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Lecture #25 12/2/2019

25 The ring of adeles, strong approximation

25.1 Introduction to adelic rings

Recall that we have a canonical injection

77 = lim Z/nZ ~ Hzp,
n p

that embeds Z into the product of its nonarchimedean completions. Each of the rings Z,
is compact, hence 7 = ]_[p Zy is compact (by Tychonoff’s theorem). If we consider the
analogous product Hp Qp of the completions of Q, each of the local fields Q, is locally
compact (as is Qo = R), but the product Hp Q) is not locally compact.

To see where the problem arises, recall that for any family of topological spaces (X;);er
(where the index set [ is any set), the product topology on X := [[ X, is defined as the
weakest topology that makes all the projection maps m;: X — X; continuous; it is thus
generated by open sets of the form 7TZ»_1(UZ') with U; C X; open. Every open set in X is a
(possibly empty or infinite) union of open sets of the form

HUZ‘ X HXi,

i€s i¢S

with S C I finite and each U; C X; open (these sets form a basis for the topology on X). In
particular, every open U C X satisfies m;(U) = X; for all but finitely many ¢ € I. Unless all
but finitely many of the X; are compact, the space X cannot possibly be locally compact
for the simple reason that no compact set C' in X contains a nonempty open set (if it did
then we would have 7;(C) = X; compact for all but finitely many 7 € I'). Recall that to be
locally compact means that for every x € X there is an open U and compact C such that
zeUCC(C.

To address this issue we want to take the product of the fields Q, (or more generally,
the completions of any global field) in a different way, one that yields a locally compact
topological ring. This is the motivation of the restricted product, a topological construction
that was invented primarily for the purpose of solving this number-theoretic problem.

25.2 Restricted products

This section is purely about the topology of restricted products; readers already familiar
with restricted products should feel free to skip to the next section.

Definition 25.1. Let (X;) be a family of topological spaces indexed by i € I, and let (U;)
be a family of open sets U; C X;. The restricted product [[(X;,U;) is the topological space

[(x:.U:) := {(2:) : 3 € U; for almost all i € I} € [[ Xi
with the basis of open sets
B:= {HVZ : V; C X, is open for all ¢ € I and V; = U; for almost alliEI},

where almost all means all but finitely many.
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For each i € I we have a projection map m;: [[(X;,U;) — X; defined by (x;) — x;;
each m; is continuous, since if W; is an open subset of X;, then 7, 1(I/Vz) is the union of all
basic open sets [[ Vi € B with V; = W;, which is an open set.

As sets, we always have
[Tvi <[] o) < T X

but in general the restricted product topology on [[(X;, U;) is not the same as the subspace
topology it inherits from [[ X;; it has more open sets. For example, [[ U; is an open set in
[1(Xi,U;), but unless U; = X; for almost all ¢ (in which case [[(X;,U;) = [[ X;), it is not
open in [ X;, and it is not open in the subspace topology on [[(X;, U;) because it does not
contain the intersection of [[(X;, U;) with any basic open set in [ X;.

Thus the restricted product is a strict generalization of the direct product; the two
coincide if and only if U; = X; for almost all 7. This is automatically true whenever the
index set [ is finite, so only infinite restricted products are of independent interest.

Remark 25.2. The restricted product does not depend on any particular U;. Indeed,

[T v =[x 07)

whenever U/ = U; for almost all i; note that the two restricted products are not merely
isomorphic, they are identical, both as sets and as topological spaces. It is thus enough to
specify the U; for all but finitely many ¢ € I.

Each x € X :=[[(X;,U;) determines a (possibly empty) finite set
S(x)={iel:x; &U}.
Given any finite S C I, let us define
Xg={reX:S)cst=[][xx]]Uv
ies S
Notice that Xg € B is an open set, and we can view it as a topological space in two ways,

both as a subspace of X or as a direct product of certain X; and U;. Restricting the basis
B for X to a basis for the subspace Xg yields

Bg := {HVZ : Vi Cmi(Xg) is open and V; = U; = m;(Xg) for almost all i € [} ,

which is the standard basis for the product topology, so the two topologies on Xg coincide.
We have Xg C Xr whenever S C T, thus if we partially order the finite subsets S C I

by inclusion, the family of topological spaces {Xg : S C I finite} with inclusion maps

{isT: Xg — Xr|S C T} forms a direct system, and we have a corresponding direct limit

lim Xg ::HXS/ ~,
S

which is the quotient of the coproduct space (disjoint union) [[ Xg by the equivalence
relation = ~ igp(z) for all x € S C T.! This direct limit is canonically isomorphic to the
restricted product X, which gives us another way to define the restricted product; before
proving this let us recall the general definition of a direct limit of topological spaces.

