
LECTURE 19

Brauer Groups

In this lecture, we present an overview of Brauer groups. Our presentation
will be short on proofs, but we will give precise constructions and formulations of
claims. For complete proofs, see [Mil13, Ser79, Boy07]. Our motivating question
is: “what was all that stuff about Hamiltonian algebras?” (see Problem 5 of Problem
Set 1, Problem 3 of Problem Set 2, and Problem 2 of Problem Set 3). We will see
that there are two objects called the “Brauer group,” one which has a cohomological
definition, and one which has a more general algebraic definition; we’ll show that
the two coincide.

Recall that, if L/K is a G-Galois extension of nonarchimedean local fields, then
Z[−2]tG ' (L×)tG. When we tookH0 (zeroth cohomology), we obtained lcft, that
is, K×/NL× ' H1(G,Z) = Gab. This is natural, as L× is in degree 0. But Z is in
degree 2, so what if we take H2? Well, we obtain an isomorphism

Ĥ0(G,Z) ' Ĥ2(G,L×),

where the left-hand side is very simply isomorphic to

Z/[L : K]Z = Z/#GZ =
1

[L : K]
Z
/
Z,

since the invariants are Z as G acts trivially on Z, and the norms correspond to
multiplication by #G. However, the right-hand side is more mysterious, motivating
the following definition:

Definition 19.1. The cohomological Brauer group of L/K is

Brcoh(K/L) := H2(G,L×).

Remark 19.2. What happens if we vary L? Suppose we have Galois extensions
L2/L1/K, with Gal(Li/K) = Gi for i = 1, 2. Then we have a short exact sequence

0→ Gal(L2/L1)→ G2 → G1 → 0,

and maps

Brcoh(L1/K) = H2(G1, L
×
1 )→ H2(G2, L

×
1 )→ H2(G2, L

×
2 ) = Brcoh(L2/K)

since invariance with respect to G2 implies impvariance with respect to G1, and via
the embedding L×1 ↪→ L×2 . This motivates the following definition.

Definition 19.3. The cohomological Brauer group of K is

Brcoh(K) := lim−→
L/K

Brcoh(K/L) = H2(Gal(K),K
×

),

where the directed limit is over finite Galois extensions L/K.

Note that the right-most expression above uses our notation from last lecture.
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Claim 19.4. Under lcft, the following diagram commutes:

H2(G2, L
×
1 ) H2(G1, L

×
1 )

1
[L1:K]Z

/
Z 1

[L2:K]Z
/
Z.

Corollary 19.5. For a nonarchimedean local field K, we have

Brcoh(K) ' Q/Z.

Remark 19.6. One can also show that the top-most map is injective. For an
extension L/K of nonarchimedean local fields, there is an exact sequence

0→ Brcoh(K/L)→ Brcoh(K)︸ ︷︷ ︸
H2(Gal(K),K

×
)

→ Brcoh(L)︸ ︷︷ ︸
H2(Gal(L),K

×
)

,

which we’ll justify next time.

We now turn to the algebraic perspective, which provides the classical definition
of the Brauer group.

Proposition 19.7. Let K be a field, and let A be a finite-dimensional K-
algebra with center K. Then the following are equivalent:

(1) A is simple, that is, it has no non-trivial 2-sided ideals.
(2) A ⊗K L ' Mn(L) (i.e., an n × n matrix algebra) for some separable

extension L/K.
(3) A ' Mn(D) for some central (i.e., with center K) division (i.e., multi-

plicative inverses exist, but multiplication is not necessarily commutative)
algebra D over K.

If these conditions hold, then A is called a central simple algebra (csa; alterna-
tively, Azumaya algebra) over K.

Corollary 19.8. Any central simple algebra over K has dimension a square.

