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27 Ext and UCT

Let R be a ring (probably a PID) and N an R-module. The singular cochains on X with values in
N ,

S∗(X;N) = Map(Sin∗(X), N) ,

then forms a cochain complex of R-modules. It is contravariantly functorial in X and covariantly
functorial in N . The Kronecker pairing defines a map

Hn(X;N)⊗R Hn(X;R)→ N

whose adjoint
β : Hn(X;N)→ HomR(Hn(X;R), N)

gives us an estimate of the cohomology in terms of the homology of X. Here’s how well it does:

Theorem 27.1 (Mixed variance Universal Coefficient Theorem). Let R be a PID and N an R-
module, and let C∗ be a chain-complex of free R-modules. Then there is a short exact sequence of
R-modules,

0→ Ext1
R(Hn−1(C∗), N)→ Hn(HomR(C∗, N))→ HomR(Hn(C∗), N)→ 0 ,

natural in C∗ and N , that splits (but not naturally).

Taking C∗ = S∗(X;R), we have the short exact sequence

0→ Ext1
R(Hn−1(X;R), N)→ Hn(X;N)

β−→ HomR(Hn(X;R), N)→ 0

that splits, but not naturally. This also holds for relative cohomology.
What is this Ext?
The problem that arises is that HomR(−, N) : ModR → ModR is not exact. Suppose I have

an injection M ′ →M . Is Hom(M,N)→ Hom(M ′, N) surjective? Does a map M ′ → N necessarily
extend to a map M → N? No! For example, Z/2Z ↪→ Z/4Z is an injection, but the identity map
Z/2Z→ Z/2Z does not extend over Z/4Z.

On the other hand, if M ′ i−→M
p−→M ′′ → 0 is an exact sequence of R-modules then

0→ HomR(M ′′, N)→ HomR(M,N)→ HomR(M ′, N)

is again exact. Check this statement!
Now homological algebra comes to the rescue to repair the failure of exactness. Pick a free

resolution of M ,
0←M ← F0 ← F2 ← · · · .

Apply Hom(−, N) to get a cochain complex

0→ HomR(F0, N)→ HomR(F1, N)→ HomR(F2, N)→ · · · .

Definition 27.2. ExtnR(M,N) = Hn(HomR(F∗, N)).

Remark 27.3. Ext is well-defined and functorial, by the Fundamental Theorem of Homological
Algebra, Theorem 22.1. If M is free (or projective) then ExtnR(M,−) = 0 for n > 0, since we can
take M as its own projective resolution. If R is a PID, then we can assume F1 = ker(F0 →M) and
Fn = 0 for n > 1, so ExtnR = 0 if n > 1. If R is a field, then ExtnR = 0 for n > 0.
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Example 27.4. Let R = Z and take M = Z/kZ. This admits a simple free resolution: 0 → Z
k−→

Z → Z/kZ → 0. Apply Hom(−, N) to it, and remember that Hom(Z, N) = N , to get the very
short cochain complex, with entries in dimensions 0 and 1:

0→ N
k−→ N → 0 .

Taking homology gives us

Hom(Z/kZ, N) = ker(k|N) Ext1(Z/kZ, N) = N/kN .

Proof of Theorem 27.1. First of all, we can’t just copy the proof (in Lecture 24) of the homology
universal coefficient theorem, since Ext1

R(−, R) is not generally trivial.
Instead, we start by thinking about what an n-cocycle in HomR(C∗, N) is: it’s a homomorphism

Cn → N such that the composite Cn+1 → Cn → N is trivial. Write Bn ⊆ Cn for the submodule of
boundaries. We have a homomorphism that kills Bn; that is,

Zn(HomR(C∗, N))
∼=−→ HomR(Cn/Bn, N) .

Now Hn(C∗) (which we’ll abbreviate as Hn) is the submodule Zn/Bn of Cn/Bn; we have an exact
sequence

0→ Hn → Cn/Bn → Bn−1 → 0 .

Apply HomR(−, N) to this short exact sequence. The result is again short exact, because Bn−1 is a
submodule of the free R-module Cn−1 and hence is free. This gives us the bottom line in the map
of short exact sequences

0 // Bn HomR(C∗, N) //

��

Zn HomR(C∗, N)

∼=
��

// Hn(HomR(C∗, N))

β

��

// 0

0 // HomR(Bn−1, N) // HomR(Cn/Bn, N) // HomR(Hn, N) // 0 .

The map β is the one we started with. The snake lemma now shows that it is surjective and that

kerβ ∼= coker(Bn HomR(C∗, N)→ HomR(Bn−1, N)) .

An element of Bn HomR(C∗, N) is a map Cn → N that factors as Cn
d−→ Cn−1 → N . The

observation is now that this is the same as factoring as Cn
d−→ Zn−1 → N ; once this factorization

has been achieved, the map Zn−1 → N automatically extends to all of Cn−1. This is because
Zn−1 ⊆ Cn−1 as a direct summand: the short exact sequence

0→ Zn−1 → Cn−1 → Bn−2 → 0

splits since Bn−2 is free. Consequently we can rewrite our forumula for kerβ as

kerβ ∼= coker(HomR(Zn−1, N)→ HomR(Bn−1, N)) .

But after all
0← Hn−1 ← Zn−1 ← Bn−1 ← 0

is a free resolution, so this cokernel is precisely Ext1
R(Hn−1(C∗), N).
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Question 27.5. Why is Ext called Ext?
Answer: It classifies extensions. Let R be a commutative ring, and let M,N be two R-modules. I
can think about “extensions of M by N ,” that is, short exact sequences of the form

0→ N → L→M → 0 .

For example, I have two extensions of Z/2Z by Z/2Z:

0→ Z/2Z→ Z/2Z⊕ Z/2Z→ Z/2Z→ 0

and
0→ Z/2Z→ Z/4Z→ Z/2Z→ 0 .

We’ll say that two extensions are equivalent if there’s a map of short exact sequences between them
that is the identity on N and on M . The two extensions above aren’t equivalent, for example.

Another definition of Ext1
R(M,N) is: the set of extensions like this modulo this notion of

equivalence. The zero in the group is the split extension.

The universal coefficient theorem is useful in transferring properties of homology to cohomology.
For example, if f : X → Y is a map that induces an isomorphism in H∗(−;R), then it induces an
isomorphism in H∗(−;N) for any R-module N , at least provided that R is a PID. (This is in fact
true in general.)

Cohomology satisfies the appropriate analogues of the Eilenberg-Steenrod axioms.
Homotopy invariance: If f0 ' f1 : (X,A)→ (Y,B), then

f∗0 = f∗1 : H∗(Y,B;N)→ H∗(X,A;N) .

I can’t use the UCT to address this. But we established a chain homotopy f0,∗ ' f1,∗ : S∗(X,A)→
S∗(Y,B), and applying Hom converts chain homotopies to cochain homotopies.
Excision: If U ⊆ A ⊆ X such that U ⊆ Int(A), then H∗(X,A;N) → H∗(X − U,A− U ;N) is an
isomorphism. This follows from excision in homology and the mixed variance UCT.
Milnor axiom: The inclusions induce an isomorphism

H∗(
∐
α

Xα;N)→
∏
α

H∗(Xα;N) .

As a result, it enjoys the fruit of these axioms, such as:
The Mayer-Vietoris sequence: If A,B ⊆ X are such that their interiors cover X, then there is
a long exact sequence

Hn+1(X;N) // · · ·

Hn(X;N) // Hn(A;N)⊕Hn(B;N) // Hn(A ∩B;N)

ll

· · · // Hn−1(A ∩B;N)

ll
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