Chapter 2

Computational methods

14 CW-complexes

There are various ways to model geometrically interesting spaces. Manifolds provide one important
model, well suited to analysis. Another model, one we have not talked about, is given by simplicial
complexes. It’s very combinatorial, and constructing a simplicial complex model for a given space
involves making a lot of choices that are combinatorial rather than topological in character. A
more flexible model, one more closely reflecting topological information, is given by the theory of
CW-complexes.

In building up a space as a CW-complex, we will successively “glue” cells onto what has been
already built. This is a general construction.

Suppose we have a pair (B, A), and a map f: A — X. Define a space X Uy B (or X Uy B) in
the diagram

f

T X
BHXUJCB

by
XUyB=XUB/~

where the equivalence relation is generated by requiring that a ~ f(a) for all a € A. We say that
we have “attached B to X along f (or along A).”

There are two kinds of equivalence classes in X Uy B: (1) singletons containing elements of
B — A, and (2) {z} U f~(z) for z € X. The topology on X Us B is the quotient topology, and is
characterized by a universal property: any solid-arrow commutative diagram

A X
b
B——>XU;B
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~
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g \s\

can be uniquely filled in. It’s a “push-out.”
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36 CHAPTER 2. COMPUTATIONAL METHODS

Example 14.1. If X = %, then * Uy B = B/A.
Example 14.2. If A = @, then X Uy B is the coproduct X L B.

Example 14.3. If both,

B/@=%Ug B=xB.
For example, @/@ = . This is creation from nothing. We won’t get into the religious ramifications.
Example 14.4 (Attaching a cell). A basic collection of pairs of spaces is given by the disks relative

to their boundaries: (D", 8" 1). (Recall that S~! = @.) In this context, D" is called an “n-cell,”
and a map f: S" ! — X allows us to attach an n-cell to X, to form

Sn—l X

|

D" —— X Uy D"

You might want to generalize this a little bit, and attach a bunch of n-cells all at once:

! X

|

HaGA DZ —X Uf HaGA DZ

What are some examples? When n = 0, (D%, S71) = (x, @), so you are just adding a discrete
set to X:

HaeA Sg_l

Xup[[D°=xu4
acA
More interesting: Let’s attach two 1-cells to a point:

PR —

*

|

D'UD! ——=xU; (D' U DY)

Again there’s just one choice for f, and * Uy (D' U DY) is a figure 8, because you start with two
1-disks and identify the four boundary points together. Let me write S* v S' for this space. We
can go on and attach a single 2-cell to manufacture a torus. Think of the figure 8 as the perimeter
of a square with opposite sides identified.
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The inside of the square is a 2-cell, attached to the perimeter by a map I'll denote by aba='b~":

SIMSIVSI

| |

D? —— (StvShu;D? =17,
This example illuminates the following definition.
Definition 14.5. A CW-complex is a space X equipped with a sequence of subspaces
=8k 1 X CSkeXCSkiyXC---CX
such that
e X is the union of the Sk, X’s, and

e for all n, there is a pushout diagram like this:

1 [fn
o, SEt—">Sk,_1 X .

|

aca, D2 —"— Sk, X

The subspace Sk, X is the n-skeleton of X. Sometimes it’s convenent to use the alternate
notation X, for the n-skeleton. The first condition is intended topologically, so that a subset of X
is open if and only if its intersection with each Sk, X is open; or, equivalently, a map f: X — Y is
continuous if and only if its restriction to each Sk, X is continuous. The maps f,, are the attaching
maps and the maps g, are characteristic maps.

Example 14.6. We just constructed the torus as a CW complex with SkoT? = x, Sk;7? = S'v S*,
and SkoT? = T2.

Definition 14.7. A CW-complex is finite-dimensional if Sk, X = X for some n; of finite type if
each A, is finite, i.e., finitely many cell in each dimension; and finite if it’s finite-dimensional and
of finite type.

The dimension of a CW complex is the largest n for which there are n-cells. This is not obviously
a topological invariant, but, have no fear, it turns out that it is.

In “CW,” the “C” is for cell, and the “W” is for weak, because of the topology on a CW-complex.
This definition is due to J. H. C. Whitehead. Here are a couple of important facts about them.

Theorem 14.8. Any CW-complex is Hausdorff, and it’s compact if and only if it’s finite.
Any compact smooth manifold admits a CW structure.

Proof. See |2] Prop. 1V.8.1, |6] Prop. A.3. O
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