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8 Complete fields and valuation rings

In order to make further progress in our investigation of how primes split in our AKLB
setup, and in particular, to determine the primes of K that ramify in L, we introduce a new
tool that allows us to “localize” fields. We have seen how useful it can be to localize the
Dedekind domain A at a prime ideal p: this yields a discrete valuation ring Ap, a principal
ideal domain with exactly one nonzero prime ideal, which is much easier to study than A,
and from Proposition 2.6 we know that the localizations of A at prime ideals collectively
determine the structure of A.

Localizing A does not change its fraction field K. But there is an operation we can
perform on K that is analogous to localizing A: we can construct the completion of K with
respect to one of its absolute values. When K is a global field, this yields a local field, a
term that we will define in the next lecture. At first glance taking completions might seem
to make things more complicated, but as with localization, it simplifies matters by allowing
us to focus on a single prime, and moreover, work in a complete field.

We begin by briefly reviewing some standard background material on completions, topo-
logical rings, and inverse limits.

8.1 Completions

Recall that an absolute value on a field K is a function | | : K → R≥0 for which

1. |x| = 0 if and only if x = 0;

2. |xy| = |x||y|;
3. |x+ y| ≤ |x|+ |y|.

If in addition the stronger condition

4. |x+ y| ≤ max(|x|, |y|)

holds, then | | is nonarchimedean. This definition does not depend on the fact that K
is a field, K could be any ring, but absolute values can exist only when K is an integral
domains, since a, b 6= 0 ⇒ |a|, |b| 6= 0 ⇒ |ab| = |a||b| 6= 0 ⇒ ab 6= 0; of course an absolute
value on an integral domain extends to an absolute value on its fraction field, but it will be
convenient to consider absolute values on integral domains as well as fields.

For a more general notion, we can instead consider a metric on a set X, which we recall
is a function d : X ×X → R≥0 that satisfies

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, z) ≤ d(x, y) + d(y, z).

A metric that also satisfies

4. d(x, z) ≤ max(d(x, y), d(y, z))

is an ultrametric and is said to be nonarchimedean. Every absolute value on a ring induces
a metric d(x, y) := |x− y|, but not every metric on a ring is induced by an absolute value.
The metric d defines a topology on X generated by open balls

B<r(x) := {y ∈ X : d(x, y) < r}.
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with r ∈ R>0 and x ∈ X, and we call X a metric space. It is a Hausdorff space, since distinct
x, y ∈ X have disjoint open neighborhoods B<r(x) and B<r(y) (take r = d(x, y)/2), and
we note that each closed ball

B≤r(x) := {y ∈ X : d(x, y) ≤ r}

is a closed set, since its complement is the union of B<(d(x,y)−r)(y) over y ∈ X −B≤r(x).

Definition 8.1. Let X be a metric space. A sequence (xn) of elements of X converges
(to x) if there is an x ∈ X such that for every ε > 0 there is an N ∈ Z>0 such that
d(xn, x) < ε for all n ≥ N ; the limit x is necessarily unique. The sequence (xn) is Cauchy
if for every ε > 0 there is an N ∈ Z>0 such that d(xm, xn) < ε for all m,n ≥ N . Every
convergent sequence is Cauchy, but the converse need not hold. A metric space in which
every Cauchy sequence converges is said to be complete.

When X is an integral domain with an absolute value | | that makes it a complete metric
space we say that X is complete with respect to | |. Which sequences converge and which
sequences are Cauchy depends very much on the absolute value | | that we use; for example,
every integral domain is complete with respect to its trivial absolute value, since then every
Cauchy sequence must be eventually constant and obviously converges. Equivalent absolute
values necessarily agree on which sequences are convergent and which are Cauchy, so if an
integral domain is complete with respect to an absolute value it is complete with respect to
all equivalent absolute values.

