
18.785 Number theory I
Lecture #22

Fall 2019
11/25/2019

22 The main theorems of global class field theory

In this lecture we refine the correspondence between quotients of ray class groups and
subfields of ray class fields given by the Artin map so that we can more precisely state the
main theorems of global class field theory (for number fields) in their ideal-theoretic form.
Let us first recall the notational setup.

We have a number field K and a modulus m : MK → Z≥0 that we view as a formal
product over the places of K; we may write m = m0m∞, where m0 :=

∏
pm(p) is a product

over primes (finite places) of K and m∞ :=
∏
v|∞ v

m(v) defines a subset of the real places
of K (recall that for v|∞ we have m(v) ≤ 1 with m(v) = 0 if v is not real). The moduli for K
are partially ordered by the divisibility relation m|n, which holds if and only if m(v) ≤ n(v)
for all v ∈MK . We then define

• ImK ⊆ IK , the subgroup of fractional ideals prime to m (equivalently, m0);

• Km ⊆ K×, the subgroup of α ∈ K× for which (α) ∈ ImK ;

• Km,1 ⊆ Km, the subgroup of α ∈ Km for which vp(α− 1) ≥ vp(m0) for p|m0

and αv > 0 for v|m∞ (here αv ∈ R is the image of α under the real-embedding v);

• Rm
K ⊆ ImK the subgroup of ideals (α) ∈ ImK with α ∈ Km,1 (the ray group for m);

• ClmK := ImK/Rm
K (the ray class group for m);

• Spl(L) := Spl(L/K), the set of primes of K that split completely in an extension L;

• ψm
L/K : ImK → Gal(L/K), Artin map of an abelian extension L/K unramified at p - m.

In the previous lecture we defined the ray class field of K for the modulus m as a finite
abelian extension L/K unramified at all p - m such that the kernel of the Artin map ψm

L/K
is equal to the the ray group Rm

K . We did not prove that such fields exist, but we did prove
that there is at most one of them; see Theorem 21.20. Let K(m) denote this field.

Assuming the ray class field K(m) exists, it follows from the surjectivity of the Artin
map ψm

K(m)/K : ImK → Gal(K(m)/K) proved in Theorem 21.19 that we have a canonical
isomorphism

ClmK = ImK/Rm
K ' Gal(K(m)/K)

between the ray class group and the Galois group of the ray class field. More generally, if L
is any intermediate field between K and K(m), the kernel of the Artin map is a subgroup
C ⊆ ImK that contains the ray group

Rm
K ⊆ C ⊆ ImK ,

and we have an isomorphism

ImK/C ' ClmK/C ' Gal(L/K)

where C denotes the image of C in ClmK = ImK/Rm
K under the quotient map.

Thus if L is a subfield of K(m) then kerψm
L/K is a subgroup of ImK containing Rm

K

(a congruence subgroup, as defined below). To prove that a given abelian extension L/K
lies in a ray class field, it is enough to show that there exists a modulus m for K such that
Rm
K ⊆ kerψm

L/K , since we then have Spl(K(m)) - Spl(L) and L ⊆ K(m), by Theorem 21.18.
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In this lecture we want to better understand the structure of congruence subgroups, and
to specify a minimal modulus m for which we should expect a given finite abelian extension
L/K to lie in a subfield of the ray class field K(m); this minimal modulus is known as the
conductor of the extension. So far we have not addressed this question even for K = Q (but
see Problem Set 10); our proof of the Kronecker-Weber theorem showed that every abelian
extension lies in some cyclotomic field Q(ζm), but we made no attempt to determine such
an integer m (or more precisely, a modulus m of the form m = (m)∞ or m = (m)).

22.1 Congruence subgroups

Our presentation of congruence subgroups in this section follows [1, 3.3], but our notation
differs slightly.

Definition 22.1. Let K be a number field and let m be a modulus for K. A congruence
subgroup for the modulus m is a subgroup C of ImK that contains Rm

K . We use C to denote
the image of C in ImK/Rm

K = ClmK under the quotient map.

As explained above, congruence subgroups are precisely the groups we expect to arise as
the kernel of an Artin map ψm

L/K : ImK → Gal(L/K) associated to a finite abelian extension

L/K, for a suitable choice of modulus m. The choice of m is critical; as can be seen in
Example 22.2 below, kerψm

L/K need not be a congruence subgroup for the modulus m; there
are constraints on the modulus m that must be satisfied beyond the basic requirement that
m must be divisible by all the primes of K that ramify in L (so that ψm

L/K is defined).

