18.785 Number theory I Fall 2019
Lecture #10 10/7/2019

10 Extensions of complete DVRs

Recall that in our AK LB setup, A is a Dedekind domain with fraction field K, the field L
is a finite separable extension of K, and B is the integral closure of A in L; as we proved in
Theorem 5.25, this implies that B is also a Dedekind domain (with L as its fraction field).
We now want to consider the special case where A is a complete DVR; in this case B is also
a complete DVR, but this will take a little bit of work to prove. We first show that B is a
DVR.

Theorem 10.1. Assume AKLB and that A is a complete DVR with mazimal ideal p.
Then B is a DVR whose maximal ideal q is necessarily the unique prime above p.

Proof. We first show that #{q|p} = 1. At least one prime q of B lies above p, since the
factorization of pB C B is non-trivial. Now suppose for the sake of contradiction that
q1,92 € {qlp} with q; # g2. Choose b € q1 — q2 and consider the ring A[b] C B. The
ideals g1 N A[b] and g2 N A[b] are distinct prime ideals of A[b] containing pA[b], and both
are maximal, since they are nonzero and dim A[b] = dim A = 1 (note that A[b] is integral
over A and therefore has the same dimension). The quotient ring A[b]/pA[b] thus has at
least two maximal ideals. Let f € A[x] be the minimal polynomial of b over K, and let
f € (A/p)[z] be its reduction to the residue field A/p.

(A/p)la] | Alz] Al
(f) — (p,f)  pAp]

thus the ring (A/p)[x]/(f) has at least two maximal ideals, which implies that f is divisible
by two distinct irreducible polynomials (because (A/p)[z] is a PID). We can thus factor
f = gh with g and h coprime. By Hensel’s Lemma 9.19, we can lift this to a non-trivial
factorization f = gh of f in A[z], contradicting the irreducibility of f.

Every maximal ideal of B lies above a maximal ideal of A, but A has only the maximal
ideal p and #{q|p} = 1, so B has a unique (nonzero) maximal ideal q. Thus B is a local
Dedekind domain, hence a local PID, and not a field, so B is a DVR, by Theorem 1.16. [J

Remark 10.2. The assumption that A is complete is necessary. For example, if A is the
DVR Z5) with fraction field K = Q and we take L = Q(i), then the integral closure of A
in L is B = Zs)[i], which is a PID but not a DVR: the ideals (1 + 2i) and (1 — 2i) are both
maximal (and not equal). But if we take completions we get A = Zs and K = Qj5, and now
L = Q5(i) = Q5 = K, since 22 + 1 has a root in F5 ~ Zs/5Zs that we can lift to Zs via
Hensel’s lemma; thus if we complete A then B = A is a DVR as required.

Definition 10.3. Let K be a field with absolute value | | and let V' be a K-vector space.
A norm on V is a function || || : V' — R>¢ such that

e ||v|| = 0 if and only if v = 0.
o [|[Mv| =|A||jv]| for all A € K and v € V.
o |[v+w| < |v] + ||w] for all v,w € V.

Each norm || || induces a topology on V' via the distance metric d(v, w) := ||v — w]|.

Example 10.4. Let V be a K-vector space with basis (e;), and for v € V' let v; € K denote
the coefficient of e; in v =), v;e;. The sup-norm ||v|| := sup{|v;|} is a norm on V' (thus
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every vector space has at least one norm). If V' is also a K-algebra, an absolute value || ||
on V (as aring) is a norm on V' (as a K-vector space) if and only if it extends the absolute
value on K (fix v # 0 and note that ||A|| [|v]| = ||Av| = |A] ||v]| < [[A]] = |A])-

Proposition 10.5. Let V be a vector space of finite dimension over a complete field K.
Every norm on V induces the same topology, in which V is a complete metric space.

Proof. See Problem Set 5. O

Theorem 10.6. Let A be a complete DVR with fraction field K, mazimal ideal p, discrete
valuation vy, and absolute value |z, := @), with 0 < ¢ < 1. Let L/K be a finite extension
of degree n. The following hold.

(i) There is a unique absolute value |z| := [Ny /g (z) ;/n on L that extends | |y;

(ii) The field L is complete with respect to | |, and its valuation ring {z € L : |z| < 1} is
equal to the integral closure B of A in L;

(iii) If L/K is separable then B is a complete DVR whose mazimal ideal q induces

a(2)

Ly
2] = [a]q = o,
where eq is the ramification index of q, that is, pB = q°.