Proof. The dimension of A is preserved by the tensoring operation in (2), and
Mn(L) has square dimension. �

Example 19.9. (1) Mn(K).
(2) A central division algebra over K.
(3) The Hamiltonians over R := K.
(4) For all fields K with char(K) 6= 2 and elements a, b ∈ K×, Ha,b is a csa.
However, a general field L/K does not satisfy the centrality property, and

indeed, its dimension might not be a square.

Definition 19.10. The csa Brauer group of K is

Brcsa(K) := {equivalence classes of csas over K}
with respect to the equivalence relation A ' B if and only if A and B are matrix
algebras over isomorphic division algebras in (3) above (not necessarily of the same
dimension).

Remark 19.11. The isomorphism class of A depends only on the isomorphism
class of D.
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Proposition 19.12. If A and B are csas over K, then A⊗K B is also a csa
(note that tensor products multiply dimension, so A ⊗K B also has square dimen-
sion). Up to equivalence, this only depends on [A], [B] ∈ Brcsa(K), so Brcsa(K)
forms an abelian group.

The proof is omitted; showing that A ⊗K B is simple is rather annoying. We
note, however, that matrix algebras over K represent the identity element (or “0
equivalence class”) of Brcsa(K). The inverse of A is A, but with opposite multipli-
cation (i.e., x · y := yx), which we denote Aop. Indeed, we have a canonical algebra
homomorphism

A⊗K Aop → EndK(A),

with A and Aop acting on opposite sides (note that EndK(A) is in the 0 equivalence
class of Brcsa(K)). The kernel of this (nonzero) map must be a 2-sided ideal, so
since A ⊗K Aop is simple, it must be injective. Since both sides have dimension
dimK(A)2 over K, it is therefore also surjective, hence an isomorphism.

Definition 19.13. The csa Brauer group of L/K is

Brcsa(K/L) := {equivalence classes of csas A : A⊗K L ' Mn(L)},

and we say that such an A splits over L.

This notion is equivalent to the underlying division algebra D splitting over L,
which likewise means that D ⊗K L ' Mn(L) is no longer a division algebra. Then
clearly

Brcsa(K) =
⋃
L/K

seperable

Brcsa(K/L).

Example 19.14. (1) If K is algebraically closed, then Brcsa(K) = {0} is
clearly trivial.

(2) Brcsa(R) = {R,H} = Z/2Z, since the only other division algebra over R
is C which is not central. Note that the Hamiltonians H split over C and
have dimension 4 = 22.

(3) Ha,b splits over K(
√
a) and K(

√
b), which are the usual commutative

subalgebras of Ha,b. In fact, we can take K(
√
c) for any c ∈ K, and

can also conjugate by units. Thus, in the following claim, L is very non-
unique. Note that, unlike in this case, such an L need not be Galois over
K; examples are hard to find, but were discovered in the 1970s.

Claim 19.15. An n2-dimensional central division algebra D/K splits over a
degree-n extension L/K if and only if K ⊆ L ⊆ D as a subalgebra. Equivalently,
L is a maximal commutative subalgebra in D.

First, we have the (easy) fact that any commutative subalgebra of a division
algebra is a field. This is similar to the fact that every finite-dimensional integral
domain over a field is itself a field. This is because multiplication by any element
is injective, and given by a matrix, hence surjective. Thus, some element maps to
the identity, providing the desired inverse element. Then there is the (non-obvious)
fact that dimK(D) is the square of the dimension of any maximal commutative
subalgebra of D over K. We prove one direction of the claim:
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Proof. Suppose K ⊆ L ⊆ D, where [L : K] = n and dimK(D) = n2. We
claim that D splits over L. We have a map

D ⊗K L→ EndL(D) = Mn(L)

with L acting on D via right multiplication and D acting on itself via left mul-
tiplication; the two actions commute. This map is injective (if dxl = x for some
d ∈ D, l ∈ L, and all x ∈ D, then dl = 1, hence dx = xl−1 = xd for all x ∈ D and
therefore d ∈ K, so d⊗ l = 1⊗ 1), and therefore surjective and an isomorphism, as
desired. �

Theorem 19.16. For every Galois extension L/K, we have Brcoh(K) ' Brcsa(K)

and Brcoh(K/L) ' Brcsa(K/L).