Definition 8.2. Let X be a metric space. Cauchy sequences (xn) and (yn) are equivalent if
d(xn, yn)→ 0 as n→∞; this defines an equivalence relation on the set of Cauchy sequences
in X and we use [(xn)] to denote the equivalence class of (xn). The completion of X is the
metric space X̂ whose elements are equivalence classes of Cauchy sequences with the metric

d([(xn)], [(yn)]) := lim
n→∞

d(xn, yn)

(this limit exists and depends only on the equivalence classes of (xn) and (yn)). We may
canonically embed X in its completion X̂ via the map x 7→ x̂ = [(x, x, . . .)].

When X is a ring we extend the ring operations to X̂ a ring by defining

[(xn)] + [(yn)] := [(xn + yn)] and [(xn)][(yn)] := [(xnyn)];

the additive and multiplicative identities 0 := [(0, 0, · · · )] and 1 := [(1, 1, . . . )]. When the
metric on X is induced by an absolute value | |, we extend | | to an absolute value on X̂ via∣∣[(xn)]

∣∣ := lim
n→∞

|xn|.

This limit exists and depends only on the equivalence of (xn), as one can show using the
triangle inequality and the fact that (xn) is Cauchy and R is complete. When X is a field
with a metric induced by an absolute value, the completion X̂ is also a field (this is false
in general, see Problem Set 4 for a counter example). Indeed, given [(xn)] 6= 0, we can
choose (xn) with xn 6= 0 for all n, and use the multiplicative property of the absolute value
(combined with the triangle inequality), to show that (1/xn) is Cauchy. We then have
1/[(xn)] = [(1/xn)], since [(xn)][(1/xn)] = [(1, 1, . . .)] = 1.
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If | | arises from a discrete valuation v on K (meaning |x| := cv(x) for some c ∈ (0, 1)),
we extend v to a discrete valuation on X̂ by defining

v([(xn)]) := lim
n→∞

v(xn) ∈ Z,

for [(xn)] 6= 0̂ and v(0̂) := ∞. Note that for [(xn)] 6= 0̂ the sequence (v(xn)) is eventually
constant (so the limit is an integer), and we have |[(xn)]| = cv([(xn)]).

8.1.1 Topological fields with an absolute value

Let K be a field with an absolute value | |. Then K is also a topological space under the
metric d(x, y) = |x− y| induced by the absolute value, and moreover it is a topological field.

Definition 8.3. An abelian group G is a topological group if it is a topological space in
which the map G × G → G defined by (g, h) 7→ g + h and the map G → G defined by
g 7→ −g are both continuous (here G×G has the product topology). A commutative ring R
is a topological ring if it is a topological space in which the maps R × R → R defined
by (r, s) 7→ r + s and (r, s) 7→ rs are both continuous; the additive group of R is then a
topological group, since (−1, s) 7→ −s is continuous, but the unit group R× need not be a
topological group, in general. A field K is a topological field if it is a topological ring whose
unit group is a topological group.

If R is a ring with an absolute value then it is a topological ring under the induced
topology, and its unit group is also a topological group ; in particular, if R is a field with an
absolute value, then it is a topological field under the induced topology. These facts follow
from the the triangle inequality and the multiplicative property of an absolute value.

Proposition 8.4. Let K be a field with an absolute value | | viewed as a topological field
under the induced topology, and let K̂ be the completion K. The field K̂ is complete, and has
the following universal property: every embedding of K as a topological field into a complete
field L can be uniquely extended to an embedding of K̂ into L which is an isomorphism
whenever K is dense in L. Up to a canonical isomorphism, K̂ is the unique topological field
with this property.

Proof. See Problem Set 4.

The proposition implies that the completion of K̂ is (isomorphic to) itself, since we
can apply the universal property of the completion of K̂ to the trivial embedding K̂ → K̂.
Completing a field that is already complete has no effect. In particular, the completion of K
with respect to the trivial absolute value is K, since every field is complete with respect to
the trivial absolute value.

