
Chapter 1

Singular homology

1 Introduction: singular simplices and chains

This is a course on algebraic topology. We’ll discuss the following topics.

1. Singular homology

2. CW-complexes

3. Basics of category theory

4. Homological algebra

5. The Künneth theorem

6. Cohomology

7. Universal coefficient theorems

8. Cup and cap products

9. Poincaré duality.

The objects of study are of course topological spaces, and the machinery we develop in this course
is designed to be applicable to a general space. But we are really mainly interested in geometrically
important spaces. Here are some examples.

• The most basic example is n-dimensional Euclidean space, Rn.

• The n-sphere Sn = {x ∈ Rn+1 : |x| = 1}, topologized as a subspace of Rn+1.

• Identifying antipodal points in Sn gives real projective space RPn = Sn/(x ∼ −x), i.e. the
space of lines through the origin in Rn+1.

• Call an ordered collection of k orthonormal vectors an orthonormal k-frame. The space of
orthonormal k-frames in Rn forms the Stiefel manifold Vk(R

n), topologized as a subspace of
(Sn−1)k.

• The Grassmannian Grk(R
n) is the space of k-dimensional linear subspaces of Rn. Forming

the span gives us a surjection Vk(Rn)→ Grk(R
n), and the Grassmannian is given the quotient

topology. For example, Gr1(Rn) = RPn−1.
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All these examples are manifolds; that is, they are Hausdorff spaces locally homeomorphic to Eu-
clidean space. Aside from Rn itself, the preceding examples are also compact. Such spaces exhibit
a hidden symmetry, which is the culmination of 18.905: Poincaré duality.

As the name suggests, the central aim of algebraic topology is the usage of algebraic tools to
study topological spaces. A common technique is to probe topological spaces via maps to them
from simpler spaces. In different ways, this approach gives rise to singular homology and homotopy
groups. We now detail the former; the latter takes the stage in 18.906.

Definition 1.1. For n ≥ 0, the standard n-simplex ∆n is the convex hull of the standard basis
{e0, . . . , en} in Rn+1:

∆n =
{∑

tiei :
∑

ti = 1, ti ≥ 0
}
⊆ Rn+1.

The ti are called barycentric coordinates.

The standard simplices are related by face inclusions di : ∆n−1 → ∆n for 0 ≤ i ≤ n, where di is
the affine map that sends verticies to vertices, in order, and omits the vertex ei.
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Definition 1.2. Let X be any topological space. A singular n-simplex in X is a continuous map
σ : ∆n → X. Denote by Sinn(X) the set of all n-simplices in X.

This seems like a rather bold construction to make, as Sinn(X) is huge. But be patient!
For 0 ≤ i ≤ n, precomposition by the face inclusion di produces a map di : Sinn(X)→ Sinn−1(X)

sending σ 7→ σ ◦ di. This is the “ith face” of σ. This allows us to make sense of the “boundary” of
a simplex, and we are particularly interested in simplices for which that boundary vanishes.

For example, if σ is a 1-simplex that forms a closed loop, then d1σ = d0σ. To express the
condition that the boundary vanishes, we would like to write d0σ − d1σ = 0 – but this difference is
no longer a simplex. To accommodate such formal sums, we will enlarge Sinn(X) further by forming
the free abelian group it generates.

Definition 1.3. The abelian group Sn(X) of singular n-chains in X is the free abelian group
generated by n-simplices

Sn(X) = ZSinn(X).

So an n-chain is a finite linear combination of simplices,

k∑
i=1

aiσi , ai ∈ Z , σi ∈ Sinn(X) .

If n < 0, Sinn(X) is declared to be empty, so Sn(X) = 0.
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We can now define the boundary operator

d : Sinn(X)→ Sn−1(X),

by

dσ =
n∑
i=0

(−1)idiσ.

This extends to a homomorphism d : Sn(X)→ Sn−1(X) by additivity.
We use this homomorphism to obtain something more tractable than the entirety of Sn(X).

First we restrict our attention to chains with vanishing boundary.

Definition 1.4. An n-cycle in X is an n-chain c with dc = 0. Notation:

Zn(X) = ker(d : Sn(X)→ Sn−1(X)) .

For example, if σ is a 1-simplex forming a closed loop, then σ ∈ Z1(X) since dσ = d0σ−d1σ = 0.
It turns out that there’s a cheap way to produce a cycle:

Theorem 1.5. Any boundary is a cycle; that is, d2 = 0.

We’ll leave the verification of this important result as a homework problem. What we have
found, then, is that the singular chains form a “chain complex,” as in the following definition.

Definition 1.6. A graded abelian group is a sequence of abelian groups, indexed by the integers. A
chain complex is a graded abelian group {An} together with homomorphisms d : An → An−1 with
the property that d2 = 0.

The group of n-dimensional boundaries is

Bn(X) = im(d : Sn+1(X)→ Sn(X)) ,

and the theorem tells us that this is a subgroup of the group of cycles: the “cheap” ones. If we
quotient by them, what’s left is the “interesting cycles,” captured in the following definition.

Definition 1.7. The nth singular homology group of X is:

Hn(X) =
Zn(X)

Bn(X)
=

ker(d : Sn(X)→ Sn−1(X))

im(d : Sn+1(X)→ Sn(X))
.

We use the same language for any chain complex: it has cycles, boundaries, and homology
groups. The homology forms a graded abelian group.

Both Zn(X) and Bn(X) are free abelian groups because they are subgroups of the free abelian
group Sn(X), but the quotient Hn(X) isn’t necessarily free. While Zn(X) and Bn(X) are uncount-
ably generated, Hn(X) turns out to be finitely generated for the spaces we are interested in. If T is
the torus, for example, then we will see that H1(T ) ∼= Z⊕Z, with generators given by the 1-cycles
illustrated below.
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We will learn to compute the homology groups of a wide variety of spaces. The n-sphere for
example has the following homology groups:

Hq(S
n) =


Z if q = n > 0

Z if q = 0, n > 0

Z⊕ Z if q = n = 0

0 otherwise .
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