
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Remark 27.10. The Frobenius element φ(1) ∈ Gal(Kunr/K) corresponds to the Frobenius
automorphism x 7→ x#Fp of Gal(Fp/Fp); both are canonical topological generators of the
Galois groups in which they reside, and both are sometimes referred to as the arithmetic
Frobenius. There is another obvious generator for Gal(Kunr/K) ' Gal(Fp/Fp), namely
φ(−1), which is called the geometric Frobenius (for reasons we won’t explain here).

The group Gal(Kab/Kunr) ' O×K corresponds to the inertia subgroup of Gal(Kab/K).
The top sequence splits (but not canonically), hence so does the bottom, and we have

Gal(Kab/K) ' Gal(Kab/Kunr)×Gal(Kunr/K) ' O×K × Ẑ.

For each choice of a uniformizer π ∈ OK we get a decomposition Kab = KπK
unr correspond-

ing to K× = O×KπZ. The field Kπ is the subfield of Kab fixed by θK(π) ∈ Gal(Kab/K).
Equivalently, Kπ is the compositum of all the totally ramified finite extensions L/K in Kab

for which π ∈ N(L×).

Example 27.11. Let K = Qp and pick π = p. The decomposition Kab = KπK
unr is

Qab
p =

⋃
n

Qp(ζpn) ·
⋃
m⊥p

Qp(ζm),

where the first union on the RHS is fixed by θK(p) and the second is fixed by θK(O×K).

Constructing the local Artin homomorphism is the difficult part of local class field
theory. However, assuming the local existence theorem, it is easy to show that the local
Artin homomorphism is unique if it exists.

Proposition 27.12. Let K be a local field and assume every finite index open subgroup
of K× is a norm group. There is at most one homomorphism θ : K× → Gal(Kab/K) of
topological groups that has the properties given in Theorem 27.2.

Proof. The proposition is clear when K is archimedean, so assume it is nonarchimedean.
Let p = (π) be the maximal ideal of OK , and for each integer n ≥ 0 let Kπ,n/K be the
finite abelian extension given by Theorem 27.8 corresponding to the finite index subgroup
(1 + pn)〈π〉 of K×; here 1 + pn and 〈π〉 denote subgroups of K×, with 1 + p0 := O×K , and
we note that K× ' O×K〈π〉.

Suppose θ : K× → Gal(Kab/K) is a continuous homomorphism as in Theorem 27.2.
Then θ(π) fixes Kπ :=

⋃
nKπ,n, since π ∈ N(Kπ,n) = ker θKπ,n/K . We also know that

θL/K(π) = FrobL/K for all finite unramified extensions L/K, which uniquely determines

the action of θ(π) on Kunr, and hence on Kab = KπK
unr.

Now suppose θ′ : K× → Gal(Kab/K) is another continuous homomorphism as in The-
orem 27.2. By the argument above we must have θ′(π) = θ(π) for every uniformizer π of
OK , and K× is generated by its subset of uniformizers: if we fix one uniformizer π, every
x ∈ K× can be written as uπn = (uπ)πn−1 for some u ∈ O×K and n ∈ Z, and uπ is another
uniformizer). It follows that θ(x) = θ′(x) for all x ∈ K× and therefore θ = θ′ is unique.

Remark 27.13. One approach to proving local class field theory uses the theory of formal
groups due to Lubin and Tate to explicitly construct the fields Kπ =

⋃
nKπ,n used in the

proof of Proposition 27.12, along with a continuous homomorphism θπ : O×K → Gal(Kπ/K)
that extends uniquely to a continuous homomorphism θ : K× → Gal(KπK

unr/K). One then
shows that Kab = KπK

unr (using the Hasse-Arf Theorem), and that θ does not depend on
the choice of π; see [1, §I.2-4] for details.
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27.4 Finite abelian extensions

Local class field theory gives us canonical bijections between the following sets:

(1) finite-index open subgroups of K× (which are necessarily normal);

(2) open subgroups of Gal(Kab/K) (which are necessarily normal and of finite index);

(3) finite extensions of K in Kab (which are necessarily normal).

The bijection from (1) to (2) is induced by the isomorphism K̂× ' Gal(Kab/K) given by
Theorem 27.9 and is inclusion preserving. The bijection from (2) to (3) follows from Galois
theory (for infinite extensions), and is inclusion reversing, while the bijection from (3) to
(1) is via the map L 7→ N(L×), which is also inclusion reversing.
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28 Global class field theory, the Chebotarev density theorem

Recall that a global field is a field with a product formula whose completions at nontrivial
absolute values are local fields. By the Artin-Whaples theorem (see Problem Set 7), every
such field is either

• a number field : finite extension of Q (characteristic zero);

• a global function field : finite extension of Fq(t) (positive characteristic).

In Lecture 25 we defined the adele ring AK of a global field K as the restricted product

AK :=
∐∏

v
(Kv,Ov) =

{
(av) ∈

∏
Kv : av ∈ Ov for almost all v

}
,

where v ranges over the places of K (equivalence classes of absolute values), Kv denotes
the completion of K at v, and Ov is the valuation ring of Kv if v is nonarchimedean, and
equal to Kv otherwise. As a topological ring, AK is locally compact and Hausdorff. The
field K is canonically embedded in AK via the diagonal map x 7→ (x, x, x, . . .) whose image
is discrete, closed, and cocompact; see Theorem 25.12.

In Lecture 26 we defined the idele group

IK :=
∐∏

(K×v ,O×v ) =
{

(av) ∈
∏

K×v : av ∈ O×v for almost all v
}
,

which coincides with the unit group of AK but has a finer topology (using the restricted
product topology ensures that a 7→ a−1 is continuous, which is not true of the subspace
topology). As a topological group, IK is locally compact and Hausdorff. The multiplicative
group K× is canonically embedded as a discrete subgroup of IK via the diagonal map
x 7→ (x, x, x, . . .), and the idele class group is the quotient CK := IK/K×, which is locally
compact but not compact.

28.1 The idele norm

The idele group IK surjects onto the ideal group IK of invertible fractional ideals of OK
via the surjective homomorphism

ϕ : IK → IK
a 7→

∏
pvp(a),

where vp(a) is the p-adic valuation of the component av ∈ K×v of a = (av) ∈ IK at the
finite place v corresponding to the absolute value ‖ ‖p. We have the following commutative
diagram of exact sequences:

1 K× IK CK 1

1 PK IK ClK 1

←→ ←→

←� x7→(x)

←→

←� ϕ

←→

←�

←→ ←→ ←→ ←→

where PK is the subgroup of principal ideals and ClK := IK/PK is the ideal class group.
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Definition 28.1. Let L/K is a finite separable extension of global fields. The idele norm
NL/K : IL → IK is defined by NL/K(bw) = (av), where each

av :=
∏
w|v

NLw/Kv(bw)

is a product over places w of L that extend the place v of K and NLw/Kv : Lw → Kv is the
field norm of the corresponding finite separable extension of local fields Lw/Kv.

It follows from Corollary 11.24 and Remark 11.25 that the idele norm NL/K : IL → IK
agrees with the field norm NL/K : L× → K× on the subgroup of principal ideles L× ⊆ IL.
The field norm is also compatible with the ideal norm NL/K : IL → IK (see Proposition 6.6),
and we have the following commutative diagram:

L× IL IL

K× IK IK

←→
←→ NL/K

←→

←→ NL/K ←→ NL/K

←→ ←→

The image of L× in IL under the composition of the maps on the top row is precisely the
group PL of principal ideals, and the image of K× in IK is similarly PK . Taking quotients
yields induced norm maps on the idele and ideal class groups, both of which we also denote
NL/K , and we have a commutative square

CL ClL

CK ClK

←�

←→ NL/K ←→ NL/K

←�

28.2 The Artin homomorphism

We now construct the global Artin homomorphism using the local Artin homomorphisms
we defined in the previous lecture. Let us first fix once and for all a separable closure
Ksep of our global field K, and for each place v of K, a separable closure Ksep

v of the
local field Kv. Let Kab and Kab

v denote maximal abelian extensions within these separable
closures; henceforth all abelian extensions of K and the Kv are assumed to lie in these
maximal abelian extensions.

By Theorem 27.2, each local field Kv is equipped with a local Artin homomorphism

θKv : K×v → Gal(Kab
v /Kv).

