
18.786: Topics in Algebraic Number Theory (spring 2006) 
Problem Set 10, due Thursday, May 4 

This will be the last problem set; it will be followed by a takehome final exam due on 
the last day of classes (May 18), whose scope will be equal to that of these problem sets, 
i.e., roughly chapters 13 of Janusz. 

Handy notation: for L a finite extension of Qp and i ≥ 0, let Ui(L) be the subgroup of 
i∗ consisting of units congruent to 1 modulo mLo L. 

1. Let K be a finite extension of Qp, and let L be a finite Galois extension of K; the 
purpose of this exercise is to prove that G = Gal(L/K) is solvable. (For more details, 
see Serre’s Local Fields.) 

(a) For each integer	 i ≥ −1, let Gi be the set of g ∈ G such that for all x ∈ oL, 
g(x) − x ∈ mL

i+1 . Prove that Gi is a subgroup of G. 

(b) Prove that G0 is the inertia subgroup of G. 

(c) Let π be a uniformizer of L. Show that for each i ≥ 0, the function g �→ g(π)/π 
induces an injective homomorphism Gi/Gi+1 → Ui(L)/Ui+1(L). 

(d) Deduce from (c) that G0/G1 is cyclic of order prime to p, and for i > 0, Gi/Gi+1 

is abelian of exponent p. Then note that Gi = {e} for i large, so G is in fact 
solvable. 

∗ 
L given in (c) actually maps (e) Show that if G is abelian, then the map G0/G1 � κ→

∗ .Kinto κ This will be useful later. 

2. Here’s the nonGalois version of what I said in class on April 25. 

(a) Let L/K be a finite extension of number fields and let M/K be a Galois extension 
containing L. Put G = Gal(M/K) and H = Gal(M/L). Let p be a prime ideal 
of oK , and let q be a prime of oM above p. Prove that there is a bijection between 
the double cosets H/G\G(q) and the primes of oL above p, taking a double coset 
representative g to L ∩ g(q). 

(b) Let	 L/K be a finite extension of number fields. Deduce from (a) that a prime 
ideal of K, which does not ramify in L, is totally split in L if and only if it is 
totally split in the Galois closure of L/K. 

(c) (Optional, not to be turned in) Think about how to extract	 e and f from this 
grouptheoretic setup. 

3.	 (a) (Galois; optional, but you’re encouraged to at least look this up) Let G be a 
solvable group which acts faithfully and transitively on a finite set of prime car
dinality. Prove that no nonidentity element of G has two fixed points. 
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(b) (Schmidt) Let L/K be an extension of number fields of prime degree, whose Galois 
closure is solvable. Prove that if p is a prime ideal of K which does not ramify 
in L, and there are at least two primes of L above p of relative degree 1, then p 
splits completely in L. 

4.	 (a) Let K be an abelian extension of Q unramified away from a single prime p. Prove 
that there is a unique prime of K above p, and that this prime is totally ramified. 
(Hint: where does the inertia field ramify?) 

(b) Let	 G be a pgroup. The Frattini subgroup F of G is the intersection of the 
maximal proper subgroups of G. Prove that G/F is the maximal quotient of G 
which is abelian of exponent p. 

(c) Let	 K be a Galois extension of Q of prime power degree, which is unramified 
away from a single prime p (not necessarily the same prime as the one dividing 
the degree). Prove that there is a unique prime of K above p, and that this prime 
is totally ramified. (Hint: use Frattini to reduce to (a).) 

(d) Let K/Q be an abelian extension of 2power degree unramified outside 2. Prove 
that K ⊆ Q(ζ2m ) for some m. (Hint: first reduce to the case where K is totally 
real, by replacing K with the maximal real subfield of K(

√
−1). Then for m 

large, count quadratic subextensions of K(ζ2m ) to prove that K(ζ2m )/Q is cyclic, 
and then deduce the claim.) Optional: is this still true when K is only Galois, 
not just abelian? 

5. The KroneckerWeber theorem asserts that every finite abelian extension of Q is con
tained in some Q(ζn). The local KroneckerWeber theorem asserts that every finite 
abelian extension of Qp is contained in some Qp(ζn). Prove that local KW implies 
global KW, as follows. 

(a) Given an abelian extension K of Q, use local KW to prove that there exists 
n = pep such that for each p which ramifies in K, and each prime p of K above 
p, we have 

Kp ⊆ Qp(ζpep mp ) 

for some mp coprime to p. 

(b) Prove that the Galois group of K(ζn) is isomorphic to the product of its inertia 
groups, and deduce K(ζn) = Q(ζn). (Hint: first show that the Galois group 
contains the product, using the fact that Q(ζpn ) does not ramify outside p. Then 
use Minkowski’s theorem to get equality.) 

6. Put K = Qp(ζp). 

(a) Prove that as abelian groups, 

Z/(p−1)Z × U1(K).K∗ = (1 − ζp)
Z × ζp−1 

. 
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(b) Prove that U1(K)p = Up+1(K), so that 

Z/(p−1)Z
(K∗)p = (1 − ζp)

pZ × ζp−1 × Up+1(K). 

(Hint: the case p = 2 was on an earlier homework.) 