Proof. Assuming for the moment that | | is actually an absolute value (which is not obvious!),
for any x € K we have

1/n

1
o= 12,

|z = [Np/k (2)] = |y,

so | | extends | |, and is therefore a norm on L. The fact that | |, is nontrivial means that
|z], # 1 for some x € K*, and |z|* = |z|, = |z| only for a = 1, which implies that | | is the
unique absolute value in its equivalence class extending | |,. Every norm on L induces the
same topology (by Proposition 10.5), so | | is the only absolute value on L that extends | |,.

We now show | | is an absolute value. Clearly || =0 < x = 0 and | | is multiplicative;
we only need to check the triangle inequality. It suffices to show |z| <1 = |z 41| < |z|+1,
since we always have |y + z| = |z|ly/z + 1] and |y| + |z| = |2|(|y/z| + 1), and without loss of
generality we assume |y| < |z|. In fact the stronger implication |z| < 1 = |z + 1| < 1 holds:

|z| <1 <= [Np/g(7)|p <1 <= Npg(r) €A <= 1€ B < v+l € B < [z+1| < L.

The first biconditional follows from the definition of | |, the second follows from the definition
of | |p, the third is Corollary 9.21, the fourth is obvious, and the fifth follows from the first
three after replacing = with = + 1. This completes the proof of (i), and also proves (ii).

We now assume L/K is separable. Then B is a DVR, by Theorem 10.1, and it is
complete because it is the valuation ring of L. Let q be the unique maximal ideal of B. The
valuation vy extends v, with index eq, by Theorem 8.20, so vq(x) = equyp(x) for x € K*.
We have 0 < ¢/ < 1, so |z|q := (¢!/)%(®) is an absolute value on L induced by vy. To
show it is equal to | |, it suffices to show that it extends | |,, since we already know that | |
is the unique absolute value on L with this property. For x € K* we have

1 1
‘x|q — Ceqvq(x) — Ceqeqvp(m) _ cvp(z) _ ’x|p,

and the theorem follows. O
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Remark 10.7. The transitivity of Nz x in towers (Corollary 4.52) implies that we can
uniquely extend the absolute value on the fraction field K of a complete DVR to an algebraic
closure K. In fact, this is another form of Hensel’s lemma in the following sense: one can
show that a (not necessarily discrete) valuation ring A is Henselian if and only if the absolute
value of its fraction field K can be uniquely extended to K; see [4, Theorem 6.6].

Corollary 10.8. Assume AKLB and that A is a complete DVR with maximal ideal p and
let qlp. Then vy(z) = fiqvp(NL/K(x)) forall xz € L.

Proof. vy(Np /i (2)) = vp(Npre((2))) = vp(Np /s (a°067)) = vy (p/a* () = fqvg(2). O

Remark 10.9. One can generalize the notion of a discrete valuation to a waluation, a
surjective homomorphism v: K* — I', in which I is a (totally) ordered abelian group and
v(x +y) > min(v(z),v(y)); we extend v to K by defining v(0) = oo to be strictly greater
than any element of I'. In the AK LB setup with A a complete DVR, one can then define
a valuation v(z) = évq(:c) with image éZ that restricts to the discrete valuation v, on K.

The valuation v then extends to a valuation on K with I' = Q. Some texts take this
approach, but we will generally stick with discrete valuations (so our absolute value on L
restricts to K, but our discrete valuations on L do not restrict to discrete valuations on K,
they extend them with index eq).

Remark 10.10. Recall that a valuation ring is an integral domain A with fraction field K
such that for every x € K* either x € A or 27! € A (possibly both). As you will show on
Problem Set 6, if A is a valuation ring, then there exists a valuation v: K — I' U {co} for
some totally ordered abelian group I' such that A = {x € K : v(z) > 0} is the valuation
ring of K with respect to this valuation.

10.1 The Dedekind-Kummer theorem in a local setting

Recall that the Dedekind-Kummer theorem (Theorem 6.14) allows us to factor primes in
our AKLB setting by factoring polynomials over the residue field, provided that B is
monogenic (of the form Aa] for some o € B), or the prime of interest does not contain the
conductor. We now show that in the special case where A and B are DVRs and the residue
field extension is separable, B is always monogenic; this holds, for example, whenever K is
a local field. To prove this, we first recall a form of Nakayama’s lemma.

