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6 Ideal norms and the Dedekind-Kummer theorem

In order to better understand how ideals split in Dedekind extensions we want to extend
our definition of the norm map to ideals. Recall that for a ring extension B/A in which B
is a free A-module of finite rank, we defined the norm map NB/A : B → A as

NB/A(b) := det(B
×b−→ B),

the determinant of the multiplication-by-b map with respect to an A-basis for B. If B is
a free A-module we could define the norm of a B-ideal to be the A-ideal generated by the
norms of its elements, but in the case we are most interested in (our “AKLB” setup) B is
typically not a free A-module (even though it is finitely generated as an A-module).

To get around this limitation, we introduce the notion of the module index, which we
will use to define the norm of an ideal. In the special case where B is a free A-module, the
norm of a B-ideal will be equal to the A-ideal generated by the norms of elements.

6.1 The module index

Our strategy is to define the norm of a B-ideal as the intersection of the norms of its
localizations at maximal ideals of A (note that B is an A-module, so we can view any ideal
of B as an A-module). Recall that by Proposition 2.6 any A-module M in a K-vector space
is equal to the intersection of its localizations at primes of A; this applies, in particular,
to ideals (and fractional ideals) of A and B. In order to do this we first define the module
index of two A-lattices, as originally introduced by Fröhlich [3].

Recall that an A-lattice M in a K-vector space V is a finitely generated A-submodule
of V that spans V as a K-vector space (Definition 5.9). If M is a free A-module, then any
A-basis for M is also a K-basis for V , and we must have M ' An, where n = dimK V . If A
is a Dedekind domain, even when M is not free, its localization Mp at any prime p of A will
be a free Ap-module. This follows from the following facts: (a) Ap is a DVR and therefore
a PID, (b) Mp is a torsion-free Ap-module, since it lies in a K-vector space and Ap ⊆ K,
and (c) any finitely generated torsion-free module over a PID is free.

Definition 6.1. Let A be a Dedekind domain with fraction field K, let V be an n-
dimensional K-vector space, let M and N be A-lattices in V , and let p be a prime of A.
Then Ap is a PID and we must have Mp ' Anp ' Np, as explained above. Choose an

Ap-module isomorphism φp : Mp
∼→ Np and let φ̂p denote the unique K-linear map V → V

extending φp. The linear map φ̂p is an isomorphism and therefore has nonzero determinant.

The module index [Mp : Np]Ap is the principal fractional Ap-ideal generated by det φ̂p:

[Mp : Np]Ap :=
(
det φ̂p

)
.

This ideal does not depend on our choice of φp because any other choice can be written
as φ1φpφ2 for some Ap-module automorphisms φ1 : Mp

∼−→ Mp and φ2 : Np
∼−→ Np that

necessarily have unit determinants. The module index [M : N ]A is the A-module

[M : N ]A :=
⋂
p

[Mp : Np]Ap ,

where p ranges over primes of A and the intersection takes place in K. Each [Mp : Np]Ap is
an A-submodule of K (which need not be finitely generated), so their intersection is clearly
an A-submodule of K, but it is not immediately clear that it finitely generated (or nonzero).
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We claim that in fact [M : N ]A is a nonzero fractional ideal of A whose localizations
agree with all the local module indexes, that is for every prime p of A we have(

[M : N ]A
)
p

= [Mp : Np]Ap .

This is obvious when M and N are free A-modules: fix a global A-module isomorphism
φ : M

∼→ N so that (det φ̂)p = (det φ̂p) for all primes p (where φp is just the Ap-module iso-
morphism induced by φ). To prove the general case we apply a standard “gluing” argument
that will be familiar to those who have studied algebraic geometry.

Proposition 6.2. Let A be a Dedekind domain with fraction field K and let M and N be
A-lattices in a K-vector space of finite dimension. The module index [M : N ]A is a nonzero
fractional ideal of A whose localization at each prime p of A is equal to the local module
index [Mp :Np]Ap.

Proof. The finitely generated A-module M is locally free in the sense that the module
Mp is a free Ap-module for every prime p. It follows from [2, Thm. 19.2] that there exist
nonzero a1, . . . , ar ∈ A generating the unit ideal such that each M [1/ai] is a free A[1/ai]-
module (here M [1/ai] denotes the localization of M with respect to the multiplicative set
{ani : n ∈ Z≥0}). We similarly have nonzero b1, . . . , bs ∈ A generating the unit ideal such
that each N [1/bj ] is a free A[1/bj ]-module. For any pair ai and bj , if we localize at the
multiplicative set Sij := {ami bnj : m,n ∈ Z≥0} then S−1

ij M and S−1
ij N will both be free

S−1
ij A-modules and we will have(

[S−1
ij M : S−1

ij N ]S−1
ij A

)
p

= [Mp : Np]Ap ,

for all primes p of A that do not contain either ai or bj , since we can fix a global S−1
ij A-module

isomorphism φ : S−1
ij M → S−1

ij N that induces Ap-module isomorphisms φp : Mp → Np with

(det φ̂)p = (det φ̂p); note that if p contains either ai or bj then pS−1
ij A is the unit ideal (not

a prime ideal of S−1
ij A), thus [S−1

ij M : S−1
ij N ]S−1

ij A is equal to the intersection ∩p[Mp : Np]Ap

over primes p that do not contain ai or bj .
We now observe that since the sets {ai} and {bj} both generate the unit ideal, for every

prime p there is a choice of ai and bj that do not lie in p. It follows that

[M : N ]A =
⋂
p

[Mp : Np]Ap =
⋂
ij

[S−1
ij M : S−1

ij N ]S−1
ij A.