For each finite abelian extension L/K and each place w|v of L, composing θKv with the
natural map Gal(Kab

v /Kv)→ Gal(Lw/Kv) yields a surjective homomorphism

θLw/Kv : K×v → Gal(Lw/Kv)

with kernel NLw/Kv(L
×
w). When Kv is nonarchimedean and Lw/Kv is unramified we have

θLw/Kv(πv) = FrobLw/Kv for all uniformizers πv of Kv. Note that by Theorem 11.20, every
finite separable extension of Kv is of the form Lw for some place w|v.
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We now define an embedding of Galois groups

ϕw : Gal(Lw/Kv) ↪→ Gal(L/K)

σ 7→ σ|L

The map ϕw is well defined and injective because every element of Lw can be written as
`x for some ` ∈ L and x ∈ Kv (any K-basis for L spans Lw as a Kv vector space), so
each σ ∈ Gal(Lw/Kv) is uniquely determined by its action on L, which fixes K ⊆ Kv.
If v is archimedean then ϕw(Gal(Lw/Kv)) is either trivial or generated by the involution
corresponding to complex conjugation in Lw ' C. If v is a finite place and q is the prime of L
corresponding to w|v, then ϕw(Gal(Lw/Kv)) is the decomposition group Dq ⊆ Gal(L/K);
this follows from parts (5) and (6) of Theorem 11.23.

More generally, for any place v of K, the Galois group Gal(L/K) acts on the set {w|v},
via |α|σ(w) := |σ(α)|w, and ϕw(Gal(Lw/Kv)) is the stabilizer of w under this action. It thus
makes sense to call ϕw(Gal(Lw/Kv)) the decomposition group of the place w. For w|v the
groups ϕw(Gal(Lw/Kv)) are necessarily conjugate, and in our abelian setting, equal.

Moreover, the composition ϕw ◦θLw/Kv defines a map K×v → Gal(L/K) that is indepen-
dent of the choice of w|v: this is easy to see when v is an unramified nonarchimedean place,
since then ϕw(θLw/Kv(πv)) = Frobv for every uniformizer πv of Kv, and this determines
ϕw ◦ θLw/Kv since the πv generate K×v .

For each place v of K we now embed K×v into the idele group IK via the map

ιv : K×v ↪→ IK
α 7→ (1, 1, . . . , 1, α, 1, 1, . . .),

whose image intersects K× ⊆ IK trivially. This embedding is compatible with the idele
norm in the following sense: if L/K is any finite separable extension and w is a place of L
that extends the place v of K then the diagram

L×w K×v

IL IK

←→
NLw/Kv

←
↩→ ιw ←

↩→ ιv

←→
NL/K

commutes.
Now let L/K be a finite abelian extension. For each place v of K, let us pick a place w

of L extending v and define

θL/K : IK → Gal(L/K)

(av) 7→
∏
v

ϕw(θLw/Kv(av)),

where the product takes place in Gal(L/K). The value of ϕw(θLw/Kv(av)) is independent
of our choice of w|v, as noted above. The product is well defined because av ∈ O×v and v is
unramified in L for almost all v, in which case

ϕw(θLw/Kv(av)) = Frobv(av)v = 1,

It is clear that θL/K is a homomorphism, since each ϕw ◦ θLw/Kv is, and θL/K is continuous
because its kernel is a union of open sets: each a := (av) ∈ ker θL/K lies in an open set
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Ua := US×
∏
v 6∈S O×v ⊆ ker θL/K , where S contains all ramified v and all v for which av 6∈ O×v ,

and US is the kernel of (av)v∈S 7→
∏
v∈S ϕw(θLw/Kv)), an open subsset of

∏
v∈SK

×
v ).

If L1 ⊆ L2 are two finite abelian extensions of K, then θL1/K(a) = θL2/K(a)|L1
for all

a ∈ IK . The θL/K form a compatible system of homomorphisms from IK to the inverse

limit lim←−L Gal(L/K) ' Gal(Kab/K), where L ranges over finite abelian extensions of K

in Kab ordered by inclusion. By the universal property of the profinite completion, they
uniquely determine a continuous homomorphism.