Lemma 10.11 (NAKAYAMA’S LEMMA). Let A be a local ring with maximal ideal p, and
let M be a finitely generated A-module. If the images of x1,...,x, € M generate M/pM
as an (A/p)-vector space then xi,...,x, generate M as an A-module.

Proof. See [1, Corollary 4.8b]. O

Before proving our theorem on local monogenicity, we record a few corollaries of Nakayama’s
Lemma that will be useful later.

Corollary 10.12. Let A be a local noetherian ring with mazimal ideal p, let g € Alz], and
let B :== Alz]/(g9(x)). Every maximal ideal m of B contains the ideal pB.

Proof. Suppose not. Then m+pB = B for some maximal ideal m of B. The ring B is finitely
generated over the noetherian ring A, hence a noetherian A-module, so its A-submodules
are all finitely generated. Let z1,...,z, be A-module generators for m. Every coset of pB
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in B can be written as z 4+ pB for some A-linear combination z of z1,..., z,, so the images
of z1,...,2, generate B/pB as an (A/p)-vector space. By Nakayama’s lemma, z1,..., 2,
generate B, in which case m = B, a contradiction. ]

As a corollary, we immediately obtain a local version of the Dedekind-Kummer theorem
that does not even require A and B to be Dedekind domains.

Corollary 10.13. Let A be a local noetherian ring with mazimal ideal p, let g € Alx]
be a polynomial with reduction g € (A/p)[x], and let o be the image of x in the ring
B = Alz]/(g9(z)) = Ala]. The mazimal ideals of B are (p,gi(c)), where gi,...,gm € Alz]
are lifts of the distinct irreducible polynomials g; € (A/p)[z] that divide g.

Proof. By Corollary 10.12, the quotient map B — B/pB gives a one-to-one correspondence
between maximal ideals of B and maximal ideals of B/pB, and we have

B Alz]  (Afp)x]
pB — (p,g(x) — (g(x)

Each maximal ideal of (A/p)[x]/(g(x)) is the reduction of an irreducible divisor of g, hence
one of the g; (because (A/p)[z] is a PID). The corollary follows. O

Theorem 10.14. Assume AKLB, with A and B DVRs with residue fields k := A/p and
l = B/q. Ifl/k is separable then B = Ala| for some a € B; if L/K is unramified this
holds for every lift a of any generator & for | = k(a).

Proof. Let pB = q° be the factorization of pB and let f = [l : k] be the residue field
degree, so that ef = n = [L : K]. The extension [/k is separable, so we may apply the
primitive element theorem to write | = k(ap) for some ag € [ whose minimal polynomial g
is separable of degree equal to f. Let g € A[z] be a monic lift of g, and let ag be any lift
of ag to B. If vg(g(ap)) = 1 then let o := . Otherwise, let mg be any uniformizer for B
and let a :== ag + T € B (so a = &g mod q) Writing g(z + m) = g(z) + mog'(z) + 73h(z)
for some h € A[x] via Lemma 9.11, we have

vq(9(@)) = vq(g(ao + m0)) = vq(g(a0) + mog' () + mGh(w)) = 1,

so 7 = g(«) is also a uniformizer for B.

We now claim B = Ala], equivalently, that 1,«,...,a" ! generate B as an A-module.
By Nakayama’s lemma, it suffices to show that the reductions of 1,c,...,a" ! span B/pB
as an k-vector space. We have p = q°, so pB = (7¢). We can represent each element of
B/pB as a coset

n

b+pB =by+bim+bow--- 4 be_ 171 +pB,
where b, ..., be_1 are determined up to equivalence modulo 7B. Now 1,a,...,a/~! are a
basis for B/mB = B/q as a k-vector space, and m = g(«), so we can rewrite this as
b+pB = (ap +ara+ - --af_lozf_l)
+(af +appa+ - -agp10f Hgla)
+ (Gef—f41 + Qef— o004+ aef_loszl)g(oz)e*1 +pB.
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Since deg g = f, and n = ef, this expresses b+ pB in the form b’ + pB with ¥’ in the A-span
of 1,...,a" L. Thus B = Alal.