Two absolute values on the same field induce the same topology if and only if they are
equivalent; this follows from the Weak Approximation Theorem.

Theorem 8.5 (Weak Approximation). Let K be a field and let | · |1, . . . , | · |n be pairwise
inequivalent nontrivial absolute values on K. Let a1, . . . , an ∈ K and let ε1, . . . , εn be positive
real numbers. Then there exists an x ∈ K such that |x− ai|i < εi for 1 ≤ i ≤ n.

Proof. See Problem Set 4.

Corollary 8.6. Let K be a field with absolute values | |1 and | |2. The induced topologies
on K coincide if and only if | |1 and | |2 are equivalent.
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Proof. See Problem Set 4.

The topology induced by a nonarchimedean absolute value has some features that may
be counterintuitive to the uninitiated. In particular, every open ball is also closed, so the
closure of B<r(x) is not B≤r(x) unless these two sets are already equal, which need not be
the case since the map | | : K → R≥0 need not be surjective; indeed, it will have discrete
image if | | arises from a discrete valuation. This means that is entirely possible to have
B<r(x) = B<s(x) for r 6= s; indeed occurs uncountably often when | | arises from a discrete
valuation. The reader may wish to verify that the following hold in any nonarchimedean
metric space X:

1. Every point in an open ball is a center: B<r(y) = B<r(x) for all y ∈ B<r(x).

2. Any pair of open balls are either disjoint or concentric (have a common center).

3. Every open ball is closed and every closed ball is open.

4. X is totally disconnected : every pair of distinct points have disjoint open neighbor-
hoods whose union is the whole space (every connected component is a point).

For any topological space X, the continuity of a map f : X ×X → X implies that for
every fixed x ∈ X the maps X → X defined by y 7→ f(x, y) and y 7→ f(y, x) are continuous,
since each is the composition f ◦φ of f with the continuous map φ : X → X×X defined by
y 7→ (x, y) and y 7→ (y, x), respectively. For an additive topological group G this means that
every translation-by-h map g 7→ g + h is a homeomorphism, since it is continuous and has
a continuous inverse (translate by −h); in particular, translates of open sets are open and
translates of closed sets are closed. Thus in order to understand the topology of a topological
group, we can focus on neighborhoods of the identity; a base of open neighborhoods about
the identity determines the entire topology. It also means that any topological property of
a subgroup (such as being open, closed, or compact) applies to all of its cosets.

If K̂ is the completion of a field K with respect to an absolute value | |, then K̂ is a
topological field with the topology induced by | |, and the subspace topology on K ⊆ K̂ is
the same as the topology on K induced by | |. By construction, K is dense in K̂; indeed,
K̂ is precisely the set of limit points of K. More generally, every open ball B<r(x) in K is
dense in the corresponding open ball B<r(x̂) in K̂.

8.1.2 Inverse limits

Inverse limits are a general construction that can be applied in any category with products,
but we will only be concerned with inverse limits in familiar concrete categories such as
groups, rings, and topological spaces, all of which are concrete categories whose objects
can be defined as sets (more formally, concrete categories admit a faithful functor to the
category of sets), which allows many concepts to be defined more concretely.

Definition 8.7. A directed set is a set I with a relation “≤” that is reflexive (i ≤ i),
anti-symmetric (i ≤ j ≤ i ⇒ i = j), and transitive (i ≤ j ≤ k ⇒ i ≤ k), in which every
finite subset has an upper bound (in particular, I is non-empty).