Moreover, [M :N ]A is a nonzero fractional ideal. To see this, let Iij := [S−1
ij M : S−1

ij N ]S−1
ij A.

Each Iij is a nonzero principal fractional S−1
ij A-ideal, and we can choose a single α ∈ K×

so that each αIij is an S−1
ij A-ideal. The intersection of the αIij lies in ∩ijS−1

ij A = A and is
thus an A-submodule of A, hence an ideal, and finitely generated because A is noetherian.
It follows that [M : N ]A is a fractional ideal of A, and it is nonzero, since it contains the
product of the the generators of the Iij , for example. The localization of the intersection of
a finite set of A-modules is equal to the intersection of their localizations, thus

([M : N ]A)p =
(
∩ij [S−1

ij M : S−1
ij N ]S−1

ij A

)
p

= ∩ij
(
[S−1
ij M : S−1

ij N ]S−1
ij A

)
p

= [Mp : Np]Ap

as claimed.
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Proposition 6.2 implies that the module index [M : N ]A is an element of the ideal
group IA. If M,N,P are A-lattices in V then

[M : N ]A[N : P ]A = [M : P ]A, (1)

since for each prime p we can write any isomorphism Mp
∼→ Pp as a composition of iso-

morphisms Mp
∼→ Np

∼→ Pp; we then note that the determinant map is multiplicative with
respect to composition and multiplication of fractional ideals is compatible with localization.
Taking P = M yields the identity

[M : N ]A[N : M ]A = [M : M ]A = A, (2)

thus [M : N ]A and [N : M ]A are inverses in the ideal group IA. We note that when N ⊆M
the module index [M : N ]A ⊆ A is actually an ideal (not just a fractional ideal), since in
this case we can express a basis for Np as Ap-linear combinations of a basis for Mp, and the

matrix for φ̂p will then have entries (and determinant) in Ap.

Remark 6.3. In the special case V = K, an A-lattice in V is simply a fractional ideal of A.
In this setting each module index [M : N ]A corresponds to a colon ideal

[M : N ]A = (N : M). (3)

Note that the order of M and N is reversed. This unfortunate conflict of notation arises
from the fact that the module index is generalizing the notion of an index (for example,
[Z : 2Z]Z = ([Z : 2Z]) = (2)), whereas colon ideals are generalizing the notion of a ratio
(for example, (Z : 2Z) = (1 : 2) = (1/2)). To see why (3) holds, let π be a uniformizer
for Ap. Then Mp = (πm) and Np = (πn) for some m,n ∈ Z, and we may take φp to be the
multiplication-by-πn−m map. We then have

[Mp : Np]Ap = (det φ̂p) = (πn−m) = (πn/πm) = (Np : Mp).

It follows from the remark that if M and N are nonzero fractional ideals of A then

M [M : N ]A = M(N : M) = N.

(note we are using the fact that A is a Dedekind domain; we always have M(N : M) ⊆ N
but equality does not hold in general), and if N ⊆M then I := [M : N ]A ⊆ A is an ideal and
we have MI = N = NA and therefore M/N ' A/I as quotients of A-modules. It follows
that I = {a ∈ A : aM ⊆ N} is the annihilator of M/N , which is a cyclic A-module (has a
single generator), since A/I is clearly cyclic (generated by the image of 1). Conversely, if
we know that M/N ' A/I for nonzero fractional ideals N ⊆ M , then we necessarily have
I = [M : N ]A. The following theorem generalizes this observation.

Theorem 6.4. Let A be a Dedekind domain with fraction field K, and let N ⊆ M be
A-lattices in a K-vector space V of dimension r for which the quotient module M/N is a
direct sum of cyclic A-modules:

M/N ' A/I1 ⊕ · · · ⊕A/In,

where I1, . . . , In are ideals of A. Then

[M : N ]A = I1 · · · In.
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Proof. Let p be a prime of A, let π be a uniformizer for Ap, and let ej = vp(Ij) for 1 ≤ j ≤ n.
Pick a basis for Mp and an isomorphism φp : Mp → Np so that Mp/Np = cokerφp. The
matrix of φp is an r × r matrix over the PID Ap with nonzero determinant. It therefore
has Smith normal form UDV , with U, V ∈ GLr(Ap) and D = diag(πd1 , . . . , πdr) for some
uniquely determined nonnegative integers d1 ≤ · · · ≤ dr. We then have

Ap/(π
e1)⊕ · · · ⊕Ap/(π

en) 'Mp/Np = cokerφ ' Ap/(π
d1)⊕ · · · ⊕Ap/(π

dr).

It follows from the structure theorem for modules over a PID that the non-trivial summands
on each side are precisely the invariant factors of Mp/Np, possibly in different orders. We
therefore have

∑n
j=1 ej =

∑r
i=1 di, and applying the definition of the module index yields

[Mp : Np]Ap = (detφp) = (detD) = (π
∑
di) = (π

∑
ej ) = (πe1p ) · · · (πenp ) = (I1 · · · In)p.

It follows that [M : N ]A = I1 · · · In, since the localizations ([M : N ]A)p = [Mp : Np]Ap and
(I1 · · · In)p coincide for every prime p.