1The topology on ]I Xs is the weakest topology that makes the injections Xs < [[ Xs continuous; its
open sets are disjoint unions of open sets in the Xs. The topology on [[ Xs/ ~ is the weakest topology that
makes the quotient map [[ Xs — [[ Xs/ ~ continuous; its open sets are images of open sets in [[ Xs.
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Definition 25.3. A direct system (or inductive system) in a category is a family of objects
{X; : i € I} indexed by a directed set I (see Definition 8.7) and a family of morphisms
{fij: Xi = Xj : i < j} such that each f;; is the identity and fir = fjr o fij for all i < j < k.

Definition 25.4. Let (Xj, fi;) be a direct system of topological spaces. The direct limit
(or inductive limit) of (X, fij) is the quotient space

= lim X, := [1xi/~
el

where x; ~ f;(x;) for all i < j. It is equipped with continuous maps ¢;: X; — X that are
compositions of the inclusion maps X; — [[ X; and quotient maps [[ X; — [[ X;/ ~ and
satisfy ¢; = ¢; o fi; for i < j.

The topological space X = ligXi has the universal property that if Y is another topo-
logical space with continuous maps v;: X; — Y that satisfy 1); = 1; o f;; for i < j, then
there is a unique continuous map X — Y for which all of the diagrams

X%X

NV

P \| =l b5

commute (this universal property defines the direct limit in any category with coproducts).
We now prove that that [[(X;, U;) ~ lim X as claimed above.

Proposition 25.5. Let (X;) be a family of topological spaces indexed by i € I, let (U;) be a
family of open sets U; C X;, and let X := [[(X;, U;) be the corresponding restricted product.
For each finite S C I define

Xg =[x x [JUi € x,

ieS €S

and inclusion maps ist: Xg — X, and let lim Xg be the corresponding direct limit.
There is a canonical homeomorphism of topological spaces

@:Xi)ling

that sends x € X to the equivalence class of v € Xg) C [[ Xs in lﬂXs = 11Xs/ ~,
where S(z) :={i €[ :x; € U;}.

Proof. To prove that the map ¢: X — ligX 5 is a homeomorphism, we need to show that
it is (1) a bijection, (2) continuous, and (3) an open map.

(1) For each equivalence class C € lim Xg := [ Xs/ ~, let S(C) be the intersection of
all the sets S for which C contains an element of [[ X in Xg. Then S(z) = S(C) for all
r € C, and C contains a unique element for which x € Xg) C [ Xg (distinct z,y € X5
cannot be equivalent). Thus ¢ is a bijection.

(2) Let U be an open set in lim X = [1Xs/ ~. The inverse image V of U in [[ Xg
is open, as are the inverse images Vg of V under the canonical injections ¢: Xg — [ Xs.
The union of the Vs in X is equal to ¢ ~!(U) and is an open set in X; thus ¢ is continuous.
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(3) Let U be an open set in X. Since the Xg form an open cover of X, we can cover U
with open sets Ug :== U N Xg, and then [[Ug is an open set in [[ Xg. Moreover, for each
x € [[Us, if y ~ x for some y € [[ Xg then y and 2 must correspond to the same element
in U; in particular, y € [[Ug, so [[ Ug is a union of equivalence classes in [[ Xg. It follows
that its image in lim Xg =[] Xg/ ~ is open. O

Proposition 25.5 gives us another way to construct the restricted product [[(X;, U;):
rather than defining it as a subset of [ [ X; with a modified topology, we can instead construct
it as a limit of direct products that are subspaces of [[ X;.

We now specialize to the case of interest, where we are forming a restricted product
using a family (X;);er of locally compact spaces and a family of open subsets (U;) that
are almost all compact. Under these conditions the restricted product [[(X;, U;) is locally
compact, even though the product [ X; is not unless the index set I is finite.