Note that the cohomological Brauer group is defined only for Galois extensions
L/K, whereas the csa Brauer group is defined for all extensions L/K. This gives
meaning to the cohomological definition of the Brauer group. We provide the
following (incomplete) proof sketch:

Proof. For a G-Galois extension L/K, we define a map

(19.1) H2(G,L×)→ Brcsa(K/L).

Every element in H2 is represented by a 2-cocycle, that is, a map ϕ : G×G→ L×

satisfying
g1

ϕ(g2,g3)ϕ(g1, g2g3) = ϕ(g1g2, g3)ϕ(g1, g2)

for every g1, g2, g3 ∈ G, and where we have introduced the notation gx := g · x. We
define a csa associated to each such ϕ as follows: form

L[G] =
{∑

g∈G xg[g] : xg ∈ L
}

subject to the relations

[g]x = gx[g] and [g][h] = ϕ(g, h)[gh]

for each x ∈ L and g, h ∈ G. We now check that the 2-cocyle identity is equivalent
to associativity:

[g1]([g2][g3]) = [g1]ϕ(g2, g3)[g2g3]

=
g1ϕ(g2, g3)[g1][g2g3]

=
g1ϕ(g2, g3)ϕ(g1, g2g3)[g1g2g3]

= ϕ(g1g2, g3)ϕ(g1, g2)[g1g2g3]

= ϕ(g1, g2)[g1g2][g3]

= ([g1][g2])[g3],

for all g1, g2, g3 ∈ G. We claim, but do not prove, that the equivalence class of this
csa only depends on ϕ, up to coboundaries, and that it splits over L. Moreover,
our map (19.1) is a group isomorphism. �

This is not an especially deep theorem, despite being far from obvious; the
complete proof uses a lot of structure theory that is not particularly memorable.

We now ask, how many isomorphism classes of central division algebras over K
of degree n2 are there? When n = 12, there is only 1; when n = 22, there is again
only 1, as shown in Problem 2(d) of Problem Set 3.
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Claim 19.17. There are ϕ(n) = #(Z/nZ)× isomorphism classes of central
division algebras over K of degree n2.

Claim 19.18. Let L/K be a degree-n extension of nonarchimedean local fields.
Then the following diagram commutes:

Br(K) Br(L)

Q/Z Q/Z.

lcft lcft

×n

Note that we have simply denoted the Brauer group by Br in light of Theo-
rem 19.16. Indeed, we’ve seen that both horizontal maps should have non-trivial
kernel; when L = K, Br(L) is trivial. Then a central division algebra of degree
n2 has order n in Br(K), i.e., is n-torsion, since it splits over its degree-n maxi-
mal commutative subalgebra. Alternatively, H2(G,−) is #G-torsion, as proven in
Problem 2(c) of Problem Set 7.

Corollary 19.19. Any degree-n2 division algebra splits over any degree-n ex-
tension of K.

On the other hand, if A ' Mn(D) is a csa over K of degree n2, representing
some n-torsion class in Br(K), then A splits over the maximal commutative sub-
algebra of D. This implies that A is itself a division algebra if it is n-torsion, but
not m-torsion for any m | n. This gives ϕ(n): the division algebras come from
classes in Z/nZ which do not arise from any smaller Z/mZ. Another upshot is the
following:

Corollary 19.20. Any degree-n2 central division algebra over K contains
every degree-n field extension of L.

Proof. Any n-torsion class in Br(K) maps to zero in the Brauer group Br(L)
over any degree-n extension L of K by Claim 19.18. Thus, it splits over L, hence
contains it by Claim 19.15. �

For n = 2, this is the result that every x ∈ K admits a square in Ha,b, which
was shown in Problem 2(c) of Problem Set 3.
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