Example 22.2. Let K = Q, and consider the cyclic cubic extension L := Q[x]/(x3−3x−1),
which is ramified only at 3. The Artin map ψm

L/K is well-defined for any modulus m divisible

by (3). The ray class field for m = (3) is Q(ζ3)
+ = Q, and the ray class field for m = (3)∞ is

Q(ζ3) = Q(
√
−3), neither of which contains L, so kerψm

L/K does not contain Rm
K for either

of these moduli and is not a congruence subgroup. On the other hand, L is equal to Q(ζ9)
+,

the ray class field for m = (9), so kerψm
L/K contains (and is equal to) Rm

K , and is thus a

congruence subgroup for the modulus m = (9).

If kerψm
L/K is a congruence subgroup for the modulus m, then kerψn

L/K is a congruence
subgroup for each modulus n divisible by m. If m divides n then Rn

K ⊆ Rm
K and ψn

L/K is
the restriction of ψm

L/K to InK , which contains Rn
K . If m and n are supported on the same

primes, then ImK = InK and ψm
L/K = ψn

L/K , but the ray groups Rm
K and Rn

K may differ.
To deal with these complications, we define an equivalence relation on congruence sub-

groups and show that each equivalence class has a canonical representative whose modulus
divides the modulus of every equivalent congruence subgroup.

Definition 22.3. Let K be a number field with moduli m1 and m2. If C1 is a congruence
subgroup for m1 and C2 is a congruence subgroup for m2, then we say that (C1,m1) and
(C2,m2) are equivalent and write (C1,m1) ∼ (C2,m2) whenever

Im1
K ∩ C2 = Im2

K ∩ C1.

Note that when m1 = m2 this reduces to C1 = C2.

Proposition 22.4. Let K be a number field. The relation (C1,m1) ∼ (C2,m2) is an equiv-
alence relation. If (C1,m1) ∼ (C2,m2) then Im1

K /C1 ' Im2
K /C2 are related by a canonical

isomorphism that preserves cosets of fractional ideals prime to both m1 and m2.
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Proof. The relation ∼ is clearly symmetric, and reflexive. To show that it is transitive, let
C1, C2, C3 be congruence subgroups for moduli m1,m2,m3 and suppose (C1,m1) ∼ (C2,m2)
and (C2,m2) ∼ (C3,m3). Let I ∈ Im3

K ∩ C1 and pick α ∈ Km1m3,1 so that αI ∈ Im1m2m3
K (this

is possible by Lemma 21.7 and Theorem 8.5). Then (α) ∈ Rm1m3
K ⊆ Rm1

K ⊆ C1 and I ⊆ C1,
so αI ∈ C1, and we also have αI ∈ Im1m2m3

K ⊆ Im2
K , so

αI ∈ Im2
K ∩ C1 = Im1

K ∩ C2 ⊆ C2,

since C1 ∼ C2, and αI ∈ Im1m2m3
K ⊆ Im3

K , so

αI ∈ Im3
K ∩ C2 = Im2

K ∩ C3 ⊆ C3,

since C2 ∼ C3. We have (α) ∈ Rm1m3
K ⊆ Rm3

K , so (α) ∈ C3 and therefore (α)−1 ∈ C3, since C3
is a group. Thus α−1αI = I ∈ C3, and we also have I ∈ C1 ⊆ Im1

K , so I ∈ Im1
K ∩ C3. Since

I ∈ Im3
K ∩ C1 was chosen arbitrarily, this proves that

Im3
K ∩ C1 ⊆ I

m1
K ∩ C3.

The reverse inclusion follows by symmetry, so (C1,m1) ∼ (C3,m3) as desired.
For the last statement, for any fractional ideal I ∈ Im1

K we can pick α ∈ Km1,1 so that
αI ∈ Im2

K (via Lemma 21.7 and Theorem 8.5). The image of αI in Im2
K /C2 does not depend on

the choice of α, since for any α′ ∈ Km1,1 with α′I ∈ Im2
K we have (αI)/(α′I) = (α/α′) ∈ Im2

K

and (α/α′) ∈ Rm1
K , so (α/α′) ∈ Im2

K ∩ R
m1
K = Im1

K ∩ R
m2
K ⊆ Rm2

K . This defines a group
homomorphism ϕ : Im1

K → I
m2
K /C2. For I ∈ C1, we have αI ∈ Im2

K ∩ C1 = Im1
K ∩ C2 ⊆ C2, but

for I ∈ Im1
K − C1 we have αI ∈ Im2

K − C1 and therefore αI 6∈ C2, so kerϕ = C1. It follows
that ϕ induces an injective homomorphism Im1

K /C1 → Im2
K /C2, and by symmetry we have

an injective homomorphism in the opposite direction, so Im1
K /C1 ' Im2

K /C2 as claimed.
This isomorphism is independent of the choice of α used to define it (hence canonical),

and for fractional ideals I coprime to both m1 and m2 we can choose α = 1, in which case
the coset of I in Im1

K /C1 will be identified with the coset of I in Im2
K /C2.

We now observe that if C is a congruence subgroup for two moduli m1 and m2, then
(C,m1) ∼ (C,m2). In particular, each subgroup of IK lies in at most one equivalence class
of congruence subgroups. We can thus view the equivalence relation (C1,m1) ∼ (C2,m2) as
an equivalence relation on the congruence subgroups of IK and write C1 ∼ C2 without ambi-
guity. It follows from Proposition 22.4 that each equivalence class of congruence subgroups
uniquely determines a finite abelian group that is the quotient of a ray class group.

Within an equivalence class of congruence subgroups there can be at most one con-
gruence subgroup for each modulus (since C1 ∼ C2 ⇔ C1 = C2 whenever C1 and C2 are
congruence subgroups for the same modulus). The following lemma gives a criterion for
determining when there exists a congruence subgroup of a given modulus within a given
equivalence class.

Lemma 22.5. Let C1 be a congruence subgroup of modulus m1 for a number field K. There
exists a congruence subgroup C2 of modulus m2|m1 equivalent to C1 if and only if

Im1
K ∩R

m2
K ⊆ C1,

in which case C2 = C1Rm2
K .
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Proof. Note that m2|m1 implies Im1
K ⊆ I

m2
K , so C1 ⊆ Im1

K ⊆ I
m2
K .

Suppose C2 ∼ C1 has modulus m2. Then Im1
K ∩ C2 = Im2

K ∩ C1 = C1, and Rm2
K ⊆ C2, so

Im1
K ∩ R

m2
K ⊆ C1 as claimed. Now suppose Im1

K ∩ R
m2
K ⊆ C1, and let C2 := C1Rm2

K . Then C2
is a congruence subgroup of modulus m2 and we have

Im2
K ∩ C1 = C1 = C1(Im1

K ∩R
m2
K ) = Im1

K ∩ C1R
m2
K = Im1

K ∩ C2,

so C1 ∼ C2. The equivalence class of C1 contains at most one congruence subgroup of
modulus m2, so if one exists it must be C2 = C1Rm2

K .

Proposition 22.6. Let C1 ∼ C2 be congruence subgroups of modulus m1 and m2, respec-
tively. There exists a congruence subgroup C ∼ C1 ∼ C2 with modulus n := gcd(m1,m2).

Proof. Put m := lcm(m1,m2) and D := Im2
K ∩ C1 = Im1

K ∩ C2; then

Rm
K = Rm1

K ∩R
m2
K ⊆ D ⊆ I

m
K ,

so D is a congruence subgroup of modulus m, and we have

ImK ∩R
m1
K ⊆ D and ImK ∩R

m2
K ⊆ D,

so D ∼ C1 ∼ C2, by Lemma 22.5. To prove the existence of an equivalent congruence
subgroup C of modulus n it suffices to show ImK ∩Rn

K ⊆ D (again by Lemma 22.5).
So let a = (α) ∈ ImK ∩ Rn

K , and choose β ∈ Km ∩ Km2,1 so that αβ ∈ Km1,1 (this is
possible by Theorem 8.5 because m = lcm(m1,m2) and n = gcd(m1,m2)). Then (β) ∈ D
and βa ∈ ImK ∩ R

m1
K ⊆ D, so β−1βa = a ∈ D. Thus ImK ∩ Rn

K ⊆ D and therefore C = DRn
K

is a congruence subgroup of modulus n equivalent to D ∼ C1 ∼ C2.

Corollary 22.7. Let C be a congruence subgroup of modulus m for a number field K. There
is a unique congruence subgroup in the equivalence class of C whose modulus c divides the
modulus of every congruence subgroup equivalent to C.

Definition 22.8. Let C be a congruence subgroup for a number field K. The unique
modulus c := c(C) given by Corollary 22.7 is the conductor of C, and we say that C is
primitive if C = CRc

K (the unique congruence subgroup of modulus c equivalent to C).

Proposition 22.9. Let C be a primitive congruence subgroup of modulus m for a number
field K. Then m is the conductor of every congruence subgroup of modulus m contained
in C; in particular, m is the conductor of Rm

K .

Proof. Let C0 ⊆ C be a congruence subgroup of modulus m and let c be its conductor. Then
c|m and ImK ∩ Rc

K ⊆ C0 ⊆ C, by Lemma 22.5, and this implies that there is a congruence
subgroup of modulus c equivalent to C, and therefore m|c, so c = m.

The proposition implies that a modulus m occurs as a conductor if and only if Rm
K is

primitive. This does not always hold: consider K = Q and m = (2), for example; the

conductor of R(2)
Q = I(2)Q is (1), since R(2)

Q ∩ I
(1)
Q = I(1)Q ∩ I

(2)
Q implies R(2)

Q ∼ I
(1)
Q . Thus (2)

is not the conductor of any congruence subgroup for Q.
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22.2 Ray class characters

We now want to prove a generalization of Dirichlet’s theorem on primes in arithmetic
progressions. Given a congruence subgroup C for a modulus m we would like to compute
the Dirichlet density d(C) := d({p ∈ C}) of the set of prime ideals p ∈ ImK that lie in C. We
first need to generalize our notion of a Dirichlet character.

Definition 22.10. Let K be a number field and let χ : IK → C be a totally multiplicative
function with finite image; so χ(OK) = 1, χ(IJ) = χ(I)χ(J) for all I, J ∈ IK , and χ
restricts to a homomorphism from a subgroup of IK to a finite subgroup of U(1) whose
kernel we denote kerχ. If m is a modulus for K such that χ−1(U(1)) = ImK and Rm

K ⊆ kerχ,
then χ is a ray class character of modulus m and its kernel is a congruence subgroup of
modulus m. Equivalently, χ is the extension by zero of a character of the finite abelian
group ClmK = ImK/Rm

K defined by setting χ(I) = 0 for I 6∈ ImK .

Example 22.11. For K = Q there is a one-to-one correspondence between Dirichlet char-
acters χ : Z → C and ray class characters χ′ : IQ → C with χ(a) = χ′((a)) for all a ∈ Z≥1.
Each Dirichlet character χ of modulus m corresponds to a ray class character of modulus
m = (m)∞ whose conductor divides (m) if and only if χ is an even Dirichlet character,
meaning that χ(−1) = 1.

Definition 22.12. Let χ1, χ2 be ray class characters of moduli m1,m2 of a number field K,
with m1|m2. If χ2(I) = χ1(I) for all I ∈ Im2

K , then χ2 is induced by χ1. A ray class character
is primitive if it is not induced by any ray class character other than itself.

Definition 22.13. The conductor of a ray class character χ is the conductor c(χ) := c(kerχ)
of its kernel (as a congruence subgroup).

Theorem 22.14. A ray class character is primitive if and only if its kernel is primitive.
Every ray class character χ is induced by a unique primitive ray class character χ̃.

Proof. Let χ be a ray class character of modulus m, let κ : ImK/(kerχ) → U(1) be the
group character induced by χ, and let C be the primitive congruence subgroup equivalent
to kerχ with modulus c = c(χ) dividing m given by Corollary 22.7. By Proposition 22.4,
we have a canonical isomorphism ϕ : IcK/C

∼→ ImK/(kerχ) that we can use to define a ray
class character χ̃ of modulus c as the extension by zero of the character κ ◦ ϕ of IcK/C.
The isomorphism ϕ preserves cosets of fractional ideals in ImK ⊆ IcK , so χ̃(I) = χ(I) for all
I ∈ ImK and χ is induced by χ̃.

If χ2 is a ray class character of conductor m2 induced by a ray class character χ1 of
conductor m1, then kerχ1 ∩ Im2

K = kerχ2 = kerχ2 ∩ Im1
K and kerχ1 ∼ kerχ2, and we also

note that if χ1 6= χ2 then Im1
K 6= I

m2
K and m1 6= m2. It follows that χ̃ is primitive, it is the

unique primitive ray class character that induces χ. Thus χ is primitive if and only if it is
equal to χ̃, which holds if and only if kerχ = ker χ̃ is primitive.

Theorem 22.14 is a direct generalization of Theorem 18.13 for Dirichlet characters. For a
modulus m of K we use X(m) to denote the set of primitive ray class characters of conductor
dividing m, which we note is in bijection with the character group of ClmK , and thus has a
group structure given by χ̃1χ̃2 = χ̃1χ2. Indeed, for each character of ClmK , its extension by
zero is a ray class character χ of modulus m induced by a primitive ray class character χ̃
whose conductor divides m, and each primitive ray class character χ̃ of conductor dividing
m induces a ray class character χ of modulus m that determines a character of ClmK ; these
two maps are inverses, hence bijections. This generalizes Corollary 18.16.
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Definition 22.15. A ray class character χ is principal if kerχ = χ−1(U(1)). We use 1 to
denote the unique primitive principal ray class character.

Remark 22.16. For Dirichlet characters, 1 is the unique Dirichlet character of conductor 1,
but for ray class characters this holds only when the class group ClK is trivial (as when
K = Q). In general, the extension by zero of any character of ClK is a ray class character
of conductor (1) and need not be principal (but is necessarily primitive).

Like Dirichlet characters, each ray class character has an associated L-function.

Definition 22.17. The Weber L-function L(s, χ) of a ray class character χ for a number
field K is the complex function

L(s, χ) :=
∏
p

(
1− χ(p)N(p)−s

)−1
=
∑
a

χ(a)N(a)−s,

where the the product is over prime ideals of OK and the sum is over nonzero OK-ideals;
the product and sum both converge to a non-vanishing holomorphic function on Re(s) > 1
(this follows from comparison with the Dedekind zeta function ζK(s), since |χ(a)| ≤ 1).

Example 22.18. For K = Q, Weber L-functions are Dirichlet L-functions. For any number
field K, the Weber L-function for 1 is the Dedekind zeta function: L(s,1) = ζK(s).

More generally, we have the following theorem, which is analogous to Theorem 19.15
but avoids the need to assume the existence of a ray class field.

Proposition 22.19. Let χ be a ray class character of modulus m for a number field K of
degree n. Then L(s, χ) extends to a meromorphic function on Re(s) > 1 − 1

n that has at
most a simple pole at s = 1 and is holomorphic if χ is non-principal.

Proof. Associated to each ray class γ ∈ ClmK we have a Dirichlet series

ζK,γ(s) :=
∑
a∈γ

N(a)−s

that is holomorphic on Re(s) > 1. For the trivial modulus m, our proof of analytic class
number formula (Theorem 19.12) implies that ζK,γ(s) has a meromorphic continuation to
1 − 1

n with a simple pole at s = 1 and residue ρ = 2r(2π)2RK/(ωK |DK |1/2), independent
of γ. Recall that in our proof of Theorem 19.8 we treated each γ ∈ ClK = cl(OK) separately
and obtained the same value of ρ for each γ, leading to the residue ρK = hKρ that appears
in Theorem 19.12.

The same proof works for ClmK , mutatis mutandi : replace covol(OK) with covol(m0),
replace the regulator RK = covol(π(Log(O×K))) with Rm

K := covol(π(Log(O×K ∩Km,1))), and
replace wK = #µK with wm

K := #(µK ∩Km,1). The exact value of ρ is not important to us
here, the key point is that ζK,γ(s) has a meromorphic continuation to Re(s) > 1 − 1

n with
a simple pole at s = 1 whose residue ρ depends only on K and m (not γ).

We then have

L(s, χ) =
∑
γ∈ClmK

χ(γ)ζK,γ(s)

=
∑
γ∈ClmK

χ(γ)
(
ζK,γ(s)− ρ ζ(s)

)
+
∑
γ∈ClmK

χ(γ)ρ ζ(s),
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The first sum is a finite sum of functions holomorphic on Re(s) > 1 − 1
n (since ζ(s) has

a simple pole at s = 1 with residue 1), and the second sum vanishes whenever χ is non-
principal (by Corollary 18.37). The proposition follows.

We now prove a generalization of Dirichlet’s theorem on primes on arithmetic progres-
sions for arbitrary number fields. We proved the nonvanishing of Dirichlet L-functions
L(1, χ) for non-principal χ using the analytic class number formula for Q(ζm), the ray class
field Q((m)∞), by writing the Dedekind zeta function for Q(ζm) as a product of Dirichlet
L-functions (see Theorem 19.15). A similar approach works for Weber L-functions, assum-
ing the existence of ray class fields K(m): the Dedekind zeta function of K(m) is equal to
the product of the Weber L-functions for χ ∈ X(m). But we will prove the non-vanishing
of L(1, χ) for non-principal χ without assuming the existence of ray class fields.

For a congruence subgroup C, let X(C) denote the set of primitive ray class characters
whose kernels contain C. If C is a congruence subgroup of modulus m then X(C) is a
subgroup of X(m) isomorphic to the character group of ImK/C and we may view X(C) as
the the character group of ImK/C.

Theorem 22.20. Let C be a congruence subgroup of modulus m for a number field K and
let n := [ImK : C]. The set of primes {p ∈ C} has Dirichlet density

d(C) =

{
1
n if L(1, χ) 6= 0 for all χ 6= 1 in X(C),
0 otherwise.

In fact d(C) = 1
n always holds, as we will prove in Corollary 22.22 below, but it is easier

to prove the theorem as stated and then use this to derive the corollary.

Proof. We proceed as in the proof of Dirichlet’s theorem on primes in arithmetic progressions
(see §18.4). We first construct the indicator function for the set {p ∈ C}:

1

n

∑
χ∈X(C)

χ(p) =

{
1 if p ∈ C,
0 otherwise.

Note that summing over χ ∈ X(C) is equivalent to summing over the character group of
ImK/C, so Corollary 18.37 applies: therefore

∑
χ(p) = 0 unless the image of p in ImK/C is the

identity, meaning that p ∈ C, in which case
∑
χ(p) = #X(C) = n.

As s→ 1+ we have
logL(s, χ) ∼

∑
p

χ(p)N(p)−s,

and therefore ∑
χ∈X(C)

logL(s, χ) ∼
∑

χ∈X(C)

∑
p

χ(p)N(p)−s

∼ n
∑
p∈C

N(p)−s.

By Proposition 22.19, we may write

L(s, χ) = (s− 1)e(χ)g(s)
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for some function g(s) that is holomorphic and nonvanishing on a neighborhood of 1, where
e(χ) := ords=1L(s, χ) is −1 when χ = 1, and e(χ) ≥ 0 otherwise. We have

log
1

s− 1
−
∑
χ6=1

e(χ) log
1

s− 1
∼ n

∑
p∈C

N(p)−s.

Dividing both sides by n log 1
s−1 yields

1−
∑

χ6=1 e(χ)

n
∼
∑

p∈C N(p)−s

log 1
s−1

(as s→ 1+),

thus

d(C) = lim
s→1+

∑
p∈C N(p)−s

log 1
s−1

=
1−

∑
χ6=1 e(χ)

n
.

The e(χ) are integers and the Dirichlet density is nonnegative, so either e(χ) = 0 for all
χ 6= 1, in which case L(1, χ) 6= 0 for all χ 6= 1 and d(C) = 1

n , or e(χ) = 1 for exactly one of
the χ 6= 1 and d(C) = 0. (in fact this never happens, as noted above).

Proposition 22.21. Let C be a congruence subgroup of modulus m for a number field K
and let n := [ImK :C]. For every I ∈ ImK the set {p ∈ IC} has Dirichlet density

d(IC) =

{
1
n if L(1, χ) 6= 0 for all characters χ 6= 1 in X(C),
0 otherwise.

Proof. The proof is the same as in Theorem 22.20, except we now use the indicator function

1

n

∑
χ∈X(C)

χ(I)−1χ(p) =

{
1 if p ∈ IC,
0 otherwise,

and obtain∑
χ∈X(C)

χ(I)−1 logL(s, χ) ∼
∑

χ∈X(C)

∑
p

χ(I)−1χ(p)N(p)−s ∼ n
∑
p∈IC

N(p)−s.

The rest of the proof is the same.

Corollary 22.22. Let C be a congruence subgroup of modulus m for a number field K and
let n := [ImK :C]. For every ideal I ∈ ImK the set {p ∈ IC} has Dirichlet density 1/n, and for
every χ 6= 1 in X(C) we have L(1, χ) 6= 0.

Proof. Let I1, . . . , In ∈ ImK be a complete set of coset representatives for C ⊆ ImK . All
but finitely many primes p of K lie in ImK , hence in one of the cosets IjC partitioning ImK ,
therefore

d(I1C) + · · ·+ d(InC) = 1.

By Proposition 22.21, every term in this sum is either 0 or 1/n, and the equality implies
they must all be equal to 1/n, which then implies L(1, χ) 6= 0 for all χ 6= 1 in X(C).
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Corollary 22.23. Let L/K be an abelian extension of number fields and let C be a congru-
ence subgroup for a modulus m of K. If Spl(L) - {p ∈ C} then

[ImK : C] ≤ [L : K],

with equality whenever Spl(L) ∼ {p ∈ C}.

Proof. We know from Theorem 21.15 that Spl(L) has polar density 1/[L :K], and this is also
its Dirichlet density, by Proposition 21.12. The set {p ∈ C} has Dirichlet density 1/[ImK : C],
by Theorem 22.22, and Spl(L) - {p ∈ C} (by assumption), so

1

[L : K]
= d(Spl(L)) ≤ d(C) =

1

[ImK : C]
.

22.3 The conductor of an abelian extension

We now introduce another notion of conductor, one attached to an abelian extension of
number fields, which is defined as a product of local conductors attached to corresponding
abelian extensions of the local field Kv for each place v ∈MK .

Definition 22.24. Let L/K be a finite abelian extension of local fields. The conductor
c(L/K) is defined as follows.1 If K is archimedean then c(L/K) = 1 when K ' R and
L ' C and c(L/K) = 0 otherwise. If K is nonarchimedean and p is the maximal ideal of
its valuation ring OK , then

c(L/K) := min{n : 1 + pn ⊆ NL/K(L×)}

(here 1 + pn is a subgroup of O×K , with 1 + p0 := O×K). If L/K is a finite abelian extension
of global fields then its conductor is the modulus

c(L/K) : MK → Z
v 7→ c(Lw/Kv)

where Kv is the completion of K at v and Lw is the completion of L at a place w|v. (the
fact that L/K is Galois ensures that c(Lw/Kv) is the same for every w|v). As with any
modulus, we may view the finite part of c(L/K) as an OK-ideal and the infinite part as a
subset of ramified infinite places.

It is not hard to show that conductor is supported on ramified places (in particular, it
has finite support, as required for a modulus). More generally, we have the following.

Proposition 22.25. Let L/K be a finite abelian extension of local or global fields. For
each prime p of K we have

vp(c(L/K)) =


0 if and only if p is unramified,

1 if and only if p is ramified tamely,

≥ 2 if and only if p is ramified wildly.

Proof. See Problem Set 11.

1Many authors use f(L/K) rather than c(L/K), we use c to avoid confusion with the residue field degree.
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The finite part of the conductor of an abelian extension divides the discriminant ideal
and is divisible by the same set of primes, but the valuation of the conductor at these
primes is typically smaller than that of the discriminant. For example, the discriminant of
the extension Q(ζp)/Q is (p)p−2, but its conductor is (p)∞.

Lemma 22.26. Let L1/K and L2/K be two finite abelian extensions of a local or global
field K. If L1 ⊆ L2 then c(L1/K) divides c(L2/K).

Proof. If K ' R,C the result is clear, and for nonarchimedean local K we may apply
NL2/K(L×2 ) = NL1/K(NL2/L1

(L×2 )) ⊆ NL1/K(L×1 ). The global case follows.

22.4 Norm groups

We can now identify a candidate for the kernel of the Artin map ψm
L/K : ImK → Gal(L/K).

Recall from Lecture 6 that the norm map NL/K : IL → IK can be defined by∏
i

qni
i 7→

∏
i

pnifi
i ,

where pi := qi ∩ OK and fi := [Fqi :Fpi ] is the residue field degree.

Definition 22.27. Let L/K be a finite abelian extension of number fields and let m be
a modulus for K divisible by the conductor of L/K. The norm group (or Takagi group)
associated to m is the congruence subgroup

Tm
L/K := Rm

KNL/K(ImL ),

where ImL denotes the subgroup of fractional ideals in IL that are coprime to mOL.

Proposition 22.28. Let L/K be a finite abelian extension of number fields and let m be a
modulus for K divisible by the conductor of L/K. Then kerψm

L/K ⊆ T
m
L/K .

Proof. Let p be a prime of K that lies in kerψm
L/K . Then p is coprime to m and splits

completely in L, so ep = fp = 1. There is at least one prime q of L above p, and for this
prime we have NL/K(q) = pfp = p (by Theorem 6.10), so p ∈ NL/K(ImL ) ⊆ Tm

L/K .

To prove Artin reciprocity we need to establish the reverse inclusion, which requires a
different approach (we will prove it for the trivial modulus m over the next two lectures).
But we can record the following theorem, historically known as the “first” fundamental
inequality of class field theory (in modern terminology it is typically known as the second,
even though it was proved first, by Weber).

Theorem 22.29. Let L/K be a finite abelian extension of number fields and let m be a
modulus for K divisible by the conductor of L/K. Then

[ImK : Tm
L/K ] ≤ [L : K].

Proof. Proposition 22.28 implies [ImK : Tm
L/K ] ≤ [ImK : kerψm

L/K ] = [L : K], where the

equality follows from the surjectivity of the Artin map (Theorem 21.19).
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22.5 The main theorems of class field theory (ideal-theoretic version)

We can give a more precise statement of the main theorems of class field theory. Let m be
a modulus for a number field K. The three main theorems of class field theory state that:

• Existence: The ray class field K(m) exists.

• Completeness: If L/K is finite abelian then L ⊆ K(m) if and only c(L/K) |m.
In particular, every finite abelian L/K lies in a ray class field.

• Artin reciprocity: For each subextension L/K of K(m) we have kerψm
L/K = Tm

L/K

with conductor c(L/K)|m and a canonical isomorphism ImK/Tm
L/K ' Gal(L/K).

Artin reciprocity gives us a commutative diagram of canonical bijections:

{abelian L/K with c(L/K) |m} {congruence subgroups C ⊆ ImK}

{quotients of Gal(K(m)/K)} { quotients of ClmK}

←→
L7→Tm

L/K

←→ L7→Gal(L/K) ←→ C7→ImK/C

←→

ψm
L/K

22.6 The Hilbert class field

Definition 22.30. Let K be global field. The Hilbert class field of K is the maximal un-
ramified abelian extension of K (the compositum of all finite unramified abelian extensions
of K inside a fixed separable closure of K).

While it is not obvious from the definition, it follows from the completeness theorem
of class field theory that the Hilbert class field must be the ray class field for the trivial
modulus, and in particular, that it is a finite extension of K. This is a remarkable result
(which we will prove in a later lecture), since infinite unramified extensions of number fields
do exist (they are necessarily nonabelian).

Indeed, one way to construct such an extension is by considering a tower of Hilbert class
fields. Starting with a number field K0 := K, for each integer n ≥ 0 define Kn+1 to be the
be the Hilbert class field of Kn. This yields an infinite tower of finite abelian extensions

K0 ⊆ K1 ⊆ K2 ⊆ · · · ,

and we may then consider the field L :=
⋃
nKn. There are two possibilities: either we

eventually reach a field Kn with class number 1, in which case Km = Kn for all m ≥ n and
L/K is a finite unramified extension of K, or this does not happen and L/K is an infinite
unramified extension of K (which is necessarily nonabelian). It was a longstanding open
question as to whether the latter could occur, but in 1964 Golod and Shafarevich proved
that indeed it can; in particular, the field

K0 = Q(
√
−30030) = Q(

√
−2 · 3 · 5 · 7 · 11 · 13)

is the base of an infinite tower of Hilbert class field extensions. One might ask whether one
can use an imaginary quadratic field of smaller discriminant than this. It is known that no
imaginary quadratic field of discriminant |D| ≤ 420 has an infinite Hilbert class field tower
[3]; they all stabilize at either K2 or K3.
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Extensions arising from Hilbert class field towers are necessarily solvable, since they are
towers of finite abelian extensions. One might ask whether infinite nonsolvable unramified
extensions exist. As shown by Maire [2], they do, and this can happen even when the base
field has class number one and the Hilbert class field tower is trivial. Indeed, the biquadratic
extension

Q(
√

17601097,
√

17380678572169893)

has class number one and its maximal unramified extension is an infinite extension.
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