Definition 28.2. Let K be a global field. The global Artin homomorphism is the continuous
homomorphism

θK : IK → lim←−
L

Gal(L/K) ' Gal(Kab/K)

defined by the compatible system of homomorphisms θL/K : IK → Gal(L/K), where L

ranges over finite abelian extensions of K in Kab.

The isomorphism Gal(Kab/K) ' lim←−Gal(L/K) is the natural isomorphism between a
Galois group and its profinite completion with respect to the Krull topology (Theorem 26.22)
and is thus canonical, as is the global Artin homomorphism θK : IK → Gal(Kab/K).

Proposition 28.3. Let K be global field. The global Artin homomorphism θK is the unique
continuous homomorphism IK → Gal(Kab/K) with the property that for every finite abelian
extension L/K in Kab and every place w of L lying over a place v of K the diagram

K×v Gal(Lw/Kv)

IK Gal(L/K)

←→
θLw/Kv

←
↩→ ιv ←

↩→ ϕw

←→
θL/K

commutes, where the homomorphism θL/K is defined by θL/K(a) := θK(a)|L.

Proof. That θK has this property follows from its construction. Now suppose that there
is another continuous homomorphism θ′K : IK → Gal(Kab/K) with the same property. We
may view elements of Gal(Kab/K) ' lim←−Gal(L/K) as elements of

∏
L/K Gal(L/K), where

L varies over finite abelian extensions of K in Kab. If θK and θ′K are not identical, then
there must be an a ∈ IK and a finite abelian extension L/K for which θL/K(a) 6= θ′L/K(a).

Let S be a finite set of places of K that includes all places v for which av 6∈ O×v
and all ramified places of L/K. Define b ∈ IK by bv := 1 for v ∈ S and bv := av for
v 6∈ S, so that a = b

∏
v∈S ιv(av). Then θLw/Kv(bv) = 1 for all places v, so we must have

θL/K(b) = 1 = θ′L/K(b), and for v ∈ S we have

θL/K(ιv(av)) = ϕw(θLw/Kv(av)) = θ′L/K(ιv(av)),

by the commutativity of the diagram in the proposition. But then

θL/K(a) = θL/K(b)
∏
v∈S

θL/K(ιv(av)) = θ′L/K(b)
∏
v∈S

θ′L/K(ιv(av)) = θ′L/K(a),

which is a contradiction. So θ′K = θK as claimed.
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28.3 The main theorems of global class field theory

In the global version of Artin reciprocity, the idele class group CK := IK/K× plays the role
that the multiplicative group K×v plays in local Artin reciprocity (Theorem 27.2).

Theorem 28.4 (Global Artin Reciprocity). Let K be a global field. The kernel of the
global Artin homomorphism θK contains K×, and we thus have a continuous homomorphism

θK : CK → Gal(Kab/K),

with the property that for every finite abelian extension L/K in Kab the homomorphism

θL/K : CK → Gal(L/K)

obtained by composing θK with the natural map Gal(Kab/K) � Gal(L/K) is surjective with
kernel NL/K(CL), inducing an isomorphism CK/NL/K(CL) ' Gal(L/K).

Remark 28.5. When K is a number field, θK is surjective but not injective; its kernel
is the connected component of the identity in CK . When K is a global function field,
θK is injective but not surjective; its image consists of automorphisms σ ∈ Gal(Kab/K)
corresponding to integer powers of the Frobenius automorphism of Gal(ksep/k), where k is
the constant field of K (this is precisely the dense image of Z in Ẑ ' Gal(ksep/k)).

We also have a global existence theorem.

Theorem 28.6 (Global Existence Theorem). Let K be a global field. For every finite
index open subgroup H of CK there is a unique finite abelian extension L/K in Kab for
which NL/K(CL) = H.

As with the local Artin homomorphism, taking profinite completions yields an isomor-
phism that allows us to summarize global class field theory in one statement.

Theorem 28.7 (Main theorem of global class field theory). Let K be a global
field. The global Artin homomorphism θK induces a canonical isomorphism

θ̂K : ĈK
∼−→ Gal(Kab/K)

of profinite groups.

