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24 Artin reciprocity in the unramified case

Let L/K be an abelian extension of number fields. In Lecture 22 we defined the norm group
Tm
L/K

:= NL/K(ImL )Rm
K (see Definition 22.27) that we claim is equal to the kernel of the Artin

map ψm
L/K : ImK → Gal(L/K), provided that the modulus m is divisible by the conductor

of L (see Definition 22.24). We showed that Tm
L/K contains kerψm

L/K (Proposition 22.28),
and in Theorem 22.29 we proved the inequality

[ImK : Tm
L/K ] ≤ [L : K] = [ImK : kerψm

L/K ] (1)

(the equality follows from the surjectivity of the Artin map proved in Theorem 21.19). It
only remains to prove the reverse inequality

[ImK : Tm
L/K ] ≥ [L : K], (2)

which then yields an isomorphism

ImK/Tm
L/K

∼−→ Gal(L/K) (3)

induced by the Artin map. This result is known as the Artin reciprocity law.
In this lecture we will prove (2) for cyclic extensions L/K when the modulus m is trivial

(which forces L/K to be unramified), and then show that this implies the Artin reciprocity
law for all unramified abelian extensions.

24.1 Some cohomological calculations

If L/K is a finite Galois extension of global fields with Galois group G, then we can naturally
view any of the abelian groups L, L×, OL, O×L , IL, PL as G-modules.

When G = 〈σ〉 is cyclic we can compute the Tate cohomology groups of any of these
G-modules A, and their associated Herbrand quotients h(A). The Herbrand quotient is
defined as the ratio of the cardinalities of

Ĥ0(A) := Ĥ0(G,A) := coker N̂G = AG/ im N̂G =
A[σ − 1]

NG(A)
,

Ĥ0(A) := Ĥ0(G,A) := ker N̂G = AG[N̂G] =
A[NG]

(σ − 1)(A)
,

if both are finite. We can also compute Ĥ0(A) = Ĥ−1(A) ' Ĥ1(A) = H1(A) as 1-cocycles
modulo 1-coboundaries whenever it is convenient to do so. In the interest of simplifying the
notation we omit G from our notation whenever it is clear from context.

For the multiplicative groups O×L , L×, IL,PL, the norm element NG :=
∑n

i=1 σ
i corre-

sponds to the action of the field norm NL/K and ideal norm NL/K that we have previously
defined, provided that we identify the codomain of the norm map with a subgroup of its
domain. For the groups L× and O×L this simply means identifying K× and O×K as subgroups
via inclusion. For the ideal group IK we have a natural extension map IK ↪→ IL defined by
I 7→ IOL that restricts to a map PK ↪→ PL.1 Under this convention taking the norm of an

1The induced map ClK → ClL need not be injective; extensions of non-principal ideals may be principal.
Indeed, when L is the Hilbert class field every OK-ideal extends to a principal OL-ideal; this was conjectured
by Hilbert and took over 30 years to prove. You will get a chance to prove it on Problem Set 10.
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element of IL that is (the extension of) an element of IK corresponds to the map I 7→ I#G,
as it should, and IK is a subgroup of the G-invariants IGL .2

When A is multiplicative, the action of σ − 1 on a ∈ A is (σ − 1)(a) = σ(a)/a, but we
will continue to use the notation (σ− 1)(A) and A[σ− 1] to denote the image and kernel of
this action. Conversely, when A is additive, the action of NG corresponds to the trace map,
not the norm map. In order to lighten the notation, in this lecture we use N to denote both
the (relative) field norm NL/K and the ideal norm NL/K .

Theorem 24.1. Let L/K be a finite Galois extension with Galois group G := Gal(L/K),
and for any G-module A, let Ĥn(A) denote Ĥn(G,A) and let N denote the norm map NL/K .

(i) Ĥ0(L) and Ĥ1(L) are both trivial.

(ii) Ĥ0(L×) ' K×/N(L×) and Ĥ1(L×) is trivial.

Proof. (i) We have LG = K (by definition). The trace map T: L → K is not identically
zero (by Theorem 5.20, since L/K is separable), so it must be surjective, since it is K-linear.
Thus NG(L) = T(L) = K and Ĥ0(L) = K/K = 0.

Now fix α ∈ L with T(α) =
∑

τ∈G τ(α) = 1, consider a 1-cocycle f : G→ L (this means
f(στ) = f(σ) + σ(f(τ))), and put β :=

∑
τ∈G f(τ)τ(α). For all σ ∈ G we have

σ(β) =
∑
τ∈G

σ(f(τ))σ(τ(α)) =
∑
τ∈G

(f(στ)−f(σ))(στ)(α) =
∑
τ∈G

(f(τ)−f(σ))τ(α) = β−f(σ),

so f(σ) = β − σ(β). This implies f is a 1-coboundary, so Ĥ1(L) = H1(L) is trivial.
(ii) We have (L×)G = K×, so Ĥ0(L×) = K×/NGL

× = K×/N(L×). Consider any
nonzero 1-cocycle f : G → L× (now this means f(στ) = f(σ)σ(f(τ))). By Lemma 20.6,
α 7→

∑
τ∈G f(τ)τ(α) is not the zero map. Let β =

∑
τ∈G f(τ)τ(α) ∈ L× be a nonzero

element in its image. For all σ ∈ G we have

σ(β) =
∑
τ∈G

σ(f(τ))σ(τ(α)) =
∑
τ∈G

f(στ)f(σ)−1(στ)(x) = f(σ)−1
∑
τ∈G

f(τ)τ(α) = f(σ)−1β,

so f(σ) = β/σ(β). This implies f is a coboundary, so Ĥ1(L×) = H1(L×) is trivial.

Corollary 24.2 (Hilbert Theorem 90). Let L/K be a finite cyclic extension with Galois
group Gal(L/K) = 〈σ〉. Then N(α) = 1 if and only if α = β/σ(β) for some β ∈ L×.

Proof. By Theorem 23.37, Ĥ1(L×) ' Ĥ−1(L×) = Ĥ0(L×) = L×[NG]/(σ − 1)(L×), and
Theorem 24.1 implies L×[NG] = (σ − 1)(L×). The corollary follows.

Remark 24.3. “Hilbert Theorem 90” refers to Hilbert’s text on algebraic number the-
ory [1], although the result is due to Kummer. The result H1(Gal(L/K), L×) = 0 implied
by Theorem 24.1 is also often called Hilbert Theorem 90; it is due to Noether [2].

Our next goal is to compute the Herbrand quotient of O×L (in the case that L/K is a
finite cyclic extension of number fields). For this we will apply a variant of Dirichlet’s unit
theorem due to Herbrand, but first we need to discuss infinite places of number fields.

If L/K is a Galois extension of global fields, the Galois group Gal(L/K) acts on the
set of places w of L via the action w 7→ σ(w), where σ(w) is the equivalence class of the
absolute value defined by ‖α‖σ(w) := ‖σ(α)‖w. This action permutes the places w lying
above a given place v of K; if v is a finite place corresponding to a prime p of K, this is
just the usual action of the Galois group on the set {q|p}.

2Note that IG
L = IK only when L/K is unramified; see Lemma 24.8 below.
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Definition 24.4. Let L/K be a Galois extension of global fields and let w be a place of L.
The decomposition group of w is its stabilizer in Gal(L/K):

Dw := {σ ∈ Gal(L/K) : σ(w) = w}.

If w corresponds to a prime q of OL then Dw = Dq is also the decomposition group of q.

Now let L/K be a Galois extension of number fields. If we write L ' Q[x]/(f) then
we have a one-to-one correspondence between embeddings of L into C and roots of f in
C. Each embedding of L into C restricts to an embedding of K into C, and this induces
a map that sends each infinite place w of L to the infinite place v of K that w extends.
This map may send a complex place to a real place; this occurs when a pair of distinct
complex conjugate embeddings of L restrict to the same embedding of K (which must be a
real embedding). In this case we say that the place v (and w) is ramified in the extension
L/K, and define the ramification index ev := 2 when this holds (and put ev := 1 otherwise).
This notation is consistent with our notation ev := ep for finite places v corresponding to
primes p of K. Let us also define fv := 1 for v|∞ and put gv := #{w|v} so that the following
formula generalizing Corollary 7.5 holds for all places v of K:

evfvgv = [L : K].

