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∩ : Hp(X)⊗Hn(X)→ Hn−p(X) .

Notice how the dimensions work. Long ago a bad choice was made: If cohomology were graded
with negative integers, the way the gradations work here would look better.

There are also two slant products. Maybe I won’t talk about them. In the next lecture, I’ll
check a few things about cap products, and then get into the machinery of Poincaré duality.

34 Cap product and “Cech” cohomology

We have a few more things to say about the cap product, and will then use it to give a statement
of Poincaré duality.

Proposition 34.1. The cap product enjoys the following properties.
(1) (a ∪ b) ∩ x = a ∩ (b ∩ x) and 1 ∩ x = x: H∗(X) is a module for H∗(X).
(2) Given a map f : X → Y , b ∈ Hp(Y ), and x ∈ Hn(X),

f∗(f
∗(b) ∩ x) = b ∩ f∗(x) .

(3) Let ε : H∗(X)→ R be the augmentation. Then

ε(b ∩ x) = 〈b, x〉 .

(4) Cap and cup are adjoint:
〈a ∩ b, x〉 = 〈a, b ∩ x〉 .

Proof. (1) Easy.
(2) Let β be a cocycle representing b, and σ an n-simplex in X. Then

f∗(f
∗(β) ∩ σ) = f∗((f

∗(β)(σ ◦ αp)) · (σ ◦ ωq))
= f∗(β(f ◦ σ ◦ αp) · (σ ◦ ω))

= β(f ◦ σ ◦ αp) · f∗(σ ◦ ωq)
= β(f ◦ σ ◦ αp) · (f ◦ σ ◦ ωq)
= β ∩ f∗(σ)
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This formula goes by many names: the “projection formula,” or “Frobenius reciprocity.”
(3) We get zero unless p = n. Again let σ ∈ Sinn(X), and compute:

ε(β ∩ σ) = ε(β(σ) · c0
σ(n)) = β(σ)ε(c0

σ(n)) = β(σ) = 〈β, σ〉 .

Here now is a statement of Poincaré duality. It deals with the homological structure of compact
topological manifolds. We recall the notion of an orientation, and Theorem 31.9 asserting the
existence of a fundamental class [M ] ∈ Hn(M ;R) in a compact R-oriented n-manifold.

Theorem 34.2 (Poincaré duality). Let M be a topological n-manifold that is compact and oriented
with respect to a PID R. Then there is a unique class [M ] ∈ Hn(M ;R) that restricts to the
orientation class in Hn(M,M − a;R) for every a ∈M . It has the property that

− ∩ [M ] : Hp(M ;R)→ Hq(M ;R) , p+ q = n ,

is an isomorphism for all p.

You might want to go back to Lecture 25 and verify that RP3 ×RP3 satisfies this theorem.
Our proof of Poincaré duality will be by induction. In order to make the induction go we will

prove a substantially more general theorem, one that involves relative homology and cohomology.
So we begin by understanding how the cap product behaves in relative homology.

Suppose A ⊆ X is a subspace. We have:

0

��

0

��
Sp(X)⊗ Sn(A)

1⊗i∗
��

i∗⊗1 // Sp(A)⊗ Sn(A)
∩ // Sq(A)

i∗
��

Sp(X)⊗ Sn(X)
∩ //

��

