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Abstract. The n-value game is an easily described mathematical
diversion with deep underpinnings in dynamical systems analysis.
We examine the behavior of several variants of the n-value game,
generalizing to arbitrary polygons and various sets. Key results in-
clude the guaranteed convergence of the 4-value game over the in-
tegers, the cyclic behavior of the 3-value game, and the existence of
infinitely many solutions of infinite length in all real-valued games.

1. Introduction

The n-value game is a deterministic system based on a simple transi-
tion rule: from a polygon with labelled vertices, generate a new polygon
by placing labelled vertices on the midpoints of its edges. We describe
the n = 4 case, other polygons generalize naturally. To begin, draw
a square and label its vertices with numbers (a, b, c, d). At the mid-
point of each edge, write the absolute value of the difference between
the edges’ endpoints. Finally, connect these midpoints to form a new
square. Repeat until all vertices are zero, with the “length” of the game
defined as the number of transitions required to reach the zero game.
The transition (a, b, c, d) → (|b − a|, |c − b|, |d − c|, |a − d|) represents
this rule. In this paper, we prove key properties of n-value games over
different sets. Section 2, authored by Yida Gao and Matt Redmond, in-
vestigates the convergence and behavior of the {3, 4}-value games over
Z, and relates the 4-value games over Z to those over Q. Section 3,
authored by Matt Redmond, investigates the general case of an n-value
game over R, and demonstrates the existence of an infinite family of
infinite-length solutions. Section 4, authored by Zach Steward, consid-
ers a combinatorial approach to counting the equivalence classes of the
4-value game over integers in [0, n− 1] for fixed n. Section 5, authored
by Matt Redmond and Zach Steward, presents some interesting em-
pirical results about the distribution of path lengths for 4-value games
over integers in [0, n− 1].
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2. n-value games over Z

2.1. The convergence of the 4-value game. In this section, we
establish that all 4-value games over Z converge to (0, 0, 0, 0). We
accomplish this by demonstrating that each game eventually reduces
to a state in which all of its entries are even, and that games which are
constant multiples of each other have the same length. This naturally
gives a bound on the maximum length of a game, given its starting
state.

Lemma 2.1. If r ∈ R+, (ra, rb, rc, rd) has the same length as (a, b, c, d).

Proof. Consider the entries after t steps of the (ra, rb, rc, rd) game.
These entries are equal to r times the entries of the (a, b, c, d) game
after t steps by the linearity of subtraction. Suppose the length of
the (a, b, c, d) game is L. There must exist some non-zero entry n in
step L − 1. This implies that in the (ra, rb, rc, rd) game, rn = 0 at
step L− 1, so the (ra, rb, rc, rd) game does not end after L− 1 steps.
Finally, the (a, b, c, d) game ends on step L, with each entry equal to
zero, so we must have r · q = 0 for each entry q in the Lth step of the
(ra, rb, rc, rd) game. Because r = 0, q = 0 for all entries in the Lth step
of the (ra, rb, rc, rd) game, so these games have the same length. �

We introduce new notation: let gt be the vector corresponding to the
game g after transitioning for t steps.

Lemma 2.2. For any given game g, at least one of {g0, g1, g2, g3, g4}
has all even entries.

Proof. Proof procedes by case analysis over various parities. Let e
represent an even element; let o represent an odd element. It is handy
to recall rules for subtraction: e− e = e, e− o = o, o− e = o, o− o = e.

There are six potential configurations (up to symmetry over D8) for
the parities of the starting game.

(1) g = (e, e, e, e)
(2) g = (e, e, e, o)
(3) g = (e, e, o, o)
(4) g = (e, o, e, o)
(5) g = (e, o, o, o)
(6) g = (o, o, o, o)

Examining each case in turn:

(1) If all entries are even, g itself satisfies our condition.
(2) After one step, g1 = (e, e, o, o). After two steps, g2 = (e, o, e, o).

