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27 Local class field theory

In this lecture we give a brief overview of local class field theory. Recall that a local
field is a locally compact field whose topology is induced by a nontrivial absolute value
(Definition 9.1). As we proved in Theorem 9.9, every local field is isomorphic to one of the
following:

• R or C (archimedean, characteristic 0);

• finite extension of Qp (nonarchimedean, characteristic 0);

• finite extension of Fq((t)) (nonarchimedean, characteristic p > 0).

In the nonarchimedean cases, the ring of integers of a local field is a complete DVR with
finite residue field.

The goal of local class field theory is to classify all finite abelian extensions of a given
local field K. Rather than considering each finite abelian extension L/K individually, we
will treat them all at once, by working in the maximal abelian extension of K inside a fixed
separable closure Ksep.

Definition 27.1. Let K be field with separable closure Ksep. The field

Kab :=
⋃

L ⊆ Ksep

L/K finite abelian

L

is the maximal abelian extension of K (in Ksep). We also define

Kunr :=
⋃

L ⊆ Ksep

L/K finite unramified

L,

the maximal unramified extension of K (in Ksep).

The field Kab contains the field Kunr; this is obvious in the archimedean case, where we
have K = Kunr is R or C and Kab = Ksep = C (note that the extension C/R is ramified).
In the nonarchimedean case the inclusion Kunr ⊆ Kab follows from Theorem 10.15, which
implies that Kunr is isomorphic to the algebraic closure of the residue field of K, which is
an abelian extension because it is pro-cyclic (every finite extension of the residue field is
cyclic because the residue field is finite). We thus have a tower of field extensions

K ⊆ Kunr ⊆ Kab ⊆ Ksep.

By Theorem 26.22, the Galois group Gal(Kab/K) is the profinite group

Gal(Kab/K) ' lim←−
L

Gal(L/K),

where L ranges over the finite extensions of K in Kab, ordered by inclusion (note that every
finite extension of K in Kab is normal because every open subgroup of the abelian group
Gal(Kab/K) is a normal subgroup).
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Like all Galois groups, the profinite group Gal(Kab/K) is a totally disconnected compact
group; see Problem Set 11. By Theorem 26.23, we have the Galois correspondence

{ extensions of K in Kab } ←→ { closed subgroups of Gal(Kab/K) }
L 7−→ Gal(Kab/L)

(Kab)H ←−[ H.

Finite abelian extensions L/K correspond to open subgroups of Gal(Kab/K) (which must
have finite index since Gal(Kab/K) is compact).

When K is an archimedean local field its abelian extensions are easy to understand;
either K = R, in which case C is the unique nontrivial abelian extension, or K = C and
there are no nontrivial abelian extensions.

Now suppose K is a nonarchimedean local field with ring of integers OK , maximal
ideal p, and residue field Fp := OK/p. If L/K is a finite unramified extension with residue
field Fq := OL/q, Theorem 10.15 gives us a canonical isomorphism

Gal(L/K) ' Gal(Fq/Fp) = 〈x 7→ x#Fp〉,

between the Galois group of L/K and the Galois group of the residue field extension Fq/Fp.
The group Gal(Fq/Fp) is generated by the Frobenius automorphism x → x#Fp , and we
use FrobL/K ∈ Gal(L/K) to denote the corresponding element of Gal(L/K); note that
FrobL/K is an element, not just a conjugacy class, because Gal(L/K) is abelian. Every finite
unramified extension of local fields L/K thus comes equipped with a canonical generator
FrobL/K for its Galois group (which is necessarily cyclic).

In this local unramified setting, the Artin map is very easy to understand. The ideal
group IK is the infinite cyclic group generated by the prime ideal p, and the Artin map

ψL/K : IK → Gal(L/K)

p 7→ FrobL/K ,

corresponds to the quotient map Z→ Z/nZ, where n := [L : K]. We can extend the Artin
map to K× by defining ψL/K(x) := ψL/K((x)); this map sends every uniformizer π to the
Frobenius element FrobL/K ; note that since OK is a DVR, hence a PID, every ideal in I is
of the form (x) for some x ∈ K×, so defining the Artin map on K× rather than IK does
not lose any information when K is a local field.

27.1 Local Artin reciprocity

Local class field theory is based on the existence of a continuous homomorphism

θK : K× → Gal(Kab/K)

known as the local Artin homomorphism (or local reciprocity map), which is described by
the following theorem.

Theorem 27.2 (Local Artin Reciprocity). Let K be a local field. There is a unique
continuous homomorphism

θK : K× → Gal(Kab/K)

with the property that for each finite extension L/K in Kab, the homomorphism

θL/K : K× → Gal(L/K)

given by composing θK with the natural map resL/K : Gal(Kab/K) � Gal(L/K) satisfies:
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• if K is nonarchimedean and L/K is unramified then θL/K(π) = FrobL/K for every
uniformizer π of OK ;

• θL/K is surjective with kernel NL/K(L×), inducing K×/NL/K(L×) ' Gal(L/K).

The natural map resL/K : Gal(Kab/K) � Gal(L/K) can be viewed as any of

• the map induced by restriction σ 7→ σ|L (note that σ(L) = L because L/K is Galois);

• the quotient map Gal(Kab/K) � Gal(Kab/K)/Gal(Kab/L);

• the projection coming from Gal(Kab/K) = lim←−L Gal(L/K) ⊆
∏
L Gal(L/K) (where

L ranges over finite extensions of K in Kab).

These are equivalent descriptions of the same surjective homomorphism of topological
groups (where the finite group Gal(L/K) has the discrete topology).

We will not have time to prove this theorem, but we would like to understand exactly
what it says. The homomorphisms θL/K form a compatible system, in the sense that if
L1 ⊆ L2 then θL1/K = resL2/L1

◦θL2/K , where resL2/L1
is the natural map from Gal(L2/K)

to Gal(L1/K) = Gal(L2/K)/Gal(L2/L1). Indeed, the maps resL2/L1
are precisely the maps

that appear in the inverse system defining lim←−L Gal(L/K) ' Gal(Kab/K).
It is first worth contrasting local Artin reciprocity with the more complicated global

version of Artin reciprocity that we saw in Lecture 21:

• There is no modulus m; working in Kab addresses all abelian extensions of K at once.

• The ray class groups ClmK are replaced by quotients of K×.

• The Takagi group NL/K(ImL )Rm
K ⊆ ImK is replaced by NL/K(L×) ⊆ K×.

27.2 Norm groups

Definition 27.3. A norm group of a local field K is a subgroup of the form

N(L×) := NL/K(L×) ⊆ K×,

for some finite abelian extension L/K.

Remark 27.4. Removing the word abelian does not change the definition above. If L/K is
any finite extension (not necessarily Galois), then N(L×) = N(F×), where F is the maximal
abelian extension of K in L; this result is known as the Norm Limitation Theorem (see
[1, Theorem III.3.5]). So we could have defined norm groups more generally. This is not
relevant to classifying the abelian extension of K, but it demonstrates a key limitation of
local class field theory (which extends to global class field theory): norm groups tell us
nothing about nonabelian extensions of K.

Theorem 27.2 implies that the Galois group of any finite abelian extension L/K of a
local fields is canonically isomorphic to the quotient K×/NL/K(L×). In order to understand
the finite abelian extensions of a local field K, we just need to understand its norm groups.

Corollary 27.5. The map L 7→ N(L×) defines an inclusion reversing bijection between the
finite abelian extensions L/K in Kab and the norm groups in K× which satisfies

(a) N((L1L2)×) = N(L×1 ) ∩N(L×2 ) and (b) N((L1 ∩ L2)×) = N(L×1 )N(L×2 ).

In particular, every norm group of K has finite index in K×, and every subgroup of K×

that contains a norm group is a norm group.
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Here we write L1L2 for the compositum of L1 and L2 inside Kab (the intersection of all
subfields of Kab that contain both L1 and L2).