6.2 The ideal norm

In the AKLB setup the inclusion A ⊆ B induces a homomorphism of ideal groups:

IA → IB
I 7→ IB.

We wish define a homomorphism NB/A : IB → IA in the reverse direction. As we proved
in the previous lecture, every fractional B-ideal I is an A-lattice in L, so let us consider

IB → IA
I 7→ [B : I]A.

Definition 6.5. Assume AKLB. The ideal norm NB/A : IB → IA is the map I 7→ [B : I]A.
We extend NB/A to the zero ideal by defining NB/A((0)) = (0).

We now show that the ideal norm NB/A is compatible with the field norm NL/K .

Proposition 6.6. Assume AKLB and let α ∈ L. Then NB/A((α)) =
(
NL/K(α)

)
.

Proof. The case α = 0 is immediate, so assume α ∈ L×. We have

NB/A((α)) = [B : αB]A =
⋂
p

[Bp : αBp]Ap =
(

det(L
×α−→ L)

)
=
(
NL/K(α)

)
,

since each Bp
×α−→ αBp is an isomorphism of free Ap-modules that are Ap-lattices in L.

Proposition 6.7. Assume AKLB. The map NB/A : IB → IA is a group homomorphism.

Proof. Let p be a maximal ideal of A. Then Ap is a DVR and Bp is a semilocal Dedekind
domain, hence a PID. Thus every element of IBp is a principal ideal (α) for some α ∈ L×,
and the previous proposition implies that NBp/Ap

: IBp → IAp is a group homomorphism,
since NL/K is. For any I, J ∈ IB we then have

NB/A(IJ) =
⋂
p

NBp/Ap
(IpJp) =

⋂
p

NBp/Ap
(Ip)NBp/Ap

(Jp) = NB/A(I)NB/A(J).
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Corollary 6.8. Assume AKLB. For all I, J ∈ IB we have

[I : J ]A = NB/A(I−1J) = NB/A((J : I))

Proof. The second equality is immediate: (J : I) = I−1J (because B is a Dedekind domain).
The first follows from (1), (2), and the previous proposition. Indeed, we have

[I : J ]A = [I : B]A[B : J ]A = [B : I]−1
A [B : J ]A = NB/A(I−1)NB/A(J) = NB/A(I−1J).

Corollary 6.9. Assume AKLB and let I be a fractional ideal of B. The ideal norm of I
is the fractional ideal of A generated by the image of I under the field norm NL/K , that is,

NB/A(I) =
(
NL/K(α) : α ∈ I

)
.

Proof. Let J denote the RHS. For any nonzero prime p of A, the localization of the ideal
NB/A(I) = [B : I]A at p is [Bp : Ip]Ap = NBp/Ap

(Ip). The fractional ideal NBp/Ap
(Ip) of Ap

is principal, so NBp/Ap
(Ip) = Jp follows from the proposition, and

NB/A(I) =
⋂
p

NBp/Ap
(Ip) =

⋂
p

Jp = J.

The corollary gives us an alternative definition of the ideal norm in terms of the field
norm. In view of this we extend our definition of the field norm NL/K to fractional ideals
of B, and we may write NL/K(I) instead of NB/A(I). We have the following pair of commu-
tative diagrams, in which the downward arrows map nonzero field elements to the principal
fractional ideals they generate. We know that composing the maps K× → L× → K× along
the top corresponds to exponentiation by n = [L : K] (see Problem Set 2); we now show
that this is also true for the composition of the bottom maps.

K× L× L× K×

IA IB IB IA

←↩ →

←→ (x) ←→ (y)

←→
NL/K

←→ (y) ←→ (x)

←→I 7→IB ←→
NB/A

Theorem 6.10. Assume AKLB and let q be a prime lying above p. Then NB/A(q) = pfq,
where fq = [B/q : A/p] is the residue field degree of q.

Proof. The (A/p)-vector space B/q has dimension fq (by definition); as a quotient of A-
modules, we have B/q ' A/p ⊕ · · · ⊕ A/p, an fq-fold direct sum of cyclic A-modules A/p,
and we may apply Theorem 6.4. Thus NB/A(q) = [B : q]A = p · · · p = pfq .

Corollary 6.11. Assume AKLB. For I ∈ IA we have NB/A(IB) = In, where n = [L : K].

Proof. Since NB/A and I 7→ IB are group homomorphisms, it suffices to consider the case
were I = p is a nonzero prime ideal. We then have

NB/A(pB) = NB/A

∏
q|p

qeq

 =
∏
q|p

NB/A(q)eq =
∏
q|p

peqfq = p
∑

q|p eqfq = pn.
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6.3 The ideal norm in algebraic geometry

The maps i : IA → IB and NB/A : IB → IA have a geometric interpretation that will
be familiar to those who have studied algebraic geometry: they are the pushforward and
pullback maps on divisors associated to the morphism of curves Y → X induced by the
inclusion A ⊆ B, where X = SpecA and Y = SpecB. For the benefit of those who have
not seen this before, let us briefly explain the connection (while glossing over some details).

Dedekind domains naturally arise in algebraic geometry as coordinate rings of smooth
curves (which for the sake of this discussion one can take to mean geometrically irreducible
algebraic varieties of dimension one with no singularities). In order to make this explicit,
let us fix a perfect field k and a polynomial f ∈ k[x, y] that we will assume is irreducible in
k̄[x, y]. The ring A = k[x, y]/(f) is a noetherian domain of dimension 1, and if we further
assume that the algebraic variety X defined by f(x, y) = 0 has no singularities, then A
is also integrally closed and therefore a Dedekind domain.1 We call A the coordinate ring
of X, denoted k[X], and its fraction field is the function field of X, denoted k(X).

