18.786: Topics in Algebraic Number Theory (spring 2006) Problem Set 4, due Thursday, March 16

Reminder: a ring extension S/R is monogenic if $S \cong R[x]/(P(x))$ for some polynomial $P(x) \in R[x]$. Also, \mathfrak{o}_K denotes the ring of integers in a number field K.

- 1. Janusz p. 40, exercise 3.
- 2. Janusz p. 42, exercise 4.
- 3. Janusz p. 47, exercise 1.
- 4. Janusz p. 57, exercise 1.
- 5. Janusz p. 57, exercise 2.
- 6. Janusz p. 57, exercise 3.
- 7. Show by an example that a rational prime p can be totally ramified in two different number fields K_1 and K_2 without being totally ramified in the compositum K_1K_2 . (Hint: you can do this with two quadratic extensions.)
- 8. (Note: after this problem set was issued, this problem was postponed to Problem Set 7.) Let $R_1 \subseteq R_2$ be an inclusion of DVRs, with R_2 finite integral over R_1 , such that the residue field extension R_2/\mathfrak{m}_{R_2} of R_1/\mathfrak{m}_{R_1} is separable. Prove that R_2 is a monogenic extension of R_1 . (Hint: first check the unramified case, where $\mathfrak{m}_{R_2} = \mathfrak{m}_{R_1}R_2$, and the totally ramified case, where $R_2/\mathfrak{m}_{R_2} = R_1/\mathfrak{m}_{R_1}$. Then combine the arguments in those two cases.)
- 9. (a) Let K be a number field such that \mathfrak{o}_K is monogenic over \mathbb{Z} . Prove that for each rational prime p, there are at most p primes \mathfrak{q} of \mathfrak{o}_K lying over (p) with $f(\mathfrak{q}/(p)) = 1$.
 - (b) Use (a) to produce an example of a number field K such that \mathfrak{o}_K is not monogenic over \mathbb{Z} .
 - (c) For your example in (b), exhibit a rational integer N such that $(\mathfrak{o}_K)[1/N]$ is monogenic over $\mathbb{Z}[1/N]$, then determine the splitting and ramification of all primes p dividing N.
- 10. Let K be the number field $\mathbb{Q}[x]/(x^3 x + 2)$. Use SAGE to determine, among the primes p < 10000, how many have each of the possible splitting types. Then make a guess about the asymptotics (which will be confirmed by the Chebotarev Density Theorem).