Definition 8.8. An inverse system (projective system) in a category is a family of objects
{Xi : i ∈ I} indexed by a directed set I and a family of morphisms {fij : Xi ← Xj : i ≤ j}
(note the direction) such that each fii is the identity and fik = fij ◦ fjk for all i ≤ j ≤ k.1

1Some (but not all) authors reserve the term projective system for cases where the fij are epimorphisms.
This distinction is not relevant to us, as our inverse systems will all use epimorphisms (surjections, in fact).
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Definition 8.9. Let (Xi, fij) be an inverse system in a concrete category with products.
The inverse limit (or projective limit) of (Xi, fij) is the object

X := lim←−Xi :=

{
x ∈

∏
i∈I

Xi : xi = fij(xj) for all i ≤ j

}
⊆
∏
i∈I

Xi

(whenever such an object X exists in the category). The restrictions πi : X → Xi of the
projections

∏
Xi → Xi satisfy πi = fij ◦ πj for i ≤ j.

The object X = lim←−Xi has the universal property that if Y is another object with
morphisms ψi : Y → Xi that satisfy ψi = fij ◦ψj for i ≤ j, then there is a unique morphism
Y → X for which all of the diagrams

Y

X

Xi Xj

←

→

ψi

←

→
ψj

←→ ∃!

←→

πi

←

→πj

←→

fij

commute (this universal property defines an inverse limit in any category with products).

As with other categorical constructions satisfying (or defined by) universal properties,
uniqueness is guaranteed, but existence is not. However, in any concrete category for which
the faithful functor to the category of sets has a left adjoint, inverse limits necessarily exist;
this applies to all the categories we shall consider, including the categories of groups, rings,
and topological spaces, all of which admit a “free object functor” from the category of sets.

Proposition 8.10. Let (Xi, fij) be an inverse system of Hausdorff topological spaces. Then
X := lim←−Xi is a closed subset of

∏
Xi, and if the Xi are compact then X is compact.

Proof. The set X is the intersection of the sets Yij := {x ∈
∏
Xi : xi = fij(xj)} with i ≤ j,

each of which can be written as Yij =
∏
k 6=i,j Xk × Zij , where Zij is the preimage of the

diagonal ∆i := {(xi, xi) : xi ∈ Xi} ⊆ Xi×Xi under the continuous map Xi×Xj → Xi×Xi

defined by (xi, xj) 7→ (xi, fij(xj)). Each ∆i is closed in Xi ×Xi (because Xi is Hausdorff),
so each Zij is closed in Xi×Xj , and each Yij is closed in

∏
Xi; it follows that X is a closed

subset of
∏
Xi. By Tychonoff’s theorem [1, Thm. I.9.5.3], if the Xi are compact then so is

their product
∏
Xi, in which case the closed subset X is also compact.

8.2 Valuation rings in complete fields

We now want to specialize to absolute values induced by a discrete valuation v : K× � Z.
If we pick a positive real number c < 1 and define |x|v := cv(x) for x ∈ K× and |0|v := 0
then we obtain a nontrivial nonarchimedean absolute value | |v. Different choices of c yield
equivalent absolute values and thus do not change the topology induced by | |v or the
completion Kv := K̂ of K with respect to | |v. We will see later that there is a canonical
choice for c when the residue field k of the valuation ring of K is finite (one takes c = 1/#k).

It follows from our discussion that the valuation ring

Av := {x ∈ Kv : v(x) ≥ 0} = {x ∈ Kv : |x|v ≤ 1}
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is a closed (and therefore open) ball in Kv; indeed, it is the closure of the valuation ring
A of K inside Kv. Note that Kv is the fraction field of Av, since we have x ∈ Kv − Av
if and only if 1/x ∈ Â; so rather than defining Av as the valuation ring of Kv we could
equivalently define Av as the completion of A (with respect to | |v) and then define Kv as
its fraction field.

We now give another characterization of Av as an inverse limit.

Proposition 8.11. Let K be a field with absolute value | |v induced by a discrete valua-
tion v, let A be the valuation ring of K, and let π be a uniformizer. The valuation ring of
the completion Kv of K with respect to | |v is a complete discrete valuation ring Av with
uniformizer π, and we have an isomorphism of topological rings

Av ' lim←−
n→∞

A

πnA
.