Conversely, given a Dedekind domain A, we can regard X = SpecA as a smooth curve
whose closed points are the maximal ideals of A (all of SpecA except the zero ideal, which
is called the generic point). When the field of constants k is algebraically closed, Hilbert’s
Nullstellensatz gives a one-to-one correspondence between maximal ideals (x−x0, y−y0) and
points (x0, y0) in the affine plane, but in general closed points correspond to Gal(k̄/k)-orbits
of k̄-points.

Recall that the ideal group IA is isomorphic to the free abelian group generated by the
nonzero prime ideals p of A. The corresponding object in algebraic geometry is the divisor
group DivX, the free abelian group generated by the closed points P of X. The group
DivX is written additively, so its elements have the form D =

∑
nPP with all but finitely

many of the integers nP equal to 0.
A finite extension of Dedekind domains B/A induces a surjective morphism φ : Y → X

of the corresponding curves X = SpecA and Y = SpecB. Primes q of B in the fiber above
a prime p of A correspond to closed points Q of Y in the fiber of φ above a closed point P
of X. The map IA → IB defined by p 7→ pB =

∏
q|p q

eq corresponds to the pullback map
φ∗ : DivX → Div Y induced by φ, which is defined by

φ∗(P ) :=
∑

φ(Q)=P

eQQ

where eQ is the ramification index (one then extends Z-linearly: φ∗(
∑
nPP ) =

∑
nPφ

∗(P )).
Geometrically we think of eQ as the “multiplicity” of Q in the fiber above P , although eQ
is typically defined algebraically as the ramification index of the prime Q in the Dedekind
extension B/A as we have done (alternatively, as we shall see in later lectures, it can be
defined in terms of valuations on k(X) and k(Y ) associated to P and Q).

In the other direction, the norm map NB/A : IB → IA, which sends q to NB/A(q) = pfq ,
corresponds to pushforward map φ∗ : Div Y → DivX induced by φ, which is defined by

φ∗(Q) := fQφ(Q) = fQP,

1If A is not integrally closed, we can replace it by its integral closure, thereby obtaining the normalization
of the curve X. One typically also takes the projective closure of X in order to obtain a complete curve;
this corresponds to considering all absolute values (places) of the function field of X, not just those arising
from primes. This distinction does not affect our discussion here but will become relevant in later lectures.
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where fQ counts the number of k̄-points in the Gal(k̄/k)-orbit corresponding to the closed
point Q, equivalently, the degree of the field extension of k needed to split Q into fQ distinct
closed points after base extension (here we are using our assumption that k is perfect). This
is precisely the residue field degree of Q as a prime in the Dedekind extension B/A. Note
that when k = k̄ we always have fQ = 1 (so over algebraically closed fields one typically
omits fQ from the pushforward map and the degree formula below).

If we compose the pushforward and pullback maps we obtain

φ∗φ
∗(P ) =

∑
φ(Q)=P

eQfQP = deg(φ)P.

Here deg(φ) is the degree of the morphism φ : Y → X, which is typically defined as the
degree of the function field extension [k(Y ) : k(X)], but one can take the above formula
as an alternative definition (by Theorem 5.35). It is a weighted measure of the cardinality
of the fibers of φ that reflects both the ramification and degree of each closed point in the
fiber (and as a consequence, it is the same for every fiber and is an invariant of φ).

6.4 The ideal norm in number fields

We now consider the special case A = Z, K = Q, where B = OL is the ring of integers of
the number field L. In this situation we may simply write N in place of NB/A and call it
the absolute norm. If q is a nonzero prime ideal of OL then Theorem 6.10 implies

N(q) = (pfq),

where p ∈ Z is the unique prime in q ∩ Z, and f is the degree of the finite field B/q as an
extension of Fp ' Z/pZ. The absolute norm

N(q) = [OL :q]Z = ([OL :q])

is the principal ideal generated by the (necessarily finite) index [OL : q] ∈ Z of q in OL as
free Z-modules of equal rank; this is just the index of q in OL as additive groups. More
generally, we have the following.

Proposition 6.12. Let L be a number field with ring of integers OL. For any nonzero
OL-ideal a we have N(a) =

(
[OL : a]

)
. If b ⊆ a are nonzero fractional ideals of OL, then

[a :b]Z = ([a :b]).

Proof. The ring OL is a free Z module of rank n := [L : Q]. It is free because it is
torsion-free and Z is a PID, and it has rank n because it contains a Q-basis for L, by
Proposition 5.17. The same is true of any nonzero fractional ideal of OL: it is a torsion-free
Z-module, hence free, and it has the same rank n as OL because it contains some nonzero
principal fractional ideal αOL: the fact that OL spans L implies that αOL spans L, because

the multiplication-by-α map L
×α→ L is an invertible Q-linear transformation.

