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//
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Cn−1

fn−1 // Dn−1

For example, if f : X → Y is a continuous map, then f∗ : S∗(X)→ S∗(Y ) is a chain map as discussed
above.

A chain map induces a map in homology f∗ : Hn(C) → Hn(D). The method of proof is a so-
called “diagram chase” and it will be the first of many. We check that we get a map Zn(C)→ Zn(D).
Let c ∈ Zn(C), so that dCc = 0. Then dDfn(c) = fn−1dCc = fn−1(0) = 0, because f is a chain
map. This means that fn(c) is also an n-cycle, i.e., f gives a map Zn(C)→ Zn(D).

Similarly, we get a map Bn(C) → Bn(D). Let c ∈ Bn(C), so that there exists c′ ∈ Cn+1 such
that dCc′ = c. Then fn(c) = fndCc

′ = dDfn+1(c′). Thus fn(c) is the boundary of fn+1(c′), and f
gives a map Bn(C)→ Bn(D).

The two maps Zn(C) → Zn(D) and Bn(C) → Bn(D) quotient to give a map on homology
f∗ : Hn(X)→ Hn(Y ).

3 Categories, functors, natural transformations

From spaces and continuous maps, we constructed graded abelian groups and homomorphisms. We
now cast this construction in the more general language of category theory.

Our discussion of category theory will be interspersed throughout the text, introducing new
concepts as they are needed. Here we begin by introducing the basic definitions.

Definition 3.1. A category C consists of the following data.

• a class ob(C) of objects;

• for every pair of objects X and Y , a set of morphisms C(X,Y );

• for every object X an identity morphism 1X ∈ C(X,X); and

• for every triple of objects X,Y, Z, a composition map C(X,Y ) × C(Y,Z) → C(X,Z), written
(f, g) 7→ g ◦ f .

These data are required to satisfy the following:

• 1Y ◦ f = f , and f ◦ 1X = f .

• Composition is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f).

Note that we allow the collection of objects to be a class. This enables us to talk about a
“category of all sets” for example. But we require each C(X,Y ) to be set, and not merely a class.
Some interesting categories have a set of objects; they are called small categories.

We will often write X ∈ C to mean X ∈ ob(C), and f : X → Y to mean f ∈ C(X,Y ).
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Definition 3.2. If X,Y ∈ C, then f : X → Y is an isomorphism if there exists g : Y → X with
f ◦ g = 1Y and g ◦ f = 1X . We may write

f : X
∼=−→ Y

to indicate that f is an isomorphism.

Example 3.3. Many common mathematical structures can be arranged in categories.

• Sets and functions between them form a category Set.

• Abelian groups and homomorphisms form a category Ab.

• Topological spaces and continuous maps form a category Top.

• Chain complexes and chain maps form a category chAb.

• A monoid is the same as a category with one object, where the elements of the monoid are
the morphisms in the category. It’s a small category.

• The sets [n] = {0, . . . , n} for n ≥ 0 together with weakly order-preserving maps between
them form the simplex category ∆, another small category. It contains as a subcategory the
semi-simplex category ∆inj with the same objects but only injective weakly order-preserving
maps.

• A partially ordered set or “poset” forms a category in which there is a morphism from x to y
iff x ≤ y. A small category is a poset exactly when (1) there is at most one morphism between
any two objects, and (2) the only isomorphisms are identities. This is to be distinguished
from the category of posets and order-preserving maps between them, which is “large.”

Categories may be related to each other by rules describing effect on both objects and morphisms.

Definition 3.4. Let C,D be categories. A functor F : C → D consists of the data of

• an assignment F : ob(C)→ ob(D), and

• for all X,Y ∈ ob(C), a function F : C(X,Y )→ D(F (X), F (Y )) .

These data are required to satisfy the following two properties:

• For all X ∈ ob(C), F (1X) = 1F (X) ∈ D(F (X), F (X)), and

• For all composable pairs of morphisms f, g in C, F (g ◦ f) = F (g) ◦ F (f).

We have defined quite a few functors already:

Sinn : Top→ Set , Sn : Top→ Ab , Hn : Top→ Ab ,

for example. We also have defined, for each X, a morphism d : Sn(X) → Sn−1(X). This is a
“morphism between functors.” This property is captured by another definition.
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Definition 3.5. Let F,G : C → D be two functors. A natural transformation or natural map
θ : F → G consists of maps θX : F (X) → G(X) for all X ∈ ob(C) such that for all f : X → Y the
following diagram commutes.

F (X)

F (f)

��

θX // G(X)

G(f)

��
F (Y )

θY // G(Y )

So for example the boundary map d : Sn → Sn−1 is a natural transformation.

Example 3.6. Suppose that C and D are two categories, and assume that C is small. We may then
form the category of functors Fun(C,D). Its objects are the functors from C to D, and given two
functors F,G, Fun(C,D)(F,G) is the set of natural transformations from F to G. We let the reader
define the rest of the structure of this category, and check the axioms. We needed to assume that C
is small in order to guarantee that there is no more than a set of natural transformations between
functors.

For example, let G be a group (or a monoid) viewed as a one-object category. An object
F ∈ Fun(G,Ab) is simply a group action of G on F (∗) = A, i.e., a representation of G in abelian
groups. Given another F ′ ∈ Fun(G,Ab) with F ′(∗) = A′, a natural transformation from F → F ′

is precisely a G-equivariant homomorphism A→ A′.

4 Categorical language

Let Vectk be the category of vector spaces over a field k, and linear transformations between them.
Given a vector space V , you can consider the dual V ∗ = Hom(V, k). Does this give us a functor? If
you have a linear transformation f : V →W , you get a map f∗ : W ∗ → V ∗, so this is like a functor,
but the induced map goes the wrong way. This operation does preserve composition and identities,
in an appropriate sense. This is an example of a contravariant functor.

I’ll leave it to you to spell out the definition, but notice that there is a univeral example of
a contravariant functor out of a category C: C → Cop, where Cop has the same objects as C, but
Cop(X,Y ) is declared to be the set C(Y,X). The identity morphisms remain the same. To describe
the composition in Cop, I’ll write fop for f ∈ C(Y,X) regarded as an element of Cop(X,Y ); then
fop ◦ gop = (g ◦ f)op.

Then a contravariant functor from C to D is the same thing as a (“covariant”) functor from Cop
to D.

Let C be a category, and let Y ∈ ob(C). We get a map Cop → Set that takes X 7→ C(X,Y ), and
takes a map X → W to the map defined by composition C(W,Y ) → C(X,Y ). This is called the
functor represented by Y . It is very important to note that C(−, Y ) is contravariant, while, on the
other hand, for any fixed X, C(X,−) is a covariant functor (and is said to be “corepresentable” by
X).

Example 4.1. Recall that the simplex category ∆ has objects the totally ordered sets [n] =
{0, 1, . . . , n}, with order preserving maps as morphisms. The “standard simplex” gives us a functor
∆: ∆→ Top. Now fix a space X, and consider

[n] 7→ Top(∆n, X) .

This gives us a contravariant functor ∆ → Set, or a covariant functor ∆op → Set. This functor
carries in it all the face and degeneracy maps we discussed earlier, and their compositions. Let us
make a definition.
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