Definition 24.5. For a Galois extension of number fields L/K we define the integers

e0(L/K) :=
∏
v-∞

ev, e∞(L/K) :=
∏
v|∞

ev, e(L/K) := e0(L/K)e∞(L/K).

Let us now write L ' K[x]/(g). Each embedding of K into C gives rise to [L : K]
distinct embeddings of L into C that extend it, one for each root of g (use the embedding
of K to view g as a polynomial in C[x], then pick a root of g in C). The transitive action
of Gal(L/K) on the roots of g induces a transitive action on these embeddings and their
corresponding places. Thus for each infinite place v of K the Galois group acts transitively
on {w|v}, and either every place w above v is ramified (this can occur only when v is
real and [L : K] is divisible by 2), or none are. It follows that each unramified place v of
K has [L : K] places w lying above it, each with trivial decomposition group Dw, while
each ramified (real) place v of K has [L : K]/2 (complex) places w lying above it, each
with decomposition group Dw of order 2 (its non-trivial element corresponds to complex
conjugation in the corresponding embeddings), and the Dw are all conjugate.

Theorem 24.6 (Herbrand unit theorem). Let L/K be a Galois extension of number
fields. Let w1, . . . , wr be the real places of L, let wr+1, . . . , wr+s be the complex places of L.
There exist ε1, . . . , εr+s ∈ O×L such that

(i) σ(εi) = εj if and only if σ(wi) = wj, for all σ ∈ Gal(L/K);

(ii) ε1, . . . , εr+s generate a finite index subgroup of O×L ;

(iii) ε1ε2 · · · εr+s = 1, and every relation among the εi is generated by this one.

Proof. Pick ε1, . . . , εr+s ∈ O×L such that ‖εi‖wj < 1 for i 6= j; the existence of such εi
follows from the strong approximation theorem that we will prove in the next lecture; the
product formula then implies ‖εi‖wi > 1. Now let αi :=

∏
σ∈Dwi

σ(εi) ∈ O×L . We have
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‖αi‖wi =
∏
σ∈Dwi

‖εi‖wi > 1 and ‖αi‖wj =
∏
σ∈Dwi

‖εi‖σ(wj) < 1, since σ ∈ Dwi fixes wi
and permutes the wj with j 6= i. Each αi is fixed by Dwi .

LetG := Gal(L/K). For i = 1, . . . , r+s, let r(i) := min{j : σ(wi) = wj for some σ ∈ G},
so that wr(i) is a distinguished representative of the G-orbit of wi. For i = 1, . . . , r + s let
βi := σ(αr(i)), where σ is any element of G such that σ(wr(i)) = wi. The value of σ(αr(i))

does not depend on the choice of σ because σ1(wr(i)) = σ2(wr(i)) if and only if σ−1
2 σ1 ∈ Dwr(i)

and αr(i) is fixed by Dwr(i)
. The βi then satisfy (i).

The βi also satisfy (ii): a product γj :=
∏
i6=j β

ni
i cannot be trivial because ‖γj‖wj < 1; in

particular, β1, . . . , βr+s−1 generate a subgroup ofO×L isomorphic to Zr+s−1 which necessarily
has finite index in O×L ' Zr+s−1 × µL (see Theorem 15.12). But we must have

∏
i β

ni
i = 1

for some tuple (n1, . . . , nr+s) ∈ Zr+s (with ni = nj whenever wi and wj lie in the same
G-orbit, since every σ ∈ G fixes 1). The set of such tuples spans a rank-1 submodule of
Zr+s from which we choose a generator (n1, . . . , nr+s) (by inverting some βi if necessary, we
can make all the ni positive if we wish). Then εi := βni

i satisfy (i), (ii), (iii) as desired.