We then have an inclusion reversing bijection

{ finite index open subgroups H of CK } ←→ {finite abelian extensions L/K in Kab }
H 7→ (Kab)θK(H)

NL/K(CL)←[ L

and corresponding isomorphisms CK/H ' Gal(L/K), where H = NL/K(CL). We also note
that the global Artin homomorphism is functorial in the following sense.

Theorem 28.8 (Functoriality). Let K be a global field and let L/K be any finite sep-
arable extension (not necessarily abelian). Then the following diagram commutes

CL Gal(Lab/L)

CK Gal(Kab/K).

←→θL

←→ NL/K ←→ res

←→θK
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28.4 Relation to ideal-theoretic version of global class field theory

Let K be a number field and let m : MK → Z≥0 be a modulus for K, which we view as
a formal product m =

∏
v v

ev over the places v of K with ev ≤ 1 when v is archimedean
and ev = 0 when v is complex (see Definition 21.2). For each place v we define the open
subgroup

Um
K(v) :=


O×v if v 6 | m, where O×v := K×v when v is infinite),

R>0 if v|m is real, where R>0 ⊆ R× ' O×v := K×v ,

1 + pev if v|m is finite, where p = {x ∈ Ov : |x|v < 1},

and let Um
K :=

∏
v U

m
K(v) ⊆ IK denote the corresponding open subgroup of IK . The image

U
m
K of Um

K in the idele class group CK = IK/K× is a finite index open subgroup. The idelic
version of a ray class group is the quotient

Cm
K := IK/(Um

KK
×) = CK/U

m
K ,

and we have isomorphisms

Cm
K ' ClmK ' Gal(K(m)/K),

where ClmK is the ray class group for the modulus m (see Definition 21.3), and K(m) is the
corresponding ray class field, which we can now define as the finite abelian extension L/K
for which NL/K(CL) = U

m
K , whose existence is guaranteed by Theorem 28.6.

If L/K is any finite abelian extension, then NL/K(CL) contains U
m
K for some modulus m;

this follows from the fact that the groups U
m
K form a fundamental system of open neighbor-

hoods of the identity. Indeed, the conductor of the extension L/K (see Definition 22.24) is
precisely the minimal modulus m for which this is true. It follows that every finite abelian
extension L/K lies in a ray class field K(m), with Gal(L/K) isomorphic to a quotient of a
ray class group Cm

K .

28.5 The Chebotarev density theorem

We conclude this lecture with a proof of the Chebotarev density theorem, a generalization
of the Frobenius density theorem you proved on Problem Set 10. Recall from Lecture 18
and Problem Set 9 that if S is a set of primes of a number field K, the Dirichlet density
of S is defined by

d(S) := lim
s→1+

∑
p∈S N(p)−s∑
p N(p)−s

= lim
s→1+

∑
p∈S N(p)−s

log 1
s−1

,

whenever this limit exists. As you proved on Problem Set 9, if S has a natural density then
it has a Dirichlet density and the two coincide (and similarly for polar density).

In order to state Chebotarev’s density theorem we need one more definition: a subset C
of a group G is said to be stable under conjugation if στσ−1 ∈ C for all σ ∈ G and τ ∈ C.
Equivalently, C is a union of conjugacy classes of G.

Theorem 28.9 (Chebotarev density theorem). Let L/K be a finite Galois extension
of number fields with Galois group G := Gal(L/K). Let C ⊆ G be stable under conjugation,
and let S be the set of primes p of K unramified in L with Frobp ⊆ C. Then d(S) = #C/#G.
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Note that G is not assumed to be abelian, so Frobp is a conjugacy class, not an element.
However, the main difficulty in proving the Chebotarev density theorem (and the only place
where class field theory is used) occurs when G is abelian, in which case Frobp contains a
single element. The main result we need is a corollary of the generalization of Dirichlet’s
theorem on primes in arithmetic progressions to number fields that we proved in Lecture 22,
a special case of which we record below.

Proposition 28.10. Let m be a modulus for a number field K and let ClmK be the corre-
sponding ray class group. For every ray class c ∈ ClmK the Dirichlet density of the set of
primes p of K that lie in c is 1/#ClmK .

Proof. Apply Corollary 22.22 to the congruence subgroup C = Rm
K .