Let us now fix Z-bases for OL and the nonzero OL-ideal a. Let Φ ∈ Zn×n be the matrix
whose columns express each basis element for a in terms of our basis for OL. Multiplication
by Φ defines a Z-module isomorphism from OL to a, since it maps our basis for OL to our
basis for a. It follows that [OL : a]Z = (det Φ): for every prime p ∈ Z we can use the
matrix Φ to define a Z(p)-module isomorphism φ(p) : (OL)(p) → a(p) with det φ̂(p) = det Φ
(any Z-basis for a free Z-module M is also a Z(p)-basis for the free Z(p)-module M(p)).
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We now observe that the absolute value of the determinant of Φ is equal to the index
of a in OL: indeed, if we identify OL with Zn then |det Φ| is the volume of a fundamental
parallelepiped for a, viewed as a sublattice of Zn. We thus have

([OL : a]) = (det Φ) = [OL :a]Z = N(a),

which proves the first claim.
For any α ∈ L× we have [a : b] = [αa :αb] and [a : b]Z = [αa :αb]Z, so we can assume

without loss of generality that a and b are ideals in OL. We then have a tower of free
Z-modules b ⊆ a ⊆ OL, and therefore

[OL :a][a :b] = [OL :b].

Replacing both sides with the Z-ideals they generate, we have

N(a)
(
[a :b]

)
= N(b),

and therefore ([a :b]) = N(a−1b) = [a :b]Z, by Corollary 6.8, proving the second claim.

Remark 6.13. Since Z is a principal ideal domain whose only units are ±1, we can un-
ambiguously identify each fractional ideal with a positive rational number and view the
absolute norm N: IOL

→ IZ as a homomorphism N: IOL
→ Q×>0 from ideal group of OL to

the multiplicative group of positive rational numbers. If we write N(a) in contexts where an
element of Z or Q (or R) is expected, it is always with this understanding. When a = (a)
is a nonzero principal fractional ideal we may also write N(a) := N((a)) = |NL/Q(a)|; this
is a positive rational number, and for a ∈ OL, a positive integer.

6.5 The Dedekind-Kummer theorem

We now give a theorem that provides a practical method for factoring primes in Dedekind
extensions. This result was proved by Dedekind for number fields, building on earlier work of
Kummer, but we will give a version that works for arbitrary extensions of Dedekind domains
B/A whose fraction fields are a finite separable extensions L/K (the AKLB setup).

The primitive element theorem implies when L/K is a finite separable extension we can
always write L = K(α) for some α ∈ L, and in the AKLB setup we can assume α ∈ B,
by Proposition 5.17. This does not imply that B = A[α]; indeed, it may very will happen
that there is no α ∈ B for which B = A[α]. Extensions L/K for which B = A[α] for some
α ∈ B are said to be monogenic. This necessarily implies that B is a free A-module, hence
it has an integral basis {β1, . . . , βn} that is both an A-basis for B and a K-basis for L. But
monogenicity is a much stronger condition: it implies that B has an integral power basis,
one of the form {1, α, . . . , αn−1}. When A = Z every B has an integral basis, but very
few have an integral power basis. Examples of monogenic extensions include quadratic and
cyclotomic number fields (as extensions of Q); see Problem Set 3 for proofs of these facts
and some examples of non-monogenic number fields.

We will first prove the Dedekind-Kummer theorem assuming we have a monogenic ex-
tension; in the next section we will address the general case.

Theorem 6.14 (Dedekind-Kummer). Assume AKLB with L = K(α) and α ∈ B. Let
f ∈ A[x] be the minimal polynomial of α, let p be a prime of A, and let

f̄ = ḡe11 · · · ḡ
er
r
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be its factorization into monic irreducibles in (A/p)[x]. Let qi := (p, gi(α)), where gi ∈ A[x]
is any lift of ḡi in (A/p)[x] under the reduction map A[x]→ (A/p)[x]. If B = A[α] then

pB = qe11 · · · q
er
r ,

is the prime factorization of pB in B and the residue field degree of qi is deg ḡi.

Before proving the theorem, last us give an example to illustrate its utility.

Example 6.15. Let A = Z, K = Q, and L = Q(ζ5), where α = ζ5 is a primitive 5th root
of unity with minimal polynomial f(x) = x4 + x3 + x2 + x+ 1. Then B = OL = Z[ζ5] and
we can use the theorem to factor any prime of Z in OL:

• (2): f(x) is irreducible modulo 2, so 2Z[ζ5] is prime and (2) is inert in Q(ζ5).

• (5): f(x) ≡ (x−1)4 mod 5, so 5Z[ζ5] = (5, ζ5−1)4 and (5) is totally ramified in Q(ζ5).

• (11): f(x) ≡ (x− 4)(x− 9)(x− 5)(x− 3) mod 11, so

11Z[ζ5] = (11, ζ5 − 4)(11, ζ5 − 9)(11, ζ5 − 5)(11, ζ5 − 3),

and (11) splits completely in Q(ζ5).

• (19): f(x) ≡ (x2 + 5x+ 1)(x2 − 4x+ 1) mod 19, so

19Z[ζ5] = (19, ζ2
5 + 5ζ5 + 1)(19, ζ2

5 − 4ζ5 + 1).

The four cases above cover every possible prime factorization pattern in the cyclotomic
extension Q(ζ5)/Q (see Problem Set 3 for a proof).

Proof of the Dedekind-Kummer theorem. We have B = A[α] ' A[x]/(f(x)) and therefore

B

qi
=

A[α]

(p, gi(α))
' A[x]

(f(x), p, gi(x))
' (A/p)[x]

(f̄(x), ḡi(x))
' (A/p)[x]

(ḡi(x))
.