Theorem 24.7. Let L/K be a cyclic extension of number fields with Galois group G = 〈σ〉.
The Herbrand quotient of the G-module O×L is

h(O×L ) =
e∞(L/K)

[L : K]
.

Proof. Let ε1, . . . , εr+s ∈ O×L be as in Theorem 24.6, and let A be the subgroup of O×L they
generate, viewed as a G-module. By Corollary 23.48, h(A) = h(O×L ) if either is defined,
since A has finite index in O×L , so we will compute h(A).

For each field embedding φ : K ↪→ C, let Eφ be the free Z-module with basis {ϕ|φ}
consisting of the n := [L : K] embeddings ϕ : L ↪→ C with ϕ|K = φ, equipped with the
G-action given by σ(ϕ) := ϕ◦σ. Let v be the infinite place of K corresponding to φ, and let
Av be the free Z-module with basis {w|v} consisting of places of L that extend v, equipped
with the G-action given by the action of G on {w|v}. Let π : Eφ → Av be the G-module
morphism sending each embedding ϕ|φ to the corresponding place w|v. Let m := #{w|v}
and define τ := σm; then τ is either trivial or has order 2, and in either case generates the
decomposition group Dw for all w|v (since G is abelian). We have an exact sequence

0→ kerπ −→ Eφ
π−→ Av → 0,

with kerπ = (τ − 1)Eφ. If v is unramified then kerπ = 0 and h(Av) = h(Eφ) = 1, since
Eφ ' Z[G] ' IndG(Z), by Lemma 23.43. Otherwise, order {w|v} = {w0, . . . , wm−1} so

kerπ = (τ − 1)Eφ =

 ∑
0≤i<m

ai(wi − wm+i) : ai ∈ Z

 ,

and observe that (kerπ)G = 0, since τ acts on π as negation, and (kerπ)G ' Z/2Z, since
(σ−1) kerπ = {

∑
ai(wi−wm+i) : ai ∈ Z with

∑
ai ≡ 0 mod 2} (which is killed by NG). So

in this case h(kerπ) = 1/2, and therefore h(Av) = h(Eφ)/h(kerπ) = 2, by Corollary 23.41,
and in every case we have h(Av) = ev, where ev ∈ {1, 2} is the ramification index of v.

Now consider the exact sequence of G-modules

0 −→ Z −→
⊕
v|∞

Av
ψ−→ A −→ 1
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where ψ sends each infinite place w1, . . . , wr+s of L to the corresponding ε1, . . . , εr+s ∈ A
given by Theorem 24.6 (each Av contains either n or n/2 of the wi in its Z-basis). The kernel
of ψ is the trivial G-module (

∑
iwi)Z ' Z, since we have ψ(

∑
iwi) =

∏
i εi = 1 and no other

relations among the εi, by Theorem 24.6. We have h(Z) = #G = [L : K], by Corollary 23.46,
and h(

⊕
Av) =

∏
h(Av) =

∏
ev, by Corollary 23.42, so h(A) = e∞(L/K)/[L : K].

Lemma 24.8. Let L/K be a cyclic extension of number fields with Galois group G. For
the G-module IL we have h0(IL) = 1 and h0(IL) = e0(L/K)[IK : N(IL)].

Proof. It is clear that I ∈ IGL ⇔ vσ(q)(I) = vq(I) for all primes q ∈ IL. If we put p := q∩OK ,

then for I ∈ IGL the value of vq(I) is constant on {q|p}, since G acts transitively on this
set. It follows that IGL consists of all products of ideals of the form (pOL)1/ep . Therefore
[IGL : IK ] = e0(L/K) and h0(IL) = [IGL : N(IL)] = e0(L/K)[IK : N(IL)] as claimed.

For each prime q|p we have N(q) = pfp (by Theorem 6.10). Thus if N(I) = OK then

N(
∏

q|p q
vq(I)) = pfp

∑
q|p vq(I) = OK , equivalently,

∑
q|p vq(I) = 0, for every prime p of K.