It is immediately clear that Av is a complete DVR with uniformizer π: it is complete
because it is a closed subset of the complete field Kv, it is a DVR with uniformizer π because
v extends to a discrete valuation on Av with v(π) = 1.

Before proving the non-trivial part of the proposition, let us check that we understand
the topology of the inverse limit X := lim←−nA/π

nA. The valuation ring A is a closed ball
B≤1(0) (hence an open set) in the nonarchimedean metric space K, and this also applies
to each of the sets πnA (they are closed balls of radius cn about 0). Each quotient A/πnA
therefore has the discrete topology, since the inverse image of any point under the quotient
map is a coset of the open subgroup πnA. The inverse limit X is a subspace of the product
space

∏
nA/π

nA, whose basic open sets project onto A/πnA for all but finitely many
factors (by definition of the product topology). It follows that every basic open subset U of
X is the full inverse image (under the canonical projection maps given by the inverse limit
construction) of a subset of A/πmA for some m ≥ 1; all open sets are unions of these basic
open sets. When this set is a point we can describe U as a coset a+ πmA, for some a ∈ A;
as a subset U =

∏
n Un of

∏
nA/π

nA each Un is the image of a+ πmA under the quotient
map A→ A/πnA. In general, U is a union of such sets (all with the same m).

We can alternatively describe the topology on X in terms of an absolute value: for
nonzero x = (xn) ∈ X = lim←−A/π

nA, let v(x) be the least n ≥ 0 for which xn+1 6= 0, and

define |x|v := cv(x). If we embed A in X in the obvious way, a 7→ (ā, ā, ā, . . .), the absolute
value on X restricts to the absolute value | |v on A, and the subspace topology A inherits
from X is the same as that induced by | |v. The open sets of X are unions of open balls
B<r(a), where we can always choose a ∈ A (because A is dense in X). If we let m ≥ 0 be
the least integer for which cm < r, where c ∈ (0, 1) is the constant for which |x| = cv(x) for
all x ∈ A, then B<r(a) corresponds to a coset a+ πmA as above.

Let us now prove the proposition.

Proof. The ring Av is complete and contains A. For each n ≥ 1 we define a ring homo-
morphism φn : Av → A/πnA as follows: for each â = [(ai)] let φn(â) be the limit of the
eventually constant sequence (ai) of images of ai in A/(πn). We thus obtain an infinite se-
quence of surjective maps φn : Av → A/πnA that are compatible in that for all n ≥ m > 0
and all a ∈ Av the image of φn(a) in A/πmA is φm(a). This defines a surjective ring
homomorphism φ : Av → lim←−A/π

nA. Now note that

kerφ =
⋂
n≥1

πnAv = {0}, (1)
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so φ is injective and therefore an isomorphism. To show that φ is also a homeomorphism, it
suffices to note that if a+ πmA is a coset of πmA in A and U is the corresponding open set
in lim←−A/π

nA, then φ−1(U) is the closure of a + πmA in Av, which is the coset a + πmAv,
an open subset in Av (as explained in the discussion above, every open set in the inverse
limit corresponds to a finite union of cosets a+πmA for some m). Conversely φ maps open
sets a+ πmAv to open sets in lim←−A/π

nA.

Remark 8.12. Given any ring R with an ideal I, one can define the I-adic completion of R
as the inverse limit of topological rings lim←−nR/I

n, where each R/In is given the discrete
topology. Proposition 8.11 shows that when R is a DVR with maximal ideal m, taking the
completion of R with respect to the absolute value | |m is the same thing as taking the
m-adic completion. This is not true in general. In particular, the m-adic completion of a
(not necessarily discrete) valuation ring R with respect to its maximal ideal m need not
be complete (either in the sense of Definition 8.1 or in the sense of being isomorphic to its
m-adic completion). The key issue that arises is that the kernel in (1) need not be trivial;
indeed, if m2 = m (which can happen) it certainly won’t be. This problem does not occur
for valuation rings that are noetherian, but these are necessarily DVRs.