Proof. We first note that if L1 ⊆ L2 are two extensions of K then transitivity of the field
norm (Corollary 4.52) implies

NL2/K = NL1/K ◦NL2/L1
,

and therefore N(L×2 ) ⊆ N(L×1 ); the map L 7→ N(L×) thus reverses inclusions.
This immediately implies N((L1L2)×) ⊆ N(L×1 ) ∩ N(L×2 ), since L1, L2 ⊆ L1L2. For the

reverse inclusion, let us consider the commutative diagram

K× Gal(L1L2/K)

Gal(L1/K)×Gal(L2/K)

← →
θL1L2/K

←

→θL1/K
×θL2/K

←
↩→ res×res

By Theorem 27.2, each x ∈ N(L×1 ) ∩ N(L×2 ) ⊆ K× lies in the kernel of θL1/K and θL2/K ,
hence in the kernel of θL1L2/K (by the diagram), and therefore in N((L1L2)×), again by
Theorem 27.2. This proves (a).

We now show that L 7→ N(L×) is a bijection; it is surjective by definition, so we just
need to show it is injective. If N(L×2 ) = N(L×1 ) then by (a) we have

N((L1L2)×) = N(L×1 ) ∩N(L×2 ) = N(L×1 ) = N(L×2 ),

and Theorem 27.2 implies Gal(L1L2/K) ' Gal(L1/K) ' Gal(L2/K), which forces L1 = L2;
thus L 7→ N(L×) is injective.

We now prove (b). The field L1 ∩ L2 is the largest extension of K that lies in both
L1 and L2, while N(L×1 )N(L×2 ) is the smallest subgroup of K× containing both N(L×1 ) and
N(L×2 ); they therefore correspond under the inclusion reversing bijection L 7→ N(L×) and
we have N((L1 ∩ L2)×) = N(L×1 )N(L×2 ) as desired.

The fact that every norm group has finite index in K× follows immediately from the
isomorphism Gal(L/K) ' K×/NL/K(L×) given by Theorem 27.2, since Gal(L/K) is finite.

Finally, let us prove that every subgroup of K× that contains a norm group is a norm
group. Suppose N(L×) ⊆ H ⊆ K×, for some finite abelian L/K, and subgroup H of K×,
and put F := LθL/K(H). We have a commutative diagram

K× Gal(L/K)

Gal(F/K)

←→
θL/K

←

→θF/K

←→ res

in which Gal(L/F ) = θL/K(H) is precisely the kernel of the map Gal(L/K) → Gal(F/K)
induced by restriction. It follows from Theorem 27.2 that

H = ker θF/K = N(F×)

is a norm group as claimed.

Lemma 27.6. Let L/K be any extension of local fields. If N(L×) has finite index in K×

then it is open.
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Proof. The lemma is clear if K is archimedean (either L = K and N(L×) = K×, or
L ' C, K ' R, and [K× : N(L×)] = [R× : R>0] = 2), so assume K is nonarchimedean.
Suppose [K× : N(L×)] < ∞. The unit group O×L is compact, so N(O×L ) is compact (since
N: L× → K× is continuous), thus closed in the Hausdorff space K×. For any α ∈ L,

α ∈ O×L ⇐⇒ |α| = 1⇐⇒ |NL/K(α)| = 1⇐⇒ NL/K(α) ∈ O×K ,

and therefore
N(O×L ) = N(L×) ∩ O×K .

It follows that N(O×L ) is the kernel of the homomorphism O×K ↪→ K× � K×/N(L×) and
therefore [O×K : N(O×L )] ≤ [K× : N(L×)] < ∞. Thus N(O×L ) is a closed subgroup of finite
index in O×K , hence open (its complement is a finite union of closed cosets, hence closed),
and O×K is open1 in K×, so N(O×L ) is open in K×, and therefore N(L×) is open in K×, since
N(L×) is a union of cosets of the open subgroup N(O×L ).

Remark 27.7. If K is a local field of characteristic zero then one can show that in fact
every finite index subgroup of K× is open (whether it is a norm group or not), but this is
not true in positive characteristic.

27.3 The main theorems of local class field theory

Corollary 27.5 implies that all norm groups of K have finite index in K×, and Lemma 27.6
then implies that all norm groups are finite index open subgroups of K×. The existence
theorem of local class field theory states that the converse also holds.

