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This calculation is useful!

Corollary 29.4. Let p, q > 0. Any map Sp+q → Sp × Sq induces the zero map in Hp+q(−).

Proof. Let f : Sp+q → Sp × Sq be such a map. It induces an algebra map f∗ : H∗(Sp × Sq) →
H∗(Sp+q). This map must kill α and β, for degree reasons. But then it also kills their product,
since f∗ is multiplicative.

The space Sp ∨ Sq ∨ Sp+q has the same homology and cohomology groups as Sp × Sq. Both
are built as CW complexes with cells in dimensions 0, p, q, and p + q. But they are not homotopy
equivalent. We can see this now because there is a map Sp+q → Sp ∨ Sq ∨ Sp+q inducing an
isomorphism in Hp+q(−), namely, the inclusion of that summand.

30 Surfaces and nondegenerate symmetric bilinear forms

We are aiming towards a proof of a fundamental cohomological property of manifolds.

Definition 30.1. A (topological) manifold is a Hausdorff space such that every point has an open
neighborhood that is homeomorphic to some (finite dimensional) Euclidean space.

If all these Euclidean spaces can be chosen to be Rn, we have an n-manifold.
In this lecture we will state a case of the Poincaré duality theorem and study some consequences

of it, especially for compact 2-manifolds. This whole lecture will be happening with coefficients in
F2.

Theorem 30.2. Let M be a compact manifold of dimension n. There exists a unique class [M ] ∈
Hn(M), called the fundamental class, such that for every p, q with p+ q = n the pairing

Hp(M)⊗Hq(M)
∪−→ Hn(M)

〈−,[M ]〉−−−−−→ F2

is perfect.

This means that the adjoint map

Hp(M)→ Hom(Hq(M),F2)

is an isomorphism. Since cohomology vanishes in negative dimensions, one thing this implies is that
Hp(M) = 0 for p > n. Since M is compact, π0(M) is finite, and

Hn(M) = Hom(H0(M),F2) = Hom(Map(π0(M),F2),F2) = F2[π0(M)] .

A vector space V admitting a perfect pairing V ⊗W → F2 is necessarily finite dimensional; so
Hp(M) is in fact finite-dimensional for all p.

Combining this pairing with the universal coefficient theorem, we get isomorphisms

Hp(M)
∼=−→ Hom(Hp(M),F2)

∼=←− Hq(M) .

The homology and cohomology classes corresponding to each other under this isomorphism are said
to be “Poincaré dual.”
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Using these isomorphisms, the cup product pairing can be rewritten as a homology pairing:

Hp(M)⊗Hq(M)
t //

∼=
��

Hn−p−q(M)

∼=
��

Hn−p(M)⊗Hn−q(M)
∪ // H2n−p−q(M) .

This is the intersection pairing. Here’s how to think of it. Take homology classes α ∈ Hp(M) and
β ∈ Hq(M) and represent them (if possible!) as the image of the fundamental classes of submanifolds
of M , of dimensions p and q. Move them if necessary to make them intersect “transversely.” Then
their intersection will be a submanifold of dimension n− p− q, and it will represent the homology
class α t β.

This relationship between the cup product and the intersection pairing is the source of the
symbol for the cup product.

Example 30.3. Let M = T 2 = S1 × S1. We know that

H1(M) = F2〈a, b〉

and a2 = b2 = 0, while ab = ba generatesH2(M). The Poincaré duals of these classes are represented
by cycles α and β wrapping around one or the other of the two factor circles. They can be made to
intersect in a single point. This reflects the fact that

〈a ∪ b, [M ]〉 = 1 .

Similarly, the fact that a2 = 0 reflects the fact that its Poincaré dual cycle α can be moved so as
not to intersect itself. The picture below shows two possible α’s.

This example exhibits a particularly interesting fragment of the statement of Poincaré duality:
In an even dimensional manifold – say n = 2k – the cup product pairing gives us a nondegenerate
symmetric bilinear form on Hk(M). As indicated above, this can equally well be considered a
bilinear form on Hk(M), and it is then to be thought of as describing the number of points (mod
2) two k-cycles intersect in, when put in general position relative to one another. It’s called the
intersection form. We’ll denote it by

α · β = 〈a ∪ b, [M ]〉 ,

where again a and α are Poincaré dual, and b and β are dual.

Example 30.4. In terms of the basis α, β, the intersection form for T 2 has matrix[
0 1
1 0

]
.

This is a “hyperbolic form.”
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Let’s discuss finite dimensional nondegenerate symmetric bilinear forms over F2 in general. A
form on V restricts to a form on any subspace W ⊆ V , but the restricted form may be degenerate.
Any subspace has an orthogonal complement

W⊥ = {v ∈ V : v · w = 0 for all w ∈W} .