We now note that if L/K is unramified then [/k is separable (this is part of the definition
of unramified), and e = 1, f = n, in which case there is no need to require g(a) to be a
uniformizer and we can just take o = a to be any lift of any g that generates [ over k. [

In our AK LB setup, if A is a complete DVR with maximal ideal p then B is a complete
DVR with maximal ideal q|p and the formula [L : K] = 3", €qfq given by Theorem 5.35 has
only one term eg fy. We now simplify matters even further by reducing to the two extreme
cases fq = 1 (a totally ramified extension) and eq = 1 (an unramified extension, provided
that the residue field extension is separable).!

10.2 Unramified extensions of a complete DVR

Let A be a complete DVR with fraction field K and residue field k. Associated to any finite
unramified extension of L/K of degree n is a corresponding finite separable extension of
residue fields [/k of the same degree n. Given that the extensions L/K and [/k are finite
separable extensions of the same degree, we might wonder how they are related. More
precisely, if we fix K with residue field k£, what is the relationship between finite unramified
extensions L/K of degree n and finite separable extensions [/k of degree n? Each L/K
uniquely determines a corresponding [/k, but what about the converse?

This question has a surprisingly nice answer. The finite unramified extensions L of K
form a category Ci"" whose morphisms are K-algebra homomorphisms, and the finite sepa-
rable extensions [ of k form a category C,S:‘p whose morphisms are k-algebra homomorphisms.
These two categories are equivalent.

Theorem 10.15. Let A be a complete DVR with fraction field K and residue field k := A/p.
The categories Ci* and CZEP are equivalent via the functor F: Cg"' — C,S:p that sends
each unramified extension L of K to its residue field [, and each K-algebra homomorphism
w: L1 — Lo to the k-algebra homomorphism ¢: 1y — ly defined by ¢(@) = ¢(a), where «
is any lift of @ € l1 == By/q1 to By and @(«) is the reduction of p(a) € Bg to ly == Ba/qa;
here q1,q2 are the mazimal ideals of the valuation rings B1, Ba of L1, Lo, respectively.

In particular, F gives a bijection between the isomorphism classes in Ci™" and Czep, and

if L1, Ly and have residue fields l1, 1o then F induces a bijection of finite sets

HOmK(Ll, LQ) ; HOmk(ll, lg).

Proof. Let us first verify that F is well-defined. It is clear that it maps finite unramified
extensions L/K to finite separable extensions [/k, but we should check that the map on
morphisms does not depend on the lift a of @ we pick. So let ¢: L1 — Lo be a K-algebra
homomorphism, and for @ € [y, let o and o' be two lifts of & to B;. Then oo — o’ € q1,
and this implies that p(a — /) € o(q1) = ©(B1) N g2 C g2, and therefore p(a) = p(o/).
The identity ¢(q1) = @(B1) N g2 C g2 follows from the fact that ¢ restricts to an injective
ring homomorphism B; — By and By /¢(B1) is a finite extension of DVRs in which qq lies
over the prime p(q1) of p(B1). It’s easy to see that F sends identity morphisms to identity
morphisms and that it is compatible with composition, so we have a well-defined functor.
To show that F is an equivalence of categories we need to prove two things:

'Recall from Definition 5.37 that separability of the residue field extension is part of the definition of an
unramified extension. If the residue field is perfect (as when K is a local field, for example), the residue field
extension is automatically separable, but in general it need not be, even when L/K is unramified.
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e F is essentially surjective: each separable [/k is isomorphic to the residue field of some
unramified L/K

e F is full and faithful: the induced map Hompg (L1, L2) — Homy(l1,12) is a bijection.

We first show that F is essentially surjective. Given a finite separable extension [/k, we
may apply the primitive element theorem to write

k[z]
(9(x))’
for some @ € [ whose minimal polynomial § € k[x] is necessarily monic, irreducible, separa-

ble, and of degree n := [l : k]. Let g € A[x] be any monic lift of g; then g is also irreducible,
separable, and of degree n. Now let

l~k(a) =

where « is the image of x in K[z]|/g(x). Then L/K is a finite separable extension, and by
Corollary 10.13, (p, g(«)) is the unique maximal ideal of Afa] (since g is irreducible) and
B Ald | AlR] (4],
a  (hgl@)  (pg(x)  (3(x))
We thus have [L: K] = degg = [l : k] = n, and it follows that L/K is an unramified
extension of degree n = f := [[:k]: the ramification index of q is necessarily e = n/f =1,
and the extension [/k is separable by assumption (so in fact B = A[a], by Theorem 10.14).
We now show that the functor F is full and faithful. Given finite unramified extensions
L1, Lo with valuation rings By, B and residue fields I, ls, we have induced maps