Proposition 25.6. Let (X;);cr be a family of locally compact topological spaces and let
(Uy)ier be a corresponding family of open subsets U; C X; almost all of which are compact.
Then the restricted product X := [[(X;,U;) is locally compact.

Proof. We first note that for each finite set S C I the topological space

XS = HXZXHUl

i€S iZS

can be viewed as a finite product of locally compact spaces, since all but finitely many U; are
compact, and the product of these is compact (by Tychonoff’s theorem), hence locally com-
pact. A finite product of locally compact spaces is locally compact, since we can construct
compact neighborhoods as products of compact neighborhoods in each factor (in a finite
product, products of open sets are open and products of compact sets are compact); thus
the X are locally compact, and they cover X (since each x € X lies in Xg,)). It follows
that X is locally compact, since each z € Xg has a compact neighborhood z € U C C C Xg
that is also a compact neighborhood in X (the image of C' under the inclusion map Xg — X
is certainly compact, and U is open in X because Xg is open in X). O

25.3 The ring of adeles

Recall that for a global field K (a finite extension of Q or Fy(t)), we use Mg to denote the
set of places of K (equivalence classes of absolute values), and for any v € Mg we use K,
to denote the corresponding local field (the completion of K with respect to v). When v is

nonarchimedean we use O, to denote the valuation ring of K,, and for archimedean v we
define O, = K,,.?

Definition 25.7. Let K be a global field. The adele ring® of K is the restricted product
AK = H(Km Ov)veMKa

which we may view as a subset (but not a subspace!) of [], K,; indeed

Ap = {(av) € HK” :a, € O, for almost all v} .

2Per Remark 25.2, as far as the topology goes it doesn’t matter how we define @, at the finite number
of archimedean places, but we would like each O, to be a topological ring, which motivates this choice.
3In French one writes adéle, but it is common practice to omit the accent when writing in English.
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For each a € A we use a, to denote its projection in K,; we make Ag a ring by defining
addition and multiplication component-wise.
For each finite set of places S we have the subring of S-adeles

AK,S = H Kv X H Om

veS véS

which is a direct product of topological rings. By Proposition 25.5, Ax ~ liﬂAK,g is the
direct limit of the S-adele rings, which makes it clear that Ax is also a topological ring.*
The canonical embeddings K — K, induce a canonical embedding

K — AK
= (r,x,x,...).
Note that for each x € K we have x € O, for all but finitely many v. The image of K

in Ak is the subring of principal adeles (which of course is also a field).
We extend the normalized absolute value || ||, of K, (see Definition 13.17) to Ax via

lally = llav]lo,
and define the adelic absolute value (or adelic norm)

lall := TT llallo € Rxq

vEMK

which we note converges to zero unless ||al|, = 1 for all but finitely many v, in which case
it is effectively a finite product.® For |la|| # O this is equal to the size of the My-divisor
(lal|v) we defined in Lecture 15 (see Definition 15.1). For any nonzero principal adele a, we
have a € K* and |ja|| = 1, by the product formula (Theorem 13.21).

Example 25.8. For K = Q the adele ring Ag is the union of the rings

RXHQPXHZP

peS pgS

where S varies over finite sets of primes (but note that the topology is the restricted product
topology, not the subspace topology in Hpgoo Qp). We can also write Ag as

Ag=<Sac H Qp : |lallp <1 for almost all p
P00

Proposition 25.9. The adele ring A of a global field K is locally compact and Hausdorff.

Proof. Local compactness follows from Proposition 25.6, since the local fields K, are all
locally compact and all but finitely many O, are valuation rings of a nonarchimedean local
field, hence compact (O, = {x € K, : ||z||, < 1} is a closed ball). The product space [[, K,
is Hausdorff, since each K, is Hausdorff, and the topology on Ax C [] K, is finer than the
subspace topology, so A is also Hausdorff. O

4By definition it is a topological space that is also a ring; to be a topological ring is a stronger condition
(the ring operations must be continuous), but this property is preserved by direct limits so all is well.
For v 1 00, if ||al|, < 1 then ||all, < /2, since ||a||» = ¢~ *(**) for some prime power g.
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Proposition 25.9 implies that the additive group of Ak (which is sometimes denoted
A}; to emphasize that we are viewing it as a group rather than a ring) is a locally compact
group, and therefore has a Haar measure that is unique up to scaling, by Theorem 13.14.
Each of the completions K, is a local field with a Haar measure p,, which we normalize as
follows:

e 1,(O,) =1 for all nonarchimedean v;
o 1y(S) = pr(S) for K, ~ R, where ur(S) is the Lebesgue measure on R;
o (1,(S) =2uc(S) for K, ~ C, where uc(S) is the Lebesgue measure on C ~ R x R.