Lemma 30.5. The restriction of a nondegenerate bilinear form on V to a subspace W is nonde-
generate exactly when W ∩W⊥ = 0. In that case W⊥ is also nondegenerate, and the splitting

V ∼= W ⊕W⊥

respects the forms.

Using this easy lemma, we may inductively decompose a general (finite dimensional) symmetric
bilinear form. First, if there is a vector v ∈ V such that v · v = 1, then it generates a nondegenerate
subspace and

V = 〈v〉 ⊕ 〈v〉⊥ .

Continuing to split off one-dimensional subspaces brings us to the situation of a nondegenerate
symmetric bilinear form such that v · v = 0 for every vector. Unless V = 0 we can pick a nonzero
vector v. Since the form is nondegenerate, we may find another vector w such that v · w = 1. The
two together generate a 2-dimensional hyperbolic subspace. Split it off and continue. We conclude:

Proposition 30.6. Any finite dimensional nondegenerate symmetric bilinear form over F2 splits

as an orthogonal direct sum of forms with matrices [1] and
[

0 1
1 0

]
.

Let Bil be the set of isomorphism classes of finite dimensional nondegenerate symmetric bilinear
forms over F2. We’ve just given a classification of these things. This is a commutative monoid under
orthogonal direct sum. It can be regarded as the set of nonsingular symmetric matrices modulo the
equivalence relation of “similarity”: Two matrices M and N are similar if N = AMAT for some
nonsingular A.

Claim 30.7.  1
1

1

 ∼
 1

1
1



Proof. This is the same thing as saying that

 1
1

1

 = AAT for some nonsingular A. Let

A =

 1 1 1
1 0 1
0 1 1

.
It’s easy to see that there are no further relations; Bil is the commutative monoid with two

generators I and H, subject to the relation I +H = 3I.
Let’s go back to topology. Let n = 2. Then you get an intersection pairing on H1(M). Consider

RP2. We know that H1(RP2) = F2. This must be the form we labelled I. This says that anytime
you have a nontrivial cycle on a projective plane, there’s nothing you can do to remove its self
interesections. You can see this. The projective plane is a Möbius band with a disk sown on along
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the boundary. The waist of the Möbius band serves as a generating cycle. The observation is that
if this cycle is moved to intersect itself tranversely, it must intersect itself an odd number of times.

We can produce new surfaces from old by a process of “addition.” Given two connected surfaces
Σ1 and Σ2, cut a disk out of each one and sew them together along the resulting circles. This is the
connected sum Σ1#Σ2.

Proposition 30.8. There is an isomorphism

H1(Σ1#Σ2) ∼= H1(Σ1)⊕H1(Σ2)

compatible with the intersection forms.

Proof. Let’s compute the cohomology of Σ1#Σ2 using Mayer-Vietoris. The two dimensional coho-
mology of Σi−D2 vanishes because the punctured surface retracts onto its 1-skeleton. The relevant
fragment is

0→ H1(Σ1#Σ2)→ H1(Σ1 −D2)⊕H1(Σ2 −D2)→ H1(S1)
δ−→ H2(Σ1#Σ2)→ 0 .

The boundary map must be an isomorphism, because the connected sum is a compact connected
surface so has nontrivial H2. We leave the verification that the direct sum is orthogonal to you.

Write Surf for the set of homeomorphism classes of compact connected surfaces. Connected
sum provides it with the structure of a commutative monoid. The classification of surfaces may
now be summarized as folows:

Theorem 30.9. Formation of the intersection bilinear form gives an isomorphism of commutative
monoids Surf → Bil.

This is a kind of model result of algebraic topology! – a complete algebraic classification of a
class of geometric objects. The oriented surfaces correspond to the bilinear forms of type gH; g is
the genus. But it’s a little strange. We must have a relation corresponding to H ⊕ I = 3I, namely

T 2#RP2 ∼= (RP2)#3 .

You should verify this for yourself!
There’s more to be said about this. Away from characteristic 2, symmetric bilinear forms and

quadratic forms are interchangeable. But over F2 you can ask for a quadratic form q such that

q(x+ y) = q(x) + q(y) + x · y .

This is a “quadratic refinement” of the symmetric bilinear form. Of course it implies that x · x = 0
for all x, so this will correspond to some further structure on an oriented surface. This structure is a
“framing,” a trivialization of the normal bundle of an embedding into a high dimensional Euclidean
space. There are then further invariants of this framing; this is the story of the Kervaire invariant.

31 Local coefficients and orientations

The fact that a manifold is locally Euclidean puts surprising constraints on its cohomology, captured
in the statement of Poincaré duality. To understand how this comes about, we have to find ways to
promote local information – like the existence of Euclidean neighborhoods – to global information –
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