After three steps, g3 = (o, o, o, o). After four steps, g4 = (e, e, e, e)
and we are done.

6
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(3) g1 = (e, o, e, o). g2 = (o, o, o, o). g3 = (e, e, e, e).
(4) g1 = (o, o, o, o). g2 = (e, e, e, e).
(5) g1 = (o, e, e, o). g2 = (o, e, o, e). g3 = (o, o, o, o). g4 = (e, e, e, e).
(6) g1 = (e, e, e, e).

Each case becomes (e, e, e, e) after at most four steps. �

Theorem 2.3. All 4-value games over Z converge to (0, 0, 0, 0)

Proof. From any starting configuration G = (a1, a2, a3, a4), take several
steps until the game reaches a state where all entries are even. This
will take at most four steps, by Lemma 2.2. The new configuration
Geven can be written as (2b1, 2b2, 2b3, 2b4). By Lemma 2.1, the length
of Geven is exactly the same as the game (b1, b2, b3, b4). However, we are
guaranteed that the maximum element in (b1, b2, b3, b4) has decreased
from the maximum element in (a1, a2, a3, a4). Proceed inductively, by
stepping each new game until all entries are even (at most four steps
each time), then factor out another 2. As the maximum element is
constantly decreasing, each game must terminate in (0, 0, 0, 0) in a
finite number of steps. �

Corollary 2.4. The path length L of a game (a, b, c, d) is bounded above
by 4dlog2(max(a, b, c, d))e
2.2. The orbits of the 3-value game. In this section, we diverge
from the 4-value game and consider the 3-value game over Z. We
prove that all non-trivial 3-value games cycle, rather than converging
to (0,0,0). We accomplish this proof by examining the five cases which
encompass all possible 3-value games.

First, let us imagine the values in the tuple as points on a number
line. For example, a starting triangle with (1,3,5) looks like this:

Figure 1. A number line with points corresponding to
(1,3,5) game state.

Definition 2.5. Let range(G) be defined as the largest positive differ-
ence between any two points in a 3-value game tuple:

range(G) = |max(gi) min(gi)
gi∈G

−
gi∈G

|
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Definition 2.6. A non-trivial 3-value game is one in which the
start state is not (x,x,x), where x ∈ Z.

Theorem 2.7. All non-trivial 3-value games over Z cycle in (0, x, x)
form.

Proof. The proof is by cases. Consider five possible cases for the non-
trivial 3-value game over Z:

(1) One zero and two numbers of the same value (0, x, x): this case
enters a cycle that returns a permutation of (0, x, x) on every step.

(0, x, x)− > (|0− x|, |x− x|, |x− 0|) = (x, 0, x)

(x, 0, x)− > (|x− 0|, |0− x|, |x− x|) = (x, x, 0)

(x, x, 0)− > (|x− x|, |x− 0|, |0− x|) = (0, x, x)

(2) One zero and two numbers of different values (0, x, y): in this case,
the range decreases by the positive difference of the two non-zero
numbers. Without loss of generality, assume y > x > 0:

(0, x, y)− > (|0− x|, |x− y|, |y − 0|) = (x, y − x, y)

Range of (0, x, y) = |y − 0| = y; range of (x, |x − y|, y) = |y −
(y − x)| = x. In this case, the range decreases by y − x.

(3) Two zeros and one non-zero number (0, 0, x): this case only occurs
as a start state because two pairs of overlapping points are required
to create two zeros and the 3-value game only has three points in
total. Range stays the same and the game enters case 1.

(0, 0, x)− > (0− 0, |0− x|, |x− 0) = (0, x, x)

Range of (0, 0, x) = x; range of (0, x, x) = x
(4) Three non-zero values in which two values are the same (x, y, y):

The range stays the same and the game transitions to case 1.