Note that the normalization of u, at the archimedean places is consistent with the measure
won Kgr ~ R" x C® ~ R” induced by the canonical inner product on Kr C K¢ that we
defined in Lecture 14 (see §14.2).

We now define a measure p on Ag as follows. We take as a basis for the o-algebra of
measurable sets all sets of the form [[, B,, where each B, is a measurable set in K, with
ty(By) < 0o such that B, = O, for almost all v (the o-algebra is then generated by taking
countable intersections, unions, and complements in Ag). We then define

1 (1:[ BU> = E[uu(Bv)-

It is easy to verify that u is a Radon measure, and it is clearly translation invariant since
each of the Haar measures u, is translation invariant and addition is defined component-
wise; note that for any € Ag and measurable set B =[], B, the set x4+ B =[] (v, + By)
is also measurable, since z, + B, = O, whenever z, € O, and B, = O,, and this applies
to almost all v. It follows from uniqueness of the Haar measure (up to scaling) that u is a
Haar measure on A which we henceforth adopt as our normalized Haar measure on Ag.

We now want to understand the behavior of the adele ring A under base change. Note
that the canonical embedding K < Ay makes Ax a K-vector space, and if L/K is any
finite separable extension of K (also a K-vector space), we may consider the tensor product

AK ®K L7

which is also an L-vector space. As a topological K-vector space, the topology on Ax ® L
is just the product topology on [L: K| copies of of A (this applies whenever we take a
tensor product of topological vector spaces, one of which has finite dimension).

Proposition 25.10. Let L be a finite separable extension of a global field K. There is a
natural isomorphism of topological Tings

A ~Agr Qg L
that makes the following diagram commute

L —— K ®g L

| |

AL—N%AK@)KL
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Proof. On the RHS the tensor product Ax ®x L is isomorphic to the restricted product
H’UEMK(KU KK L7 O’U ®(’)K OL)

Explicitly, each element of Ax ®f L is a finite sum of elements of the form (a,) ® z, where
(ay) € Ag and = € L, and there is a natural isomorphism of topological rings

Ag @ L= HUGMK(K” @K L, Oy @0, O1)
(ay) @ x +— (ay @ T).

Here we are using the general fact that tensor products commute with direct limits (re-
stricted direct products can be viewed as direct limits via Proposition 25.5).

On the LHS we have A; = HwEML<Lw’Ow)' But note that K, g L ~ lev L,
by Theorem 11.23 and O, ®o, O ~ Hw‘v Ouw, by Corollary 11.26. These isomorphisms
preserve both the algebraic and the topological structures of both sides, and it follows that

Axox L[] Kook L Oy@o, On) ~ ] | (LuOw) = Ar

is an isomorphism of topological rings. The image of x € L in Ax ®k L via the canonical
embedding of L into Ax @ Lis1®z = (1,1,1,...) ® x, whose image (x,z,x,...) € A is
equal to the image of € L under the canonical embedding of L into its adele ring Ay. O

Corollary 25.11. Let L be a finite separable extension of a global field K of degree n.
There is a natural isomorphism of topological K -vector spaces (and locally compact groups)

A A - D Ag

that identifies Ak with the direct sum of n copies of Ak, and this isomorphism restricts to
an isomorphism L ~ K @ --- @& K of the principal adeles of Ar with the n-fold direct sum
of the principal adeles of Ak .

Theorem 25.12. For each global field L the principal adeles L C Ay form a discrete
cocompact subgroup of the additive group of the adele ring Ap.

Proof. Let K be the rational subfield of L (so K = Q or K = F,(t)). It follows from
Corollary 25.11 that if the theorem holds for K then it holds for L, so we will prove the
theorem for K. Let us identify K with its image in Ax (the principal adeles).