Theorem 27.8 (Local Existence Theorem). Let K be a local field and let H be a finite
index open subgroup of K×. There is a unique extension L/K in Kab with NL/K(L×) = H.

The local Artin homomorphism θK : K× → Gal(Kab/K) is not an isomorphism; indeed,
it cannot be, because Gal(Kab/K) is compact and K× is not. However, the local existence
theorem implies that after taking profinite completions the local Artin homomorphism be-
comes an isomorphism.

Theorem 27.9 (Main Theorem of Local Class Field Theory). Let K be a local
field. The local Artin homomorphism induces a canonical isomorphism

θ̂K : K̂×
∼−→ Gal(Kab/K)

of profinite groups.

Proof. The Galois group Gal(Kab/K) is a profinite group, isomorphic to the inverse limit

Gal(Kab/K) ' lim←−
L

Gal(L/K), (1)

where L ranges over the finite extensions of K in Kab ordered by inclusion; see Theo-
rem 26.22. It follows from Lemma 27.6, Theorem 27.8, and the definition of the profinite
completion, that

K̂× ' lim←−
L

K×/N(L×), (2)

1Recall that in a nonarchimedean local field, |K×| is discrete in R>0 and we can always pick ε > 0 so
that O×

K = {x ∈ K× : 1− ε < |x| < 1 + ε}, which is clearly open in the metric topology induced by | |.
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where L ranges over finite abelian extensions of K (in Ksep). By local Artin reciprocity
(Theorem 27.2), for each finite abelian extension L/K we have an isomorphism

θL/K : K×/N(L×)
∼−→ Gal(L/K),

and these isomorphisms commute with inclusion maps between finite abelian extensions
of K. We thus have an isomorphism of the inverse systems appearing in (1) and (2).
The isomorphism is canonical because the Artin homomorphism θK is unique and the
isomorphisms in (1) and (2) are both canonical.

In view of Theorem 27.9, we would like to better understand the profinite group K̂×.

If K is archimedean then K̂× is either trivial or the cyclic group of order 2, so let us assume
that K is nonarchimedean. If we pick a uniformizer π for the maximal ideal p of OK , then
we can uniquely write each x ∈ K× in the form uπv(x), with u ∈ O×K and v(x) ∈ Z. This
defines an isomorphism

K×
∼−→ O×K × Z

x 7−→ (x/πv(x), v(x)).

Taking profinite completions (which commutes with products), we obtain an isomorphism

K̂× ' O×K × Ẑ,

since the unit group

O×K ' F×p × (1 + p) ' F×p × lim←−
n

OK/(1 + pn)

is already profinite (hence isomorphic to its profinite completion, by Corollary 26.19). Note

that the isomorphism K̂× ' O×K × Ẑ is far from canonical; it depends on our choice of π,
and there are uncountably many π to choose from.

We have a commutative diagram of exact sequences of topological groups

1 O×K K× Z 0

1 Gal(Kab/Kunr) Gal(Kab/K) Gal(Kunr/K) 1

← → ← →

←→ o

← →v

←→ θK

← →
←
↩

→ φ

←→ ←→ ←→res ←→

in which the bottom row is the profinite completion of the top row. The map φ on the right
is given by

Z ↪→ Ẑ ' Gal(Fp/Fp) ' Gal(Kunr/K),

and sends 1 to the sequence of Frobenius elements (FrobL/K) in the profinite group

Gal(Kunr/K) ' lim←−
L

Gal(L/K) ⊆
∏
L

Gal(L/K),

where L ranges over finite unramified extensions of K; here we are using the canonical
isomorphisms Gal(L/K) ' Gal(Fq/Fp) given by Theorem 10.15. The Frobenius element
φ(1) is a topological generator for Gal(Kunr/K), meaning that it generates a dense subset.
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Remark 27.10. The Frobenius element φ(1) ∈ Gal(Kunr/K) corresponds to the Frobenius
automorphism x 7→ x#Fp of Gal(Fp/Fp); both are canonical topological generators of the
Galois groups in which they reside, and both are sometimes referred to as the arithmetic
Frobenius. There is another obvious generator for Gal(Kunr/K) ' Gal(Fp/Fp), namely
φ(−1), which is called the geometric Frobenius (for reasons we won’t explain here).