Order {q|p} as q1, . . . , qr so that qi+1 = σ(qi) and q1 = σ(qr), let ni := vqi(I), and define

Jp := qn1
1 qn1−n2

2 qn1−n2−n3
3 · · · qn1−n2−···−nr

r .

Then

σ(Jp)/Jp = q
n1−(n1−n2)
2 q

n1−n2−(n1−n2−n3)
3 · · · qn1−···−nr−1−(n1−···−nr)

r qn1−···−nr−n1
1

= qn2
2 qn3

3 · · · q
nr
r q−n2−···−nr

1 = qn2
2 qn3

3 · · · q
nr
r qn1

1 =
∏
q|p

qvq(I),

since n1 + · · · + nr = 0 implies n1 = −n2 − · · · − nr. It follows that I = σ(J)/J where
J :=

∏
p-m Jp, thus IL[NG] = (σ − 1)(IL) and h0(IL) = 1.

Theorem 24.9 (Ambiguous class number formula). Let L/K be a cyclic extension
of number fields with Galois group G. The G-invariant subgroup of the G-module ClL has
cardinality

#ClGL =
e(L/K)#ClK
n(L/K) [L : K]

,

where n(L/K) := [O×K : N(L×) ∩ O×K ] ∈ Z≥1.

Proof. The ideal class group ClL is the quotient of IL by its subgroup PL of principal
fractional ideals. We thus have a short exact sequence of G-modules

1 −→ PL −→ IL −→ ClL −→ 1.

The corresponding long exact sequence in (standard) cohomology begins

1 −→ PGL −→ IGL −→ ClGL −→ H1(PL) −→ 1,

since H1(IL) ' Ĥ0(IL) is trivial, by Lemma 24.8. Therefore

#ClGL = [IGL : PGL ] h1(PL). (4)

Using the inclusions PK ⊆ PGL ⊆ IGL we can rewrite the first factor on the RHS as

[IGL : PGL ] =
[IGL : PK ]

[PGL : PK ]
=

[IGL : IK ][IK : PK ]

[PGL : PK ]
=
e0(L/K)#ClK

[PGL : PK ]
, (5)
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where [IGL : IK ] = e0(L/K) follows from the proof of Lemma 24.8.
We now consider the short exact sequence

1 −→ O×L −→ L×
α7→(α)−→ PL −→ 1.

The corresponding long exact sequence in cohomology begins

1 −→ O×K −→ K× −→ PGL −→ H1(O×L ) −→ 1 −→ H1(PL) −→ H2(O×L ) −→ H2(L×), (6)

since H1(L×) is trivial, by Hilbert 90 (Corollary 24.2). We have K×/O×K ' PK , thus

[PGL : PK ] = h1(O×L ) =
h0(O×L )

h(O×L )
=
h0(O×L ) [L : K]

e∞(L/K)
,

by Theorem 24.7. Combining this identity with (4) and (5) yields

#ClGL =
e(L/K)#ClK

[L : K]
· h

1(PL)

h0(O×L )
. (7)

We can write the second factor on the RHS using the second part of the long exact sequence
in (6). Recall that H2(•) = Ĥ2(•) = Ĥ0(•), by Theorem 23.37, thus

H1(PL) ' ker
(
Ĥ0(O×L )→ Ĥ0(L×)

)
' ker(O×K/N(O×L )→ K×/N(L×)),

so h1(PL) = [O×K ∩N(L×) : N(O×L )]. We have h0(O×L ) = [O×K : N(O×L )], thus

h0(O×L )

h1(PL)
= [O×K : N(L×) ∩ O×K ] = n(L/K),

and plugging this into (7) yields the desired formula.

24.2 Proof of Artin reciprocity

We now have the essential ingredients in place to prove our desired inequality for unramified
cyclic extensions of number fields. We first record an elementary lemma.