The polynomial ḡi(x) is by assumption irreducible, thus (ḡi(x)) is a maximal ideal (because
(A/p)[x] is a UFD of dimension 1), so the quotient (A/p)[x]/(ḡi(x)) is a field; indeed, it is
an extension of the residue field A/p of degree deg gi. It follows that qi is a prime above p
with residue field degree fqi = deg ḡi as claimed.

The ideal
∏
i q
ei
i =

∏
i(p, gi(α))ei =

∏
i(pB + (gi(α)))ei is divisible by pB, since if we

expand the ideal product every term is clearly divisible by pB, including∏
i

(gi(α)ei) ≡ (f(α)) ≡ (0) mod pB.

The ḡi(x) are distinct as elements of (A/p)[x]/(f(x)) ' A[x]/(p, f(x)) ' A[α]/pA[α], and
it follows that the gi(α) are distinct modulo pB. Therefore the prime ideals qi are distinct,
and we must then have ei ≥ eqi and {q|p} ⊆ {qi} in order for

∏
i q
ei
i to be divisible by pB;

we already showed that each qi is a prime above p, so we must have {qi} = {q|p}. Now

NB/A

(∏
i

qeii

)
=
∏
i

NB/A(qi)
ei =

∏
i

(pfqi )ei = pei deg ḡi = pdeg f = p[L:K],

so
∑

i eifqi = [L : K] =
∑

q|p eqfq. We must have ei = eqi and the theorem follows.

We now want to remove the monogenic hypothesis from Theorem 6.14 We can always
write L = K(α) for some α ∈ B (since L/K is separable), but in general the ring A[α] may
be a proper subring of B. The relationship between A[α] and B is characterized by the
conductor of the extension B/A[α].
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6.6 The conductor of a ring

We first give the general definition then specialize to subrings of Dedekind domains.

Definition 6.16. Let S/R be an extension of commutative rings. The conductor of R in
S is the largest S-ideal that is also an R-ideal; equivalently, it is the largest ideal of S
contained in R. It can be written as

c := {α ∈ S : αS ⊆ R} = {α ∈ R : αS ⊆ R}.

If R is an integral domain, the conductor of R is the conductor of R in its integral closure.

Example 6.17. The conductor of Z in Z[i] is (0). The conductor of Z[
√
−3] in Z[ζ3] is

(2, 1 +
√
−3) (these may be viewed as generators over Z[

√
−3] or Z[ζ3], or even just Z; note

that (2, 1 +
√
−3) = 2Z[ζ3] is principal in Z[ζ3] but not in Z[

√
−3]).

We are interested in the case where R is a noetherian domain.

Lemma 6.18. Let R be a noetherian domain. The conductor of R in its integral closure S
is nonzero if and only if S is finitely generated as an R-module.

Proof. This is a special case of Lemma 2.14.

Recall that we defined a fractional ideal of a noetherian domain R as a finitely generated
R-submodule of its fraction field. If R has nonzero conductor then its integral closure S is
a fractional ideal of R that is also a ring. This means we can write S as 1

r I for some r ∈ R
and R-ideal I, and the conductor c is precisely the set of denominators r ∈ R for which
S = 1

r I for some R-ideal I (note that the representation 1
r I is far from unique).

6.7 Orders in Dedekind domains

We now introduce the notion of an order (in a Dedekind domain). This should not be
confused with the notion of a reflexive, transitive, antisymmetric relation on a set, rather it
is a literal translation of the German Ordnung, which refers to a ring of algebraic integers.

Definition 6.19. An order O is a noetherian domain of dimension one whose conductor
is nonzero, equivalently, whose integral closure is finitely generated as an O-module.2

Every Dedekind domain that is not a field is also an order. The integral closure of an
order is always a Dedekind domain, but not every ring whose integral closure is a Dedekind
domain is an order: as shown by Nagata [5, p. 212], one can construct noetherian domains of
dimension one with zero conductor. But in the case of interest to us the conductor is auto-
matically nonzero: in the AKLB setup B is finitely generated over A (by Proposition 5.22),
hence over every intermediate ring between A and B, including all those whose integral clo-
sure is B. In particular, if A[α] and B have the same fraction field (so L = K(α)), then
A[α] is an order in B (assuming B 6= L).

There is an alternative definition of an order that coincides with our definition in the
case of interest to us. Recall that an A-lattice in a K-vector space L is a finitely generated
A-submodule of L that spans L as a K-vector space.

2Not all authors require an order to have nonzero conductor (e.g. Neukirch [6, §I.12]), but nearly all of
the interesting theorems about orders require this assumption, so we include it in the definition.
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Definition 6.20. Let A be a noetherian domain with fraction field K, and let L be a (not
necessarily commutative) K-algebra of finite dimension. An A-order in L is an A-lattice
that is also a ring.

Remark 6.21. In general the K-algebra L (and the order O) in Definition 6.20 need not
be commutative (even though A necessarily is). For example, the endomorphism ring of an
elliptic curve is isomorphic to a Z-order in a Q-algebra L of dimension 1, 2, or 4. This Z-
order is necessarily commutative in dimensions 1 and 2, where L is either Q or an imaginary
quadratic field, but it is non-commutative in dimension 4, where L is a quaternion algebra.

Proposition 6.22. Assume AKLB and let O be a subring of L. Then O is an A-order
in L if and only if it is an order with integral closure B.

Proof. We first recall that under our AKLB assumption, dimA = 1, hence dimB = 1,
since A = B ∩K, and O ⊆ L is an A-module containing 1, so it contains A.