To show that the topological group K is discrete in the locally compact group A, it
suffices to show that 0 is an isolated point. Consider the open set

U={a€Ak:|al]jo <1and |al, <1 forall v < oo},

where oo denotes the unique infinite place of K (either the real place of Q or the place

corresponding to the nonarchimedean valuation v (f/g) = degg — deg f of Fy(t)). The

product formula (Theorem 13.21) implies ||a|| =1 for all a € K* C Ak, so UNK = {0}.
To prove that the quotient Ag /K is compact, we consider the set

W :={a € Ax : |ja]|y, <1 for all v}.

5In general, tensor products do not commute with infinite direct products; there is always a natural map
(II,, An) ® B = I1,,(An ® B), but it need be neither a monomorphism or an epimorphism. This is another
motivation for using restricted direct products to define the adeles, so that base change works as it should.
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If we let Uy == {2 € Ko : ||%]|co < 1}, then

I/V:ljoo>< HOUQAK,{OO}QAK

<0

is a product of compact sets and therefore compact. We will show that W contains a
complete set of coset representatives for K in Ag. This implies that Ax /K is the image of
the compact set W under the (continuous) quotient map Ax — Ag /K, hence compact.

Let a = (ay,) be any element of Ax. We wish to show that a = b+ ¢ for some b € W
and ¢ € K, which we will do by constructing ¢c € K sothat b=a—ce W.

For each v < oo define z, € K as follows: put z, := 0 if ||ay|[, < 1 (almost all v),
and otherwise choose z,, € K so that [|a, — zy|y < 1 and ||ay|ly < 1 for w # v. To show
that such an z, exists, let us first suppose a, = r/s € K with r;s € Ok coprime (note
that O is a PID), and let p be the maximal ideal of ©,. The ideals p*(*) and p~()(s)
are coprime, so we can write r = r; + ro with 1 € p*®) and ry € p_”(s)(s) C Ok, so that
ay =r1/s+re/s with v(ry/s) > 0 and w(re/s) > 0 for all w # v. If we now put z, = ra/s,
then ||ay — xylly = [|71/5]lv < 1 and ||zy||lw = |72/s]lw < 1 for all w # v as desired. We
can approximate any a, € K, by such an a, € K with ||a), — a,||, < € and construct z, as
above so that ||a, — ]|y < 1 and ||al, — z, ||, < 1+ €; but for sufficiently small e this implies

||lal, — xy||s < 1, since the nonarchimedean absolute value || ||, is discrete.
Finally, let z := x, € K and choose z,, € Ok so that

v<oo

oo — & — Too|| o < 1.

For as — € Qoo ~ R, we can take zo, € Z in the real interval [aoo — 2 — 1,000 —x+1). For
oo — T € Fy(t)oo =~ Fy((t71)) we can take xo € Fy[t] to be the polynomial of least degree
for which as — ¥ — 200 € Fy[[t71]].7

Now let ¢c:=>", . @y € K C Ak, and let b:=a — c. Then a = b+ ¢, with ¢ € K, and
we claim that b € W. For each v < oo we have z,, € O, for all w # v and

1l = [la = cllo = ||av — Z Ty|| < max (|lay — Tollv, max({{|lzwllo : w # v})) <1,

w<oo
v

by the nonarchimedean triangle inequality. For v = co we have ||b]|co = ||@doo — ¢|lcoc < 1 by
our choice of o, and [|b||, < 1 for all v, so b € W as claimed and the theorem follows. [

Corollary 25.13. For any global field K the quotient Ak /K is a compact group.

Proof. As explained in Remark 14.4, this follows immediately (in particular, the fact that K
is a discrete subgroup of A implies that it is closed and therefore Ag /K is Hausdorff). [
25.4 Strong approximation

We are now ready to prove the strong approximation theorem, an important result that has
many applications. We begin with an adelic version of the Blichfeldt-Minkowski lemma.

"Note that while Fy((t™')) ~ F,((t)), in order to view K = F,(t) as canonically embedded in its comple-
tion with respect to the absolute value |f|cc = qdegf we need to view K as the field of Laurent series in a
uniformizer, which we may take to be ™" (but not t), and the valuation ring of Ko is Fy[[—2]] (not Fy[[2]]).
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Lemma 25.14 (ADELIC BLICHFELDT-MINKOWSKI LEMMA). Let K be a global field. There
is a positive constant By such that for any a € Ax with ||a| > Bk there exists a nonzero
principal adele v € K C Ag for which ||z, < |lall, for all v € Mk.