Lemma 24.10. Let f : A → G be a homomorphism of abelian groups and let B be a
subgroup of A containing the kernel of f . Then A/B ' f(A)/f(B).

Proof. Apply the snake lemma to the commutative diagram and consider the cokernels.

ker f B f(B) 0

0 ker f A f(A) 0.

←↩ →

⇐⇐

←→f

←
↩

→

←→
←
↩→

←→ ←↩ → ←→f ←→

In the following theorem it is crucial that the extension L/K is completely unramified,
including at all infinite places of K; to emphasize this, let us say that an extension of
number fields L/K is totally unramified if e(L/K) = 1.

Theorem 24.11. Let L/K be a totally unramified cyclic extension of number fields. Then

[IK : N(IL)PK ] ≥ [L : K].
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Proof. We have

[IK : N(IK)PK ] =
[IK : PK ]

[N(IL)PK : PK ]
=

#ClK
[N(IL)PK : PK ]

.

The denominator on the RHS can be rewritten as

[N(IL)PK : PK ] = [N(IL) : N(IL) ∩ PK ] (2nd isomorphism theorem)

= [IL : N−1(PK)] (Lemma 24.10)

= [IL/PL : N−1(PK)/PL] (3rd isomorphism theorem)

= [ClL : ClL[NG]]

= #NG(ClL).

Now h0(ClL) = [ClGL : NG(ClL)], and applying Theorem 24.9 yields

[IK : N(IK)PK ] =
#ClK · h0(ClL)

#ClGL
=
h0(ClL)n(L/K)[L : K]

e(L/K)
≥ [L : K],

since e(L/K) = 1, and h0(ClL), n(L/K) ≥ 1.

For a totally unramified extension of number fields L/K, let TL/K := T
(1)
L/K = N(IL)PK .

Corollary 24.12 (Artin reciprocity law). Let L/K be a totally unramified cyclic
extension of number fields. Then [IK : TL/K ] = [L : K] and the Artin map induces an
isomorphism IK/TL/K ' Gal(L/K).

Proof. Theorems 22.29 and 24.11 imply [IK : TL/K ] = [L : K]. We have kerψL/K ⊆ TL/K
(Proposition 22.28), and [IK : kerψL/K ] = #Gal(L/K) = [L : K] = [IK : TL/K ], since ψL/K
is surjective (Theorem 21.19). Therefore kerψL/K = TL/K , and the Corollary follows.

Corollary 24.13. Let L/K be a totally unramified cyclic extension of number fields. Then
#ClGL = #ClK/[L : K] and the Tate cohomology groups of ClL are all trivial.

Proof. By the previous corollary and the proof of Theorem 24.11: we have n(L/K) = 1
and h0(ClL) = 1, and e(L/K) = 1, so #ClGL = #ClL/[L : K] by Theorem 24.9. We also
have h(ClK) = h0(ClL)/h0(ClL) = 1, since ClL is finite, by Lemma 23.43, so h0(ClL) = 1.
Thus Ĥ−1(ClL) and Ĥ0(ClL) are both trivial, and this implies that all the Tate cohomology
groups are trivial, by Theorem 23.37.

Corollary 24.14. Let L/K be a totally unramified cyclic extension of number fields. Then
every unit in O×K is the norm of an element of L.

Proof. We have n(L/K) = [O×K : N(L×) ∩ O×K ] = 1, so O×K = N(L×) ∩ O×K .

24.3 Generalizing to the non-cyclic case

Corollaries 24.13 and 24.14 are specific to unramified cyclic extensions, but Corollary 24.12
(Artin reciprocity) extends to all abelian extensions. Our goal in this section is to show
that for any modulus m for a number field K, if the Artin reciprocity law holds for all
finite cyclic extensions L/K with conductor dividing m, then it holds for all finite abelian
extensions L/K with conductor dividing m.
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Definition 24.15. Let m be a modulus for a number field K and let L/K be a finite
abelian extension ramified only at primes p|m. We say that L is a class field for m if
kerψm

L/K = Tm
L/K , where ψm

L/K : ImK → Gal(L/K) is the Artin map.