(x, y, y)− > (|x− y|, 0, |y − x|)

Range of (x, y, y) = |x− y|; range of (|x− y|, 0, |y − x|) = |x− y|
(5) Three unique non-zero values (x, y, z):

Without loss of generality, z > y > x. In this case, the range
decreases by y − x or z − y, and the new range is z − y or y − x.

(x, y, z)→ (|x−y|, |y−z|, |z−x|) = (y−x, z−y, z−x) Original
range is z−y If z−y > y−x, new range = z−x− (y−x) = z−y,
otherwise new range = z − x− (z − y) = y − x. The difference in
range is either z − x− (z − y) = y − x or z − x− (y − x) = z − y.
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For all non-trivial 3-value games, the range is guaranteed to decrease
at each step until the game transitions to a (x, y, y) (case 4) or (0, 0, x)
(case 3) state, which both lead to the cycling case 1 state. Thus, all
non-trivial 3-value games over Z will reduce to case 1 and cycle. �

2.3. The equivalence of games over Z to games over Q. In this
section we use Lemma 2.1, Theorem 2.3, and Theorem 2.6 to extrapo-
late the behavior of {3, 4}-value games over Z to behavior over Q.

Theorem 2.8. All 4-value games over Q converge to (0,0,0,0).

Proof. Let (
n1 n2 n3 n4
, , ,

d1 d2 d3 d4
represent our 4-value game over Q. By defining

)
a common denomina-

tor, D = d1d2(d3d4, we can rewrite this as the equivalent game

n1d2d3d4 n2d1d3d4 n3d1d2d4 n4d1d2d3
, , ,

D D D D

)
.

In Lemma 2.1 we showed that for any r ∈ R+ the two games (a, b, c, d)
and (ra, rb, rc, rd) have the same length. In the game above we have
r = 1 which if factored out gives us a 4-value game over Z. In Theorem

D

2.3 we showed that every 4-value game over Z will converge to (0, 0, 0, 0)
and we conclude that by reducing the game over Q to one over Z any
4-value game over Q will converge to (0,0,0,0). �

Theorem 2.9. All non-trivial 3-value games over Q cycle in (0,x,x)
form.

Proof. By deduction from Lemma 2.1, we can conclude that a non-
trivial 3-value game

(
n1d2d3 , n2d1d3 , n3d1d2

D D D

reduces to a non-trivial 3-value game (n1

)
over Q where D = d1d2d3
d2d3, n2d1d3, n3d1d2) over Z,

which by Theorem 2.6 cycles in the (0, x, x) form. �

3. n-value games over R

In this section, we consider the properties of the n-valued game over
the real numbers. Several questions come to mind: do all real-valued
games terminate? If not, does there exist a real-valued game that
demonstrates cyclic behavior? If not, does there exist a real-valued
game of infinite length? We answer the first question (no) and third
question (yes) by proving the existence of infinitely many games with
infinite length. We accomplish this by representing a single step of
the game as a linear operator (with a restricted domain), then demon-
strating the existence of an infinite game for each value of n. Finally,
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we show that every infinite length game can be modified to generate
infinitely many games of infinite length.

3.1. Linearizing the n-value game. Given an n-value game on R,
G = (a1, a2, . . . an), we produce each step by the transformation rule
Gt → Gt+1 = (a1, a2, . . . an) → (|a2 − a1|, |a3 − a2|, . . . |a1 − an|). Due
to the absolute value, this transformation is not representable as a
linear operator; however, if we restrict the domain of the input to the
set of vectors (m1,m2, . . .mn) such that m1 < m2 < . . . < mn, we
can eliminate the use of the absolute value function. Gt → Gt+1 =
(a1, a2, . . . an) → (a2 − a1, a3 − a2, . . . an − a1). Notice that the last
element has had its operands reversed. With this “increasing order”
constraint, we can write Gt → Gt+1 as an n× n linear operator Tn:

−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
0 0 1 1 . . . 0


Tn =

 . .
−

. . . . .. . . . . . . . . . .
0 . . . . . . 0 −1 1
−1 0 . . . . . . 0




1

3.2. Identifying an infinite length game for each n. To compute
the next element in the game, left-multiply by Tn. As an example,
consider the effects of T4 on G = (1, 5, 7, 11):−1 1 0 0 0 −1 1 0

0 0


−1 1

  
−1 0 0 1

 1
5 7
11

  =
 4 2 4

10


As this example shows, it is not necessarily


the case that the output

Gt+1 maintains the “increasing order” invariant. In general, increasing
inputs are not guaranteed to be increasing outputs. For the special
case, however, of an increasing eigenvector v of Tn, we are guaranteed
that the invariant will hold: the output v′ is guaranteed to be a scalar
multiple of v because Tv = λv = v′. A scalar multiple of an increasing
sequence is an increasing sequence.

If our intial game v is a real non-zero eigenvector of Tn, then we are
guaranteed that Tnv = λv = 0. In general, for all k, T k

nv = λkv = 0,
so real, increasing eigenvectors of Tn are guaranteed to generate infinite
length games.

6 6
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To demonstrate that there exists an infinite length game for all n,
we must demonstrate the existence of a real, increasing, nonzero eigen-
vector/value pair vn, λn for all n.

3.3. Establishingand bounding a positive real eigenvalue.

−1− λ 1 0 0 . . . 0
0 −1− λ 1 0 . . . 0
0 0 −1− λ 1 . . . 0


Sn = Tn − λIn = . . .. . . . . . . . . 



Expanding det(S

 . . . . . .
0 . . . . . . 0 −1− λ 1
−1 0 . . . . . . 0 1− λ

n) by cofactors along the bottom


row, we see

1 0 0 . . . 0
−1− λ 1 0 . . . 0

det(S ) = 1( 1)1+n 0 −1− λ 1
n

∣

∣∣∣∣∣∣∣∣∣

∣
− − . . . 0

.. . . .

. . . . .
. . . ..

∣∣∣
+

0 . . . 0 −1− λ 1

∣∣∣∣
−1− λ 1 0 . . . 0

∣
0 1 λ 1 . . . 0

∣
(1− λ)( 1)

−
− n+n

∣∣∣∣∣ −∣∣ .. . . .∣ . . . .. . . 0

∣∣
0 . . . . . . 0 −1− λ

∣∣
The determinant in the first term reduces to 1, and the determinan

∣∣

in

∣∣
t

the second term reduces to ( 1 λ)n−1. The characteristic polyno-
mial of T is then (−1)2+n

− −
n +(1−λ)(−1)2n(−1−λ)n−1 = 0. Expanding,

we have
(−1)2+n + (−1− λ)n−1 − λ(−1− λ)n−1 = 0

∑n−1 (n− 1
) ∑n−1

(−1)2+n+ (−1)n−1−k(−λ)k
n

λ
k

k=0

−
k=0

(
− 1
)

(−1)n−1−k(
k

−λ)k = 0

n−1 ( n

2+n
∑ n− 1

1 ∑−
(−1) +

)
(−1)n−1λk

1−
(
n−

)
(−1)n−1λk+1 = 0

k k
k=0 k=0

n−1

(−1)2+n n
+ (−1)n−1 0

k=0

(
− 1

k

)
λk − λk+1 =

We examine the pattern of

∑
signs on this

(
polynomial

)
to determine

the number of positive roots. In each case, λ = 0 is a root, so the
coefficient on the constant term is zero.
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When n is even, the sign pattern is (+︸ , .︷︷. . ,+, 0,
n

−, . . . ,
n

−, 0).

1
2

When n is odd, the sign pattern is (−, . . . ,−

︸
,

︸
2

︷︷
−︸ ︷︷ ︸ ︸+, .︷︷. . ,+︸, 0).