Proof. Let by := covol(K) be the measure of a fundamental region for K in Ax under our
normalized Haar measure p on Ag (by Theorem 25.12, K is cocompact, so by is finite).
Now define

by :=p ({z € Ak : ||z], < 1 for all v and ||z||, < } if v is archimedean}) .

Then by # 0, since K has only finitely many archimedean places. Now let By := bg/b;.
Suppose a € Ag satisfies ||a|| > Bx. We know that |lal|, < 1 for all almost all v, so

la|]| # O implies that ||a||, = 1 for almost all v. Let us now consider the set
T :={t € Ak : ||t|» < ||als for all v and ||¢||, < 1|al|, if v is archimedean} .
From the definition of b; we have
w(T) = billall > b1 Bk = bo;

this follows from the fact that the Haar measure on A is the product of the normalized
Haar measures p, on each of the K,. Since u(T") > by, the set T is not contained in any
fundamental region for K, so there must be distinct t1,t5 € T with the same image in
Ak /K, equivalently, whose difference x = t; — t3 is a nonzero element of K C Ax. We have

max(|[t1]]v, [[t2]lv) < [lallo nonarch. v;
Ity = tallo < q [lE1llo + It2llo < 2- Fllallo < flall real v;

([t — Bl < ([t ]l + 2l < 2- Llalls’®)? < ||all,  complex .

Here we have used the fact that the normalized absolute value || ||, satisfies the nonar-
chimedean triangle inequality when v is nonarchimedean, || ||, satisfies the archimedean
triangle inequality when v is real, and || ”11)/ ? satisfies the archimedean triangle inequality
when v is complex. Thus ||z||, = |[t1 — t2||v < ||a||, for all places v € Mg as desired. O

Remark 25.15. Lemma 25.14 should be viewed as an analog of Mikowski’s lattice point
theorem (Thoerem 14.12) and a generalization of Proposition 15.9. In Theorem 14.12 we
have a discrete cocompact subgroup A in a real vector space V ~ R™ and a sufficiently large
symmetric convex set S that must contain a nonzero element of A. In Lemma 25.14 the
lattice A is replaced by K, the vector space V is replaced by Ag, the symmetric convex
set S is replaced by the set

L(a) ={z € Ak : ||z|l, < ||al|, for all v € Mk},

and sufficiently large means ||a|| > By, putting a lower bound on p(L(a)). Proposition 15.9
is actually equivalent to Lemma 25.14 in the case that K is a number field: use the M-
divisor ¢ := (]|a||,) and note that L(c) = L(a) N K.

Theorem 25.16 (STRONG APPROXIMATION). Let Mg = SUT U{w} be a partition of the
places of a global field K with S finite. Fiz a, € K and €, € Rsq for each v € S. There
exists an x € K for which

|z — ayllo < € for allv € S,
lz|lo <1 for allveT,

(note that there is no constraint on ||z|y).
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Proof. Let W = {z € Ak : ||z|l, < 1for all v € Mg} as in the proof of Theorem 25.12.
Then W contains a complete set of coset representatives for K C Ak, so Axy = K + W.
For any nonzero v € K C Ag we also have Ag = K 4+ uW: given ¢ € Ag write v 'c € Ag
asu lc=a+bwith a € K and b € W and then ¢ = ua + ub with ua € K and ub € uW.
Now choose z € Ak such that

0<|zllv<eforvesS, 0<|zlo<iforveT, |z]o>B]]lzl"
vEW

where B is the constant in the Blichfeldt-Minkowski Lemma 25.14 (this is clearly possible:
every z = (z,) with ||zy][y < 1is an element of Ax). We have ||z|| > B, so there is a nonzero
u € K C Ag with ||ull, < ||z, for all v € M.

Now let @ = (a,) € A be the adele with a, given by the hypothesis of the theorem for
veSand ay, =0 for v € S. We have Agx = K +uW, so a = x + y for some z € K and
y € uW. Therefore

€, forwvefs,

T —a — < llu < ||z <
H vHv HyHU = H Hv - H ”U - {1 forveT,
as desired. i

Corollary 25.17. Let K be a global field and let w be any place of K. Then K is dense in
the restricted product [1,,_,,(Kov, Oy).

Remark 25.18. Theorem 25.16 and Corollary 25.17 can be generalized to algebraic groups;
see [1] for a survey.
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