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17 Real projective space

Let’s try to compute H∗(RPn). This computation will invoke a second way to think of the cellular 
chain group Cn(X). Each cell has a characteristic map Dn → Xn, and we have the diagram

∐
(Dn, Sn−1) //

''

(Xn, Xn−1)

��
(
∨
Sn, ∗).
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We’ve shown that the vertical map induces an isomorphism in homology, and the diagonal does as
well. (For example,

∐
Dn has a CW structure in which the (n− 1)-skeleton is

∐
Sn−1.) So

Hn(
∐

(Dn, Sn−1))
∼=−→ Cn(X).

We have a CW structure on RPn with Skk(RPn) = RPk; there is one k-cell – which we’ll
denote by ek – for each k between 0 and n. So the cellular chain complex looks like this:

0 C0(RPn)oo C1(RPn)oo · · ·oo Cn(RPn)oo 0oo

0 Z〈e0〉oo Z〈e1〉d=0oo · · ·oo Z〈en〉oo 0oo

The first differential is zero because we know what H0(RPn) is (it’s Z!). The differential in the
cellular chain complex is given by the top row in the following commutative diagram.

Cn = Hn(RPn,RPn−1)
∂ // Hn−1(RPn−1) //

**

Hn−1(RPn−1,RPn−2) = Cn−1

∼=
��

Hn(Dn, Sn−1)

∼=

OO

∂
∼=

// Hn−1(Sn−1)

π∗

OO

// Hn−1(Dn−1/Sn−2, ∗) .

The map π : Sn−1 → RPn−1 is the attaching map of the top cell of RPn; that is, the double
cover. The diagonal composite pinches the subspace RPn−2 to a point. The composite map
Sn−1 → Dn−1/Sn−2 factors as follows:

Sn−1 double cover //

))

RPn−1 pinch // Dn−1/Sn−2 ∼= Sn−1

Sn−1/Sn−2 = Sn−1 ∨ Sn−1
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One of the maps Sn−1 → Sn−1 from the wedge is the identity, and the other map is the antipodal
map α : Sn−1 → Sn−1. Write σ for a generator of Hn−1(Sn−1). Then in Hn−1 we have σ 7→
(σ, σ) 7→ σ + α∗σ. So we need to know the degree of the antipodal map on Sn−1. The antipodal
map reverses all n coordinates in Rn. Each reversal is a reflection, and acts on Sn−1 by a map of
degree −1. So

degα = (−1)n .

Therefore the cellular complex of RPn is as follows:

dim −1 0 1 · · · n n+ 1 · · ·

0 Z
0oo Z

2oo · · ·0oo Z
2 or 0oo 0oo · · ·oo

The homology is then easy to read off.

Proposition 17.1. The homology of real projective space is as follows.

Hk(RPn) =


Z k = 0

Z k = n odd
Z/2Z k odd, 0 < k < n

0 otherwise .
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Here’s a table. Missing entries are 0.

dim 0 1 2 3 4 5 · · ·

RP0 Z

RP1 Z Z

RP2 Z Z/2

RP3 Z Z/2 0 Z

RP4 Z Z/2 0 Z/2

RP5 Z Z/2 0 Z/2 0 Z
...

...
...

...
...

...
...

Summary: In real projective space, odd cells create new generators; even cells (except for the
zero-cell) create torsion in the previous dimension.

This example illustrates the significance of cellular homology, and, therefore, of singular homol-
ogy. A CW structure involves attaching maps∐

Sn−1 → Skn−1X .

Knowing these, up to homotopy, determines the full homotopy type of the CW complex. Homology
does not record all this information. Instead, it records only information about the composite
obtained by pinching out Skn−2X.∐

a∈An
Sn−1
a

//

((

Skn−1X

��∨
b∈An−1

Sn−1
b .

In Hn−1, this can be identified with a map

∂ : Z[An]→ Z[An−1]

that is none other than the differential in the cellular chain complex.
The moral: homology picks off only the “first order” structure of a CW complex.
On the other hand, we’ll see in the next lecture that it does a very good job of that.
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