Example 8.13. Let K = Q and let vp be the p-adic valuation for some prime p and let
|x|p := p−vp(x) denote the corresponding absolute value. The completion of Q with respect
to | |p is the field Qp of p-adic numbers. The valuation ring of Q corresponding to vp is the
local ring Z(p). Taking π = p as our uniformizer, we get

Ẑ(p) ' lim←−
n→∞

Z(p)

pnZ(p)
' lim←−

n→∞

Z
pnZ

' Zp,

the ring of p-adic integers (note that this example gives two equivalent definitions of Zp).

Example 8.14. Let K = Fq(t) be the rational function field over a finite field Fq and
let vt be the t-adic valuation and let |x|t := q−vt(x) be the corresponding absolute value.
with uniformizer π = t. The completion of Fq(t) with respect to | |t is isomorphic to the
field Fq((t)) of Laurent series over Fq. The valuation ring of Fq(t) with respect to vt is the
local ring Fq[t](t) consisting of rational functions whose denominators have nonzero constant
term. Taking π = t as our uniformizer, we get

F̂q[t](t) ' lim←−
n→∞

Fq[t](t)
tnFq[t](t)

' lim←−
n→∞

Fq[t]
tnFq[t]

' Fq[[t]],

where Fq[[t]] denotes the power series ring over Fq.

Example 8.15. The isomorphism Zp ' lim←−Z/pnZ gives us a canonical way to represent
elements of Zp: we can write a ∈ Zp as a sequence (an) with an+1 ≡ an mod pn, where each
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an ∈ Z/pnZ is uniquely represented by an integer in [0, pn − 1]. In Z7, for example:

2 = (2, 2, 2, 2, 2, . . .)

2002 = (0, 42, 287, 2002, 2002, . . .)

−2 = (5, 47, 341, 2399, 16805, . . .)

2−1 = (4, 25, 172, 1201, 8404, . . .)

√
2 =

{
(3, 10, 108, 2166, 4567 . . .)

(4, 39, 235, 235, 12240 . . .)

5
√

2 = (4, 46, 95, 1124, 15530, . . .)

While this representation is canonical, it is also redundant. The value of an constrains
the value of an+1 to just p possible values among the pn+1 elements of Z/pn+1Z, namely,
those that are congruent to an modulo pn. We can always write an+1 = an + pnbn for some
bn ∈ [0, p− 1], namely, bn = (an+1 − an)/pn.

Definition 8.16. Let a = (an) be a p-adic integer with each an uniquely represented by an
integer in ∈ [0, pn − 1]. The sequence (b0, b1, b2, . . .) with b0 = a1 and bn = (an+1 − an)/pn

is called the p-adic expansion of a.

Proposition 8.17. Every element of Zp has a unique p-adic expansion and every sequence
(b0, b1, b2, . . .) of integers in [0, p− 1] is the p-adic expansion of an element of Zp.

Proof. This follows immediately from the definition: we can recover (an) from its p-adic
expansion (b0, b1, b2, . . .) via a1 = b0 and an+1 = an + pbn for all n ≥ 1.

Thus we have a bijection between Zp and the set of all sequences of integers in [0, p− 1]
indexed by the nonnegative integers.

Example 8.18. We have the following p-adic expansion in Z7:

2 = (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

2002 = (0, 6, 5, 5, 0, 0, 0, 0, 0, 0, . . .)

−2 = (5, 6, 6, 6, 6, 6, 6, 6, 6, 6, . . .)

2−1 = (4, 3, 3, 3, 3, 3, 3, 3, 3, 3, . . .)

5−1 = (3, 1, 4, 5, 2, 1, 4, 5, 2, 1, . . .)

√
2 =

{
(3, 1, 2, 6, 1, 2, 1, 2, 4, 6 . . .)