The Chebotarev density theorem for abelian extensions follows from Proposition 28.10
and the existence of ray class fields, which we now assume.1

Corollary 28.11. Let L/K be a finite abelian extension of number fields with Galois
group G. For every σ ∈ G the Dirichlet density of the set S of primes p of K unrami-
fied in L for which Frobp = {σ} is 1/#G.

Proof. Let m = cond(L/K) be the conductor of the extension L/K; then L is a subfield
of the ray class field K(m) and Gal(L/K) ' ClmK/H for some subgroup H of the ray class
group. For each unramified prime p of K we have Frobp = {σ} if and only if p lies in one
of the ray classes contained in the coset of H in ClmK/H corresponding to σ. The Dirichlet
density of the set of primes in each ray class is 1/#ClmK , by Proposition 28.10, and there
are #H ray classes in each coset of H; thus d(S) = #H/#ClmK = 1/#G.

We now derive the general case from the abelian case.

Proof of the Chebotarev density theorem. It suffices to consider the case where C is a single
conjugacy class, which we now assume; we can reduce to this case by partitioning C into
conjugacy classes and summing Dirichlet densities (as proved on Problem Set 9). Let S be
the set of primes p of K unramified in L for which Frobp is the conjugacy class C.

Let σ ∈ G be a representative of the conjugacy class C, let Hσ := 〈σ〉 ⊆ G be the
subgroup it generates, and let Fσ := LHσ be the corresponding fixed field. Let Tσ be the set
of primes q of Fσ unramified in L for which Frobq = {σ} ⊆ Gal(L/Fσ) ⊆ Gal(L/K) (note
that the Frobenius class Frobq is a singleton because Gal(L/Fσ) = Hσ is abelian). We have
d(Tσ) = 1/#Hσ, since L/Fσ is abelian, by Corollary 28.11.2

As you proved on Problem Set 9, restricting to degree-1 primes (primes whose residue
field has prime order) does not change Dirichlet densities, so let us replace S and Tσ by
their subsets of degree-1 primes, and define Tσ(p) := {q ∈ Tσ : q|p} for each p ∈ S.

Claim: For each prime p ∈ S we have #Tσ(p) = [G : Hσ].
Proof of claim: Let r be a prime of L lying above q ∈ Tσ(p). Such an r is unramified,

since p is, and we have Frobr = σ, since Frobq = {σ}. It follows that Gal(Fr/Fq) = 〈σ̄〉 ' Hσ.

1This assumption is not necessary; indeed Chebotarev proved his density theorem in 1923 without it.
With slightly more work one can derive the general case from the cyclotomic case L = K(ζ), where ζ is a
primitive root of unity, which removes the need to assume the existence of ray class fields; see [4] for details.

2Note that the integers #Hσ and [G : Hσ] do not depend on the choice of σ (the Hσ are all conjugate).

18.785 Fall 2019, Lecture #28, Page 7

https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec22.pdf#theorem.2.22


Therefore fr/q = #Hσ and #{r|q} = 1, since #Hσ = [L : Fσ] =
∑

r|q er/qfr/q. We have
fr/p = fr/qfq/p = fr/q = #Hσ, since fq/p = 1 for degree-1 primes q|p, and er/p = 1, thus

#G = [L : K] =
∑
r|p

er/pfr/p = #{r|p}#Hσ = #Tσ(p)#Hσ,

so #Tσ(p) = #G/#Hσ = [G : Hσ] as claimed.
We now observe that∑

p∈S
N(p)−s =

∑
σ∈C

∑
p∈S

1

[G : Hσ]

∑
q∈Tσ(p)

N(q)−s =
#C

[G : Hσ]

∑
q∈Tσ

N(q)−s

since N(q) = N(p) for each degree-1 prime q lying above a degree-1 prime p, and therefore

d(S) =
#C

[G : Hσ]
d(Tσ) =

#C#Hσ

[G : Hσ]
=

#C

#G
.

Remark 28.12. The Chebotarev density theorem holds for any global field; the general-
ization to function fields was originally proved by Reichardt [3]; see [2] for a modern proof
(and in fact a stronger result). In the case of number fields (but not function fields!) Cheb-
otarev’s theorem also holds for natural density. This follows from results of Hecke [1] that
actually predate Chebotarev’s work; Hecke showed that the primes lying in any particular
ray class have a natural density.
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