HomK(Ll, LQ) ;> HOHlA(Bl, BQ) — Homk(ll, l2)

The first map is given by restriction from L; to Bj, and since tensoring with K gives an
inverse map in the other direction, it is a bijection. We need to show that the same is
true of the second map, which sends ¢: By — By to the k-homomorphism @ that sends
@ € l; = B1/q1 to the reduction of p(a) modulo q2, where « is any lift of a.

As above, use the primitive element theorem to write l; = k(&) = k[z]/(g(z)) for some
a € ;. If we now lift @ to € By, we must have L1 = K(«), since [Ly : K] = [l; : k] is
equal to the degree of the minimal polynomial g of @ which cannot be less than the degree
of the minimal polynomial g of « (both are monic). Moreover, we also have B; = Ala],
since this is true of the valuation ring of every finite unramified extension in our category.

Each A-module homomorphism in

Alz]
Homy (B1, Ba) = Homy (,Bg)
(9(z))
is uniquely determined by the image of x in Bs. Thus gives us a bijection between
Hom 4 (B, B2) and the roots of g in By. Similarly, each k-algebra homomorphism in

k[z]
Homk(ll, l2) = Homk ( - ,l2>
(9(x))
is uniquely determined by the image of x in Iz, and there is a bijection between Homy (1, l2)
and the roots of g in ls. Now g is separable, so every root of g in ls = Bs/q2 lifts to a unique
root of g in By, by Hensel’s Lemma 9.15. Thus the map Hom4 (B, Ba) — Homg/(l1,l2)
induced by F is a bijection. O
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Remark 10.16. In the proof above we actually only used the fact that L; /K is unramified.
The map Homg (L, Ly) — Homg(l1,12) is a bijection even if Ls/K is not unramified.

Let us note the following corollary, which follows from our proof of Theorem 10.15.

Corollary 10.17. Assume AK LB with A a complete DVR with residue field k. Then L/K
is unramified if and only if B = Ala| for some o € L whose minimal polynomial g € Alx]
has separable image g in k[z].

Proof. The forward direction was proved in the proof of the theorem, and for the reverse
direction note that g must be irreducible, since otherwise we could use Hensel’s lemma to
lift a non-trivial factorization of g to a non-trivial factorization of g, so the residue field
extension is separable and has the same degree as L/ K, so L/K is unramified. O

Corollary 10.18. Let A be a complete DVR with fraction field K and residue field k, and
let ¢, be a primitive nth root of unity in some algebraic closure of K, with n prime to the
characteristic of k. The extension K((,)/K is unramified.

Proof. The field K ((,) is the splitting field of f(x) = 2™ — 1 over K. The image f of f in
k[z] is separable when p { n, since ged(f, f') # 1 only when f’ = nz" ! is zero, equivalently,
only when p|n. When f is separable, so are all of its divisors, including the reduction of
the minimal polynomial of (,, which must be irreducible since otherwise we could obtain a
contradiction by lifting a non-trivial factorization via Hensel’s lemma. It follows that the

residue field of K((,) is a separable extension of k, thus K((,)/K is unramified. O

When the residue field k is finite (always the case if K is a local field), we can give a
precise description of the finite unramified extensions L/K.

Corollary 10.19. Let A be a complete DVR with fraction field K and finite residue field Fy,
and let L be a degree n extension of K. Then L/K is unramified if and only if L ~ K ((gn—1).
When this holds, Al(qn—1] is the integral closure of A in L and L/K is a Galois extension
with Gal(L/K) ~ Z/nZ.

Proof. The reverse implication is implied by Corollary 10.18; note that K((4»—1) has de-
gree n over K because its residue field is the splitting field of 27" ~1 — 1 over Fy, which is
an extension of degree n (indeed, one can take this as the definition of Fyn).