Suppose O is an A-order in L. Then O is an A-lattice, hence finitely generated as an
A-module, and therefore integral over A (see [1, Thm. 10.8], for example). Thus O lies in
the integral closure B of A in L. The fraction field of O is a K-vector space spanning L,
hence equal to L, so O and B have the same fraction field and B is the integral closure of O.
Thus O is a domain of dimension 1 (since B is), and it is noetherian because it is a finitely
generated over the noetherian ring A. The integral closure B of O is finitely generated over
A, hence over O; therefore O is an order.

Now suppose O is an order with integral closure B. It is an A-submodule of the noethe-
rian A-module B, hence finitely generated over A. It contains a K-basis for L because L is
its fraction field (take any K-basis for L written as fractions over O and clear denominators).
Thus O is an A-lattice in L that is also a ring, hence it is an A-order in L.

Remark 6.23. There may be subrings O of L that are orders but not A-orders in L, but
these do not have B as their integral closure. Consider A = B = Z, K = L = Q, and
O = Z(2), for example. In this case O is a DVR, hence a Dedekind domain, hence an order,
but it is not an A-order in L, because it is is not finitely generated over A. But its integral
closure is not B (indeed, O 6⊆ B).

Remark 6.24. An A-order in L is a maximal order if it is not properly contained in any
other A-order in L. When A is a Dedekind domain one can show that every A-order in L lies
in a maximal order. Maximal orders are not unique in general, but in the AKLB setup B
is the unique maximal order.

As with Dedekind domains, we call a nonzero prime ideal p in an order O a prime of O,
and if q is a prime of the integral closure B of O lying above p (dividing pB) then we may
write q|p to indicate this. As in the AKLB setup, we have q|p if and only if q ∩ O = p, by
Lemma 5.28. The fact that B is integrally closed ensures that every prime p of O has at
least one prime q lying above it (this is a standard fact of commutative algebra). We thus
have a surjective map

SpecB � SpecO
q 7→ q ∩ O

If a prime q of B contains the conductor c, then so does p = q ∩ O (since c ⊆ O), and
conversely. It follows that the map is SpecB → SpecO is still well-defined if we restrict
to primes that do not contain c. In B we can factor c into a product of powers of finitely
many primes q; it follows that only finitely many primes p of O contain c.
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Proposition 6.25. In any order O, only finitely many primes contain the conductor.

We now show that when we restrict to primes that do not contain the conductor the
map SpecB → SpecO becomes a bijection.

Lemma 6.26. Let O be an order with integral closure B and conductor c and let p be a
prime of O not containing c. Then pB is prime of B.

Proof. Let q be a prime of B lying above p, so that p = q ∩ O, and pick an element s ∈ c
not in p (and hence not in q). Claim: Op = Bq. To see that Op ⊆ Bq, note that if a/b ∈ Op

with a ∈ O and b ∈ O− p, then b ∈ B− q, so a/b ∈ Bq. Conversely, if a/b ∈ Bq with a ∈ B
and b ∈ B − q then sa ∈ O and sb ∈ O − p, so (sa)/(sb) = a/b ∈ Op; here we have used
that sB ⊆ O (since s ∈ c) and sb 6∈ q (since s, b 6∈ q), so sb 6∈ p.

We now note that q′|p ⇒ Bq′ = Op = Bq ⇒ q′ = q, so there is only one prime q lying
above p. It follows that pB = qe for some e ≥ 1, and we claim that e = 1. Indeed, we must
have pOp = qBq (this is the unique maximal ideal of the local ring Op = Bq written in two
different ways), so qeBq = qBq and therefore e = 1.

Corollary 6.27. Let O be an order with integral closure B and conductor c. The restriction
of the map SpecB → SpecO defined by q 7→ q ∩ O to prime ideals not containing c is a
bijection with inverse p 7→ pB.

We now note several conditions on primes of O that are equivalent to not containing
the conductor; these notably include the property of being invertible.

Theorem 6.28. Let O be an order with integral closure B and conductor c, and let p be a
prime of O. The following are equivalent:

(a) p does not contain c;

(b) O = {x ∈ B : xp ⊆ p};
(c) p is invertible;

(d) Op is a DVR;

(e) pOp is principal.

If any of these equivalent properties hold, then pB is a prime of B.

Proof. See Problem Set 3.

Remark 6.29. Orders in Dedekind domains also have a geometric interpretation. If O is an
order, the curve X = SpecO will have a singularity at each closed point P corresponding to
a maximal ideal of O that contains the conductor. Taking the integral closure B of O yields
a smooth curve Y = SpecB with the same function field as X and a morphism Y → X
that looks like a bijection above non-singular points (a dominant morphism of degree 1).
The curve Y is called the normalization of X.

Recall that two ideals I and J in a ring A are said to be relatively prime or coprime
if I + J = A; we may also say that I is prime to J . When A is a noetherian domain this
is equivalent to requiring that Ip + Jp = Ap for every prime ideal p of A; this follows from
Proposition 2.6 and Lemma 3.5. For prime ideals p that do not contain J , we have Jp = Ap,
in which case Ip + Jp = Ap certainly holds, so we only need to consider the case where p
contains J . In this case Jp is contained in pAp and Ip + Jp = Ap if and only if Ip 6⊆ pAp, in
which case Ip = Ap, equivalently, IAp = Ap. This leads to the following definition.
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Definition 6.30. Let A be a noetherian domain and let J be an ideal of A. A fractional
ideal I of A is prime to J if IAp = Ap for all prime ideals p that contain J . The set of
invertible fractional ideals prime to J is denoted IJA; it is a subgroup of the ideal group IA.