7. I’m going to use a little Kummer theory later, so here is a review. 

(a) (Look it up, but don’t turn it in) Let n be a positive integer, and let K be a field 
of characteristic coprime to n. Suppose that K contains the primitive nth roots 
of unity. Then every Galois extension of K with Galois group Z/nZ has the form 
K(x1/n) for some x ∈ K∗ which is not a dth power in K for any d > 1 dividing 
n. 

(b) Let n be a positive integer, and let K be a field of characteristic coprime to n, 
but now don’t suppose that K contains the primitive nth roots of unity. Define 

ω(g)
the homomorphism ω : Gal(K(ζn)/K) → (Z/nZ)∗ by the property g(ζn) = ζn . 
Put M = K(ζn, a1/n) for some a ∈ K(ζn)∗. Prove that M/K is abelian if and 
only if for all g ∈ Gal(K(ζn)/K), g(a)/aω(g) is an nth power in K(ζn). 

8. Prove local KroneckerWeber as follows.	 (This follows Washington’s Introduction to 
Cyclotomic Fields.) 

(a) Let e be an integer coprime to p. Prove that Qp((−p)1/e) is Galois over Qp if 
and only if e p − 1. (Hint: remember from an earlier pset that Qp((−p)1/(p−1)) = |
Qp(ζp).) 

(b) Let K/Qp be a finite abelian extension of qpower order, for some prime q =� p. Let 
L be the maximal unramified subextension of K, and put e = [K : L]. Prove that 

1/e)/QpK(ζe) = L(ζe, (−pu)1/e) for some u ∈ o∗ 
L(ζe)

, and that L(ζe, u is unramified. 

(c) In the notation of (b), let pn be the cardinality of the residue field of L(ζe, u1/e). 
Prove that K ⊆ Qp(ζp(pn −1)). 

(d) Let p be an odd prime. Prove that there is no extension of Qp with Galois group 
(Z/pZ)3 . (Hint: let K be such an extension, apply Kummer theory (both parts 
of problem 7) to describe K(ζp) over Qp(ζp), then use problem 6.) 

(e) Prove that there is no extension of Q2 with Galois group (Z/2Z)4 or (Z/4Z)3 . 
(Hint: in the second case, reduce to showing that there is no extension of Q2 

containing Q2(
√
−1) with Galois group Z/4Z.) 

(f) Deduce local KroneckerWeber from all this. (This is similar to 4(d); for p = 2, use 
the fact that there are cyclotomic extensions of Q2 with group (Z/2Z) × (Z/2nZ)2 

for any n.) 

9. (Optional, not to be turned in) In this problem and the next, we give a direct proof of 
KroneckerWeber (not going through the local version), modulo an important theorem 
which we did not discuss from the theory of cyclotomic fields. This argument is due 
to Franz Lemmermeyer. 
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(a) Let K/Q be a cyclic extension of degree p unramified outside p. Put F = Q(ζp); 
by Kummer theory, we can write KF = F (µ1/p) for some µ ∈ oF . Prove that 
for any prime q of F , if vq(µ) �≡ 0 (mod p), then q splits completely in F . (Hint: 
look at the decomposition group of q and use the previous problem.) 

(b) Deduce from (b) that the ideal (µ) is a pth power. (Hint: the prime (1 − ζ) does 
not fit the criterion in (b).) 

(c) Write	 ga for the element of Gal(F/Q) corresponding to a ∈ (Z/pZ)∗. Then 
Stickelberger’s theorem (see, e.g., Washington’s Introduction to Cyclotomic Fields) 
implies that for any fractional ideal a of F , the fractional ideal 

p−1

ag−1(a )a 
a=1 

is principal. (Yes, that’s really the ath power where a is viewed as an integer, 
not as an element of (Z/pZ)∗. Weird, isn’t it?) Use Stickelberger’s theorem to 
prove that the ideal (µ) is the pth power of a principal ideal. 

(e) Remember from an earlier pset that every unit in	 oF is equal to a power of ζ 
times a unit in the ring of integers of the maximal real subfield of F . Using this, 
deduce that µ is a power of ζ times a pth power, and hence KL = Q(ζp2 ); that 
is, K ⊆ Q(ζp2 ). 

10.	 (Optional, not to be turned in) This exercise concludes the direct proof of Kronecker
Weber begun in the previous exercise. 

(a) Let K/Q be a cyclic extension of ppower order, for p prime, in which some prime 
q = p ramifies. Prove that p must divide q − 1. (Hint: use problem 1(e) above.) 

(b) Let K/Q be an abelian extension which ramifies at some prime q not dividing 
[K : Q]. Prove that there there exists an abelian extension K �/Q such that: 

• K ⊆ K �(ζq ); 

• [K � : Q] divides [K : Q]; 

• every prime that ramifies in K � also ramifies in K; 

• q does not ramify in K �. 

(Hint: first reduce to the case ζq ∈ K. In that case, take K � to be the inertia field 
of K for a prime above q.) 

(c) From other problems in this pset,	 we know that a cyclic extension of Q of p
power order unramified away from p is cyclotomic. Use (b) to deduce from this 
that every abelian extension of Q is contained in a cyclotomic field. 
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