Now suppose L/K is unramified. The residue field has degree n and is thus isomorphic
to Fyn, so its multiplicative group is a cyclic of order ¢" — 1 generated by some &. The
minimal polynomial g € F,[z] of @ divides x7" ! — 1, and since g is irreducible, it is coprime
to the quotient (z7"~! — 1)/g. By Hensel’s Lemma 9.19, we can lift § to a polynomial
g € Alz] that divides 29"~ — 1 € A[x], and by Hensel’s Lemma 9.15 we can lift & to a root
a of g, in which case « is also a root of 29" ~! — 1; it must be a primitive (¢" — 1)-root of
unity because its reduction « is.

Let B be the integral closure of A in L. We have B ~ A[(;n_1] by Theorem 10.14,
and L is the splitting field of 29"~ — 1, since its residue field Fgn is (we can lift the
factorization of 29" ~! —1 from Fn to L via Hensel’s lemma). It follows that L/K is Galois,
and the bijection between (¢ — 1)-roots of unity in L and F;» induces an isomorphism
Gal(L/K) ~ Gal(l/k) = Gal(Fyn /F,) ~ Z/nZ. O

Corollary 10.20. Let A be a complete DVR with fraction field K and finite residue field
of characteristic p, and suppose that K does not contain a primitive pth root of unity. The
extension K((y)/K is ramified if and only if p divides m.
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Proof. 1f p does not divide m then Corollary 10.18 implies that K ((»,)/K is unramified. If p
divides m then K ((,) contains K ((,), which by Corollary 10.19 is unramified if and only if
K((p) ~ K(Cpr—1) with n == [K({,) : K], which occurs if and only if p divides p"™ — 1 (since
(p € K), which it does not; thus K((,) and therefore K((;,) is ramified when p|m. O

Example 10.21. Consider A = Z,, K = Q,, k =, and fix E, and @p. For each positive
integer n, the finite field F, has a unique extension of degree n in F,, namely, F,». Thus
for each positive integer n, the local field Q, has a unique unramified extension of degree n;
it can be explicitly constructed by adjoining a primitive root of unity (yn_1 to Q,. The
element (1 will necessarily have minimal polynomial of degree n dividing Pl -1,

Another useful consequence of Theorem 10.15 that applies when the residue field is finite
is that the norm map Ny /i restricts to a surjective map B* — A* on unit groups; in fact,
this property characterizes unramified extensions.

Theorem 10.22. Assume AKLB with A a complete DVR with finite residue field. Then
L/K is unramified if and only if Ny, (B*) = A*.

Proof. See Problem Set 6. O

Definition 10.23. Let L/K be a separable extension. The mazimal unramified extension
of K in L is the subfield
U EcL

KCECL
E/K fin. unram.

where the union is over finite unramified subextensions F/K. When L = K*P is the
separable closure of K, this is the mazimal unramified extension of K, denoted K" .

Example 10.24. The field Q)™ is an infinite extension of Q, with Galois group

Gal(Qp™/Qp) = Gal(F,/F,) = lim Gal(Fyn /F,) =~ im Z/nZ =: 2,
n n
where the inverse limit is taken over positive integers n ordered by divisibility. The ring 7
is the profinite completion of Z. The field Q)™ has value group Z and residue field F,.

Theorem 10.25. Assume AKLB with A a complete DVR and separable residue field exten-
sionl/k. Leter i and fr i be the ramification index and residue field degrees, respectively.
The following hold:

(i) There is a unique intermediate field extension E/K that contains every unramified
extension of K in L and it has degree [E : K] = fr k.

(ii) The extension L/E is totally ramified and has degree [L : E] = e, k.

(iii) If L/K is Galois then Gal(L/E) = I/, where I}, ;i = I is the inertia subgroup of
Gal(L/K) for the unique prime q of B.

Proof. (i) Let E/K be the finite unramified extension of K in L corresponding to the finite
separable extension I/k given by Theorem 10.15; then [E : K] = [l : k] = f1, /i as desired.
The maximal unramified extension E’ of K in L has the same residue field [ as L, which
is also the residue field of E, and equivalence of categories given by Theorem 10.15 implies
that the trivial isomorphism ¢ ~ ¢ corresponds to an isomorphism E ~ E’ that allows us to
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view E as a subfield of L; the same applies to any unramified extension of K with residue
field I, so F is unique up to isomorphism.

(ii) We have fr g =[l:l]=1,s0epyp=[L: E]=[L: K|/[E: K] =ep/k.

(iii) By Proposition 7.13, we have I,/ = Gal(L/E) N Iy, and these three groups all
have the same order ey so they must coincide. O
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