To check that IJA is in fact a subgroup, we note that if p is any prime containing J
then (a) (1)Ap = Ap, (b) if IAp = Ap then I−1Ap = I−1IAp = Ap (c) if I1Ap = Ap and
I2Ap = Ap then I1I2Ap = I2Ap = Ap.

Theorem 6.31. Let O be an order with integral closure B. Let c be any ideal of B contained
in the conductor of O. The map q 7→ q ∩ O induces a group isomorphism from IcB to IcO
and both groups are isomorphic to the free abelian group generated by their prime ideals.
In particular, every fractional ideal of O prime to the conductor has a unique factorization
into prime ideals

∏
peii which matches the factorization IB =

∏
qeii with pi = qi ∩ O.

Proof. The B-ideal c lies in the conductor of O and is therefore also an O-ideal, so the
subgroups IcB and IcO are well defined and the map q→ q∩O gives a bijection between the
sets of prime ideals contained in these subgroups, by Corollary 6.27; the theorem follows.

We now return to the AKLB setup. Let O be an order in B with conductor c. For
example, we could take O = A[α], where L = K(α) with α ∈ B, as in the Dedekind-
Kummer Theorem. Theorem 6.31 implies that we can determine how primes of A split in B
by looking at their factorizations in O, provided we restrict to primes p that do not contain
c ∩ A. This restriction ensures that the primes q of B and q′ = q ∩ O lying above p are all
prime to c and hence to the conductor, so the factorizations of pB and pO will match up.
In order to complete the picture, we now show that the residue field degrees of the primes
in these factorizations also match.

Proposition 6.32. Assume AKLB and let O be an order with integral closure B. Let
c = (c′∩A)B, where c′ is the conductor of O. Then O is an A-lattice in L and the restrictions
of the norm maps NB/A and NO/A to IcB and IcO commute with the isomorphism IcB → IcO
defined by q 7→ q ∩ O. If q is a prime of B that does not contain c and q′ = q ∩ O and
p = q ∩A, then NB/A(q) = NO/A(q′) = pfq and [B/q : A/p] = [O/q′ : A/p].

Proof. We first note that (c′ ∩A)O ⊆ c′, so c = (c′ ∩A)B ⊆ c′B = c′, thus c is contained in
the conductor of O. That O is an A-lattice in L follows from Proposition 6.22. Let q be a
prime of B that does not contain c, and define q′ := q∩O and p := q∩A. If p′ is any prime
of A other than p, then the localization of q at p′ contains B and the localization of q′ at p′

contains O (pick a ∈ p− p′ and note that a/a = 1 lies in both q and q′); we thus have

NB/A(q)p′ = [Bp′ :qp′ ]Ap′ = [Bp′ :Bp′ ]Ap′ = Ap′ = [Op′ :Op′ ]Ap′ = [Op′ :q
′
p′ ]Ap′ = NO/A(q′)p′

For the prime p we proceed as in the proof of Lemma 6.26 and pick s ∈ (c ∩ A) − p. We
then find that Bp = Op and qp = q′p, and therefore

NB/A(q)p = [Bp :qp]Ap = [Op :q′p]Ap = NO/A(q′)p.

Thus NB/A(q)p = NB/A(q′)p for all primes p of A, and

NB/A(q) = ∩pNB/A(q)p = ∩pNO/A(q′)p = NO/A(q′).

The proof that NB/A(q) = pfq in Theorem 6.10 does not depend on the fact that B is

a Dedekind domain and applies equally to the order O. Thus NO/A(q′) = pfq′ , where
fq′ := [O/q′ : A/p]. We therefore have fq′ = fq and [B/q :A/p] = [O/q′ :A/p] as claimed.
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Corollary 6.33. The assumption B = A[α] in the Dedekind-Kummer theorem can be
replaced with the assumption that pB is prime to the conductor of A[α] in B.

Remark 6.34. In the special case where A = Z and L = Q(α) is a number field generated
by an algebraic integer α, for any prime number p, the ideal pOL is prime to the conductor
of A[α] if and only if p does not divide the index n of A[α] in OL, as we now explain. The
conductor c is an OL-ideal with absolute norm [OL : c], and it is also an A[α]-ideal, hence
contained in A[α], so [OL : c] = [OL :A[α]][A[α] : c] is divisible by n = [OL : A[α]]. If p|n
then p|[OL : c] and pOL must have a prime of OL above p that divides c. Conversely if pOL
is not prime to c then there is a prime q of OL above p that divides c, and it follows that
p = [OL : q] divides [OL : c], hence p divides either OL :A[α]] or [A[α] :c]. The latter cannot
hold because it would imply that q is an A[α]-ideal, hence divisible by the conductor c (and
therefore equal to c), but then [OL : c] = [OL : q] and [OL : A[α]] = 1 which is impossible
when A[α] has nontrivial conductor c = q.

For number fields L = Q[x]/(xn + axm + b) with m|n, the article [4] gives a precise
characterization of the primes p dividing [OL :A[α]] (equivalently, dividing the conductor of
A[α], as argued above), including necessary and sufficient criteria for L to be monogenic.
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