The group Gal(Kab/Kunr) ' O×K corresponds to the inertia subgroup of Gal(Kab/K).
The top sequence splits (but not canonically), hence so does the bottom, and we have

Gal(Kab/K) ' Gal(Kab/Kunr)×Gal(Kunr/K) ' O×K × Ẑ.

For each choice of a uniformizer π ∈ OK we get a decomposition Kab = KπK
unr correspond-

ing to K× = O×KπZ. The field Kπ is the subfield of Kab fixed by θK(π) ∈ Gal(Kab/K).
Equivalently, Kπ is the compositum of all the totally ramified finite extensions L/K in Kab

for which π ∈ N(L×).

Example 27.11. Let K = Qp and pick π = p. The decomposition Kab = KπK
unr is

Qab
p =

⋃
n

Qp(ζpn) ·
⋃
m⊥p

Qp(ζm),

where the first union on the RHS is fixed by θK(p) and the second is fixed by θK(O×K).

Constructing the local Artin homomorphism is the difficult part of local class field
theory. However, assuming the local existence theorem, it is easy to show that the local
Artin homomorphism is unique if it exists.

Proposition 27.12. Let K be a local field and assume every finite index open subgroup
of K× is a norm group. There is at most one homomorphism θ : K× → Gal(Kab/K) of
topological groups that has the properties given in Theorem 27.2.

Proof. The proposition is clear when K is archimedean, so assume it is nonarchimedean.
Let p = (π) be the maximal ideal of OK , and for each integer n ≥ 0 let Kπ,n/K be the
finite abelian extension given by Theorem 27.8 corresponding to the finite index subgroup
(1 + pn)〈π〉 of K×; here 1 + pn and 〈π〉 denote subgroups of K×, with 1 + p0 := O×K , and
we note that K× ' O×K〈π〉.

Suppose θ : K× → Gal(Kab/K) is a continuous homomorphism as in Theorem 27.2.
Then θ(π) fixes Kπ :=

⋃
nKπ,n, since π ∈ N(Kπ,n) = ker θKπ,n/K . We also know that

θL/K(π) = FrobL/K for all finite unramified extensions L/K, which uniquely determines

the action of θ(π) on Kunr, and hence on Kab = KπK
unr.

Now suppose θ′ : K× → Gal(Kab/K) is another continuous homomorphism as in The-
orem 27.2. By the argument above we must have θ′(π) = θ(π) for every uniformizer π of
OK , and K× is generated by its subset of uniformizers: if we fix one uniformizer π, every
x ∈ K× can be written as uπn = (uπ)πn−1 for some u ∈ O×K and n ∈ Z, and uπ is another
uniformizer). It follows that θ(x) = θ′(x) for all x ∈ K× and therefore θ = θ′ is unique.

Remark 27.13. One approach to proving local class field theory uses the theory of formal
groups due to Lubin and Tate to explicitly construct the fields Kπ =

⋃
nKπ,n used in the

proof of Proposition 27.12, along with a continuous homomorphism θπ : O×K → Gal(Kπ/K)
that extends uniquely to a continuous homomorphism θ : K× → Gal(KπK

unr/K). One then
shows that Kab = KπK

unr (using the Hasse-Arf Theorem), and that θ does not depend on
the choice of π; see [1, §I.2-4] for details.
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27.4 Finite abelian extensions

Local class field theory gives us canonical bijections between the following sets:

(1) finite-index open subgroups of K× (which are necessarily normal);

(2) open subgroups of Gal(Kab/K) (which are necessarily normal and of finite index);

(3) finite extensions of K in Kab (which are necessarily normal).

The bijection from (1) to (2) is induced by the isomorphism K̂× ' Gal(Kab/K) given by
Theorem 27.9 and is inclusion preserving. The bijection from (2) to (3) follows from Galois
theory (for infinite extensions), and is inclusion reversing, while the bijection from (3) to
(1) is via the map L 7→ N(L×), which is also inclusion reversing.
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