
18.786: Topics in Algebraic Number Theory (spring 2006) 
Problem Set 2, due Thursday, March 2 

Reminder: no class on February 21 or 23! That’s why this set is on the long side. 

1. Put R = Z[
√

5]. Exhibit: 

(a) a failure of unique factorization of ideals in R; 

(b) a failure of a local ring of R to be a DVR. 

2. These	 are not actually related; they were run together by mistake on the original 
version, and to preserve the numbering I have left them together here. 

(a) Let R be an integrally closed domain. Prove that R[x] is also integrally closed. 

(b) Let R be a noetherian local domain with maximal ideal m. Prove that R is a DVR 
if and only if m/m2, when viewed as a vector space over R/m, is onedimensional. 
(The space m/m2 is called the cotangent space of R, because that’s what it is in 
the case where R is the local ring of a point on a smooth manifold.) 

3	 33. Determine the integral closure of Z in Q[x]/(x − 2) and in Q[x]/(x − x − 4). (Re
member: this means you have to first state the answer, then prove that nothing else 
in the field is integral!) 

4. Let P ∈ C[x, y] be an irreducible polynomial such that P is nonsingular in the affine 
∂P plane, that is, P, ∂P 

∂x , ∂y generate the unit ideal. Prove that C[x, y]/(P ) is a Dedekind 
domain; among other things, this will reveal the origin of the term “uniformizer” as an 
abbreviation for “uniformizing parameter”. (Hint: by the Nullstellensatz, the maximal 
ideals of C[x, y] correspond to points in C2 , and the maximal ideals of C[x, y]/(P ) 
correspond to points where P vanishes. Now use condition 2 from Theorem I.3.16.) 

5. Demonstrate	 an example to show that in the previous problem, the nonsingularity 
condition cannot be omitted. (Hint: the simplest example is a node, where analytically 
two branches of the zero locus appear to cross.) 

6. Prove the following converse of the unique factorization theorem: let R be an integral 
domain in which every nonzero ideal has a unique factorization into prime ideals. Prove 
that R is a Dedekind domain. (Hint: suppose that R has a maximal ideal m of height 
greater than 1, and then construct a mprimary ideal which is not a power of m.) 

7. Let R be a Dedekind domain, let p1, . . . , pn be nonzero prime ideals of R, and let S 
be the multiplicative subset R− (p1 ∪ · · · ∪ pn). Prove that RS is a PID. (Hint: prove 
that RS has only the “obvious” prime ideals.) 

8. Exercise I.1 (page 13). 

9. (a) Do Exercise I.4 (page 19). 
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(b) Prove that if S is the multiplicative set generated by a single element f , the kernel 
of the map C(R) → C(RS ) is generated by the classes of the prime ideals in the 
prime factorization of (f). 

(c) Deduce that if C(R) is finite, then there exists a nonzero f ∈ R such that Rf is 
a PID. 

(c) Exhibit an explicit example where the map C(R) → C(RS ) fails to be injective. 

10.	 Here is a variant of the concept of a PID which is sometimes useful. A Bézout ring is 
a ring in which every finitely generated ideal is principal. That is, a Bézout ring is like 
a PID except it may not be noetherian, e.g., the ring ∪∞n=1C�x1/n� from lecture. 

(a) Prove that every finitely generated torsionfree module over a Bézout domain is 
free, by imitating the proof in the PID case. (Optional: generalize other results 
to the Bézout case, e.g., the fact that a finitely presented projective module over 
a Bézout domain is free.) 

(b) Let R be the integral closure of Z in C. Prove that the localization of R at any 
maximal ideal is a Bézout ring which is not noetherian. 

(c) For 0 < r < 1, let Rr be the ring of complex analytic functions on the annulus 
r < |z| < 1. Prove that R = Rr is a Bézout domain which is not noetherian. ∪r 

(Hint: recall that the zeroes of an analytic function have no accumulation point 
in the region of definition.) 

(d) Optional: prove that the ring R in (b) is itself a Bézout ring. For this, you may 
use results from Janusz that we have not yet covered in class, e.g., the fact that 
the integral closure of Z in a finite extension of Q is a Dedekind ring, or the 
finiteness of the class group of said ring. 

11.	 Find out how to use SAGE builtin functions to compute the class group of the ring 
of integers in a quadratic number field. Then write a program to compute the sizes of 
the class groups of Q(

√
d) and Q(

√
−d) for d ≤ 1000, and tell me what you notice. 

Pay particular attention to factors of 2. (Optional: repeat with some cubic number 
fields and pay attention to the factors of 3.) 

12.	 (Not to be turned in) Read the proof of Theorem I.3.16, particularly any parts I skipped 
in class. 

13.	 (Optional, not to be turned in) Read the beginning of Silverman’s The Arithmetic of 
2 3Elliptic Curves to find out why the class group of C[x, y]/(y − x − Ax − B), where 

3A, B ∈ C are such that x − Ax− B has no repeated roots, is isomorphic to a complex 
torus (i.e., C modulo a lattice), and so in particular is infinite. 

2