(4, 5, 4, 0, 5, 4, 5, 4, 2, 0 . . .)

5
√

2 = (4, 6, 1, 3, 6, 4, 3, 5, 4, 6 . . .)

You can easily recreate these examples (and many more) in Sage. To create the ring of
7-adic integers, use Zp(7). By default Sage uses 20 digits of p-adic precision, but you can
change this to n digits using Zp(p,n).
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Performing arithmetic in Zp using p-adic expansions is straight-forward. One computes
a sum of p-adic expansions (b0, b1, . . .) + (c0, c1, . . .) by adding digits mod p and carrying
to the right (don’t forget to carry!). Multiplication corresponds to computing products of
formal power series in p, e.g. (

∑
bnp

n) (
∑
cnp

n), and can be performed by hand (or in Sage)
using the standard schoolbook algorithm for multiplying integers represented in base 10,
except now one works in base p. For more background on p-adic numbers, see [2, 3, 4, 5].

8.3 Extending valuations

Recall from Lecture 3 that each prime p of a Dedekind domain A determines a discrete
valuation (a surjective homomorphism) vp : IA → Z that assigns to a nonzero fractional
ideal I the exponent np appearing in the unique factorization of I =

∏
pnp into prime

ideals; equivalently, vp(I) is the unique integer n for which IAp = pnAp. This induces a
discrete valuation vp(x) := vp(xA) on the fraction field K, and a corresponding absolute
value |x|p := cvp(x) (with 0 < c < 1). In the AKLB setup, where L/K is a finite separable
extension and B is the integral closure of A in L, the primes q|p of B similarly give rise to
discrete valuations vq on L, each of which restricts to a valuation on K, but this valuation
need not be equal to vp. We want to understand how the discrete valuations vq relate to vp.

Definition 8.19. Let L/K be a finite separable extension, and let v and w be discrete
valuations on K and L respectively. If w|K = ev for some e ∈ Z>0, then we say that w
extends v with index e.

Theorem 8.20. Assume AKLB and let p be a prime of A. For each prime q|p, the discrete
valuation vq extends vp with index eq, and every discrete valuation on L that extends vp
arises in this way. In other words, the map q 7→ vq gives a bijection from {q|p} to the set
of discrete valuations of L that extend vp.

Proof. For each prime q|p we have vq(pB) = eq (by definition of the ramification index eq),
while vq(p

′B) = 0 for all primes p′ 6= p of A (since q lies above only the prime p = q ∩ A).
If I =

∏
p′(p
′)np′ is any nonzero fractional ideal of A then

vq(IB) = vq

∏
p′

(p′)np′B

 = vq(p
npB) = vq(pB)np = eqnp = eqvp(I),

so vq(x) = vq(xB) = eqvp(xA) = eqvp(x) for all x ∈ K×; thus vq extends vp with index eq.
If q and q′ are two distinct primes above p, then neither contains the other and for any

x ∈ q− q′ we have vq(x) > 0 ≥ vq′(x), thus vq 6= vq′ and the map q 7→ vq is injective.
Let w be a discrete valuation on L that extends vp, let W = {x ∈ L : w(x) ≥ 0} be the

associated DVR, and let m = {x ∈ L : w(x) > 0} be its maximal ideal. Since w|K = evp,
the discrete valuation w is nonnegative on A = {x ∈ K : w(x) ≥ 0} therefore A ⊆ W ,
and elements of A with nonzero valuation are precisely the elements of p, thus p = m ∩ A.
The discrete valuation ring W is integrally closed in its fraction field L, so B ⊆ W . Let
q = m ∩ B. Then q is prime (since m is), and p = m ∩ A = q ∩ A, so q lies over p. The
ring W contains Bq and is contained in FracBq = L. But there are no intermediate rings
between a DVR and its fraction field, so W = Bq and w = vq (and e = eq).
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