︸
n+1 n
2

−1
2

Each case has exactly one change of sign, so there exists exactly one
positive real root for each characteristic polynomial by Descartes’ Rule
of Signs [1]. Let this eigenvalue be λn. We claim that 0 < λn < 1 for all
n - to see this, consider the method for finding a bound on the largest
positive real root of a polynomial via synthetic division: dividing a
polynomial P (x) by (x−k) will result in a polynomial with all positive
coefficients if k is an upper bound for the positive roots [2, Eqn. 15].
Dividing each of the characteristic polynomials by (λn−1) (easily done
symbolically on a CAS) yields polynomials with all positive coefficients
for all n, which demonstrates that 1 is always the least integral upper
bound.

3.4. Identifying an increasing eigenvector. To determine the cor-
responding eigenvector vn = (a1, a2, . . . an), we solve (Tn−λnIn)vn = 0.
This produces the following set of equations:

(−1− λn)a1 + a2 = 0
 

(1 + λn)a1 = a2 (−1− λn)a2 + a3 = 0   (1 + λn)a2 = a3

or


 . .. . . .

(−1− λn)an−1 + an = 0 (1 + λn)an−1 = an


(1− λn)an − a


1 = 0

 
(1− λn)an = a


1


Arbitrarily, let an = 1. This


forces


a1 = (1


− λn), which forces

a2 = (1 − λn)(1 + λn). In general, for 1 ≤ i < n we have ai =
(1− λn)(1 + λn)i−1. An eigenvector that corresponds to the eigenvalue
λn is thus 

(1− λn) (1− λn)(1 + λn) (1− λn)(1 + λn)2


 .. .


(1− λn)(1 + λn)n−2


1


We verify that this eigenvector is in increasing


order for all n - given

0 < λn < 1, we have (1− λ k k+1
n)(1 + λn) < (1

k k+1
− λn)(1 + λn) because

(1+λn) < (1+λn) and (1−λn) > 0 when 0 < λn < 1. Additionally,
we have (1 − λn)(1 + λn)n−2 < 1 for all λn < 1 because (1 − λn)(1 +
λn)n−1 = 1.
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Empirically, for the n = 4 case, we have λ4 ≈ 0.839287, so the eigen-
vector which generates a game of infinite length is approximately G =
(0.160713, 0.295598, 0.543689, 1). The progression of this game after t
timesteps results in Gt = (0.839287)t ·(0.160713, 0.295598, 0.543689, 1).

3.5. Generating infinitely many solutions of infinite length.
Our choice of an = 1 was arbitrary - the eigenvector we obtained was
parametrized only on an. Choosing other values of an > 1 will lead to
infinitely many such solutions.

To see this a different way, consider w = (a1, a2, . . . an)+(k, k, . . . k) =
a+k for some constant k. Tw = (((a2 +k)− (a1 +k)), ((a3 +k)− (a2 +
k)), . . . ((an + k) − (a1 + k))) = (a2 − a1, a3 − a2, . . . , an − a1) = Ta.
Applying the transform T on some starting vector plus a constant
yields the same result as applying the transform to the starting vector:
T (a+k) = Ta. We can choose any value of k > 0 and create a different
game of infinite length from our starting game.

Finally, we can apply any of the group actions from the symmetry
group of the square (D8) to any 4-value game and preserve its path
length, because the actions of D8 will preserve neighboring vertices.
This generates another infinite family of solutions: all cyclic rotations
and horizontal/vertical/diagonal reflections of our starting vector.

4. Counting unique 4-value games over Z

In this section we consider a combinatorial approach to determine
the number of equivalence classes of a 4-game over the integers from
0 to n− 1. For future simulations of empirical cases, we would like to
be able to quickly determine the total number of games required for
simulation. One may initially think that for any value of n we simply
have n4 possible starting states as we can choose n numbers for each of
the four positions. This approach, however, fails to take into account
the symmetries of D8 discussed previously in section 3.5. It is useful
for our analysis to recall that the number of ways to choose k elements
from a set of n for n ≥ k is(giv)en by the binomial coefficient

n n!
=

k (n− k)!k!