Remark 24.16. This definition is stated more strongly than is typical, but it is convenient
for our purposes; we have already proved the surjectivity of the Artin map and that Tm

L/K

contains kerψm
L/K so there is no reason to use an (apparently) weaker definition.

Lemma 24.17. Let m be a modulus for a number field K. If L1 and L2 are class fields
for m then so is their compositum L := L1L2.

Proof. We first note that L = L1L2 is ramified only at primes ramified in either L1 or L2

(since ramification indices are multiplicative in towers), so L is ramified only at primes p|m.
As in the proof of Theorem 21.18, a prime p - m splits completely in L if and only if
it splits completely in L1 and L2, which implies kerψm

L/K = kerψm
L1/K

∩ kerψm
L2/K

. The

norm map is transitive in towers, so if I = NL/K(J) then I = NL1/K(NL/L1
(J)) and

I = NL2/K(NL/L2
(J)), thus N(ImL ) ⊆ N(ImL1

)∩N(ImL2
) and therefore Tm

L/K ⊆ T
m
L1/K

∩Tm
L2/K

.
If L1 and L2 are class fields for m, then

Tm
L/K ⊆ T

m
L1/K

∩ Tm
L2/K

= kerψm
L1/K

∩ kerψm
L2

= kerψm
L/K ,

and kermL/K ⊆ Tm
L/K by Proposition 22.28, so Tm

L/K = kerψm
L/K and the lemma follows.

Corollary 24.18. Let m be a modulus for a number field K. If every finite cyclic extension
of K with conductor dividing m is a class field for m then so is every abelian extension of K
with conductor dividing m.

Proof. Let L/K be a finite abelian extension of conductor c|m. The conductor of any
subextension of L divides c and therefore m, by Lemma 22.26.

If we write G := Gal(L/K) ' H1 × · · ·Hr as a product of cyclic groups and define
Li = LH̄i where H̄i =

∏
j 6=iHj ⊆ G so that Gal(Li/K) ' G/H̄i ' Hi is cyclic, then

L = L1 · · ·Lr is a composition of linearly disjoint cyclic extensions of K, and it follows from
Lemma 24.17 that if the Li are all class fields for m, so is L.

24.4 Class field theory for unramified abelian extensions

For the trivial modulus m = (1), the three main theorems of class field theory stated in
Lecture 22 state that the following hold for every number field K:

• Existence: The ray class field K(1) exists.

• Completeness: Every unramified abelian extension of K is a subfield of K(1).

• Artin reciprocity: For every subextension L/K of K(1) we have kerψL/K = TL/K
and a canonical isomorphism IK/TL/K ' Gal(L/K).

We can now prove all of this, except for the existence of K(1). But if we replace K(1)
with the Hilbert class field H of K (the maximal unramified abelian extension of K) we
can prove an analogous series of statements, including that H is a finite extension of K and
that if K(1) exists it must be equal to H.

Theorem 24.19. Let K be a number field with Hilbert class field H. The following hold:
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• H/K is a finite extension with Gal(H/K) isomorphic to a quotient of ClK .

• K(1) exists if and only if Gal(H/K) ' ClK , in which case K(1) = H.

• Every unramified abelian extension of K is a subfield of H (Completeness).

• For every unramified abelian extension of K we have kerψL/K = TL/K and a canonical
isomorphism IK/TL/K ' Gal(L/K) (Artin reciprocity).

Proof. Corollaries 24.12 and 24.18 together imply the Artin reciprocity law for every un-
ramified abelian extension of K. In particular, every such extension L has Gal(L/K)
isomorphic to a quotient of ClK (since TL/K contains PK). Moreover, distinct unramified
abelian extensions L/K correspond to distinct quotients of ClK , since the primes that split
completely in K are precisely those that lie in the kernel of the Artin map, and this set of
primes uniquely determines L, by Theorem 21.18. It follows that there is a unique quotient
of ClK that corresponds to H, the compositum of all such fields. The theorem follows.
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