Theorem 4.1. The number of unique 4-games over the integers from
0 to n− 1 as a function of n is given by

1
f(n) = n4 + 2n3 + 3n2 + 2n

8

Proof. The proof of f(n) is by

(
cases. Let k define the

)
number of unique

integers in a given game and g(k) be the number of unique initial states
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for a given k. We consider the contributions to f(n) for each case of k
and simplify for the explicit expression of f(n).

1. k = 4
When k = 4 we are considering a game of the form (a, b, c, d).

First we note that there are exactly n ways to determine the
4

unique integers a, b, c and d. Given the 4 integers we then have
4! possible orderings. We recall, howev

(
er,

)
that under symmetry of

D4 there are exactly 8 ways to order the elements (a, b, c, d) that
represent the same initial state. There are therefore exactly

4!
g(4) =

(
n
4 n

= 3
8

) (
4

unique games for k = 4.

)

2. k = 3
For k = 3 (we) consider games of the form (a, a, b, c). First we

have exactly n ways to choose the distinct elements a, b and c.
3

We next have 3 ways of choosing which of the 3 elements will be
repeated. Now we note that the 4 elements can only be arranged in
1 of 2 possible configurations by considering one of the non repeated
elements. Any possible configuration of the elements will leave the
unique element b with neighbors(of a, a or a, c. We then have exactly

n n
g(3) = 2 · 3 = 6

3 3

unique games for k = 3.

) ( )

3. k = 2
For k = 2 there are actually two sub-cases to consider.
(i) Games of the form (a, a, b, b)

In this case we will first have n ways to determine the unique
2

integers a and b. Next we note

( )
that there are only two possi-

ble unique configurations of these elements, namely (a, a, b, b)
and (a, b, a, b).

(ii) Games of the form (a, a, a, b)
In this case we again have

(
n
)

ways to determine the unique
2

integers a and b. Next, however, we have to choose which
of the integers a or b we wish to repeat 3 times, which there
are exactly 2 choices. Finally we note that the only unique
configuration is of the form (a, a, a, b).
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Each of the two sub-cases contribute a factor of 2
clude that there are exactly

(
n e con-
2

)
and w

g(1) = 4

(
n

2

)
unique games with k = 2.

4. k = 1
In the basic case where we have a game with only 1 unique el-

ement it will be of the form (a, a, a, a). It is obvious that any
arrangement of the 4 elements will result in the same game and be-
cause we have exactly n choices for a we get that there are exactly
n games of this form.

g(1) = n

The total number of unique initial states is then given by

4

f(n) =
∑

g(k) = 3

(
n

+ 4
4

)
+ 6

(
n n

+ n
3

k=1

) (
2

)
By substituting in the definition of the binomial coefficients we have

n
f(n) = (n 1)(n 2)(n 3) + n(n 1)(n 2) + 2n(n 1) + n

8
− − − − − −

If we expand each of the terms and collect like terms we find the number
of unique initial states is given by

1
f(n) =

(
n4 + 2n3 + 3n2 + 2n

8

)
�

5. The distribution of game lengths for large n

In this section we make a few empirical observations about path
length and consider their implications to gain a better understanding
of the dynamics of the 4-game over Z. We first consider the effect
of symmetry on the frequency distribution of path length. Next we
evaluate the tightness of the bound on path length given in Corollary
2.4 with the computed results. Finally we compare the distribution to
the normal probability density function.
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5.1. Accounting for symmetry. In section 4 we derived an explicit
expression for the equivalence classes of a 4-game over the integers from
0 to n−1. This, in fact, raises an important question when considering
empirical results. Is it really worth it to account for symmetry when
approximating the distribution of path lengths for a fixed n? To answer
this we let E be the event that the initial state of our game is composed
of 4 unique integers (a, b, c, d) and subsequently consider the probability
P (E) if we do not account for symmetries about D8. In order to create
a game of this form we will have n choices for a, n− 1 for b and so on
giving us

n(n 1)(n 2)(n 3)
P (E) =

− − −
n4

We note that both the numerator and denominator are dominated
by a term of n3 and that the limit for very large n is then given by

lim P (E) = 1
n→∞

Intuitively it makes that as n grows, we become increasingly more
likely to choose 4 distinct integers to start our game. From section 4 we
know that any game of the specified form (a, b, c, d) is in an equivalence
class of size 8 meaning that if we do not account for symmetry on
average we will be over counting the number of path lengths by a factor
of 8. Now, however, note the relationship between f(n) of section 4
and the total number of games n4 in the limit

f(n) 1
lim =
n→∞ n4 8

So, although we are over counting the vast majority of path lengths
by a factor of 8, we are also over counting the total number of games by
a factor of 8. The result is that for large enough n we see no qualitative
difference in our distribution results and it is therefore not worth the
extra computational costs to eliminate the symmetrical cases. As an
example of this, consider the two events A and B such that A denotes
picking a game of path length 4 from the set of all games not accounting
for symmetry and B denotes picking a game of path length 4 from the
set of all games with symmetry accounted for. The probability that
a randomly chosen game from the integers [0, . . . , n − 1] has a path
length of 4 for various n is shown below
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n P (A) P (B) ε

2 0.5000 0.3333 0.1667

4 0.5938 0.1818 0.4119

8 0.5820 0.6066 0.0246

16 0.5513 0.5848 0.0335

32 0.5284 0.5519 0.0235

Already for n = 8 we are seeing pretty similar results and we conclude
that the effects of symmetry for reasonably large n are minor and not
worth the additional computation.

5.2. Theoretical bound for specified path length. In corollary
2.4 we mention that the path length L of a game (a, b, c, d) can be at
most 4dlog2(max(a, b, c, d))e, but we would like to investigate just how
good of a bound this really is. In the following to plots we consider
the distribution of length over the set of paths computed while not
accounting for symmetry for reasons mentioned above. Figure 2 plots
the path length distribution for n = 64, 128, 256 to demonstrate the
very close match these distributions have for increasing n.

Figure 2. Distribution of Path Length for n = 256, 128, 64{ }

First note that for n = 128 we have at best max(a, b, c, d) = 127 and
therefore have a path length L at most 4 · 7 = 28, but we are observing
a maximum length of only 15. Similarly, for n = 64 we observe a
maximum length of 13 compared to 24. Furthermore when we increase
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n to 256 and have a new bound on L of at most 32 we observe that in
reality we have only gained one more iteration on our maximum path
length which is now 16. The reasons for this are non-trivial, but it
seems to indicate that our sequences are converging to (0, 0, 0, 0) even
faster than the method given in Theorem 2.3.

5.3. Probability. If we let X be the path length, we can compute the
mean and variance of our observations such that

E[X] =
∑

p(x) · x = 4.93192197
x∈X

2

V ar(X) = E[X2]−(E[X])2 =
∑

p(x) x
x

· 2−
∈

(
x

∑
p(x) x = 1.34398723

X ∈X

·

)
In Figure 3 we now plot the discrete probability distribution of the

path length, and this time we include the continuous distribution for a
normal random variable with the above specified mean and variance. It
is reasonably clear that this data does not follow a normal distribution.
Future explorations of this topic may consider modelling the distribu-
tion as a mixture of gaussians, or perhaps as a mixture of Poisson
distributions.

Figure 3. Game Length for n = 256 vs. N(4.931, 1.344)
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We see that the path length data has a much larger right-skew than
a gaussian, and maintains a bimodal shape. In Figure 4, is interest-
ing to note that a large number of games converge to the final state
(0, 0, 0, 0) after just 4 steps - cumulatively, more than 50% of these
games terminate in 4 or fewer steps, and 91% terminate in 6 or fewer
steps.

Figure 4. Cumulative Distribution of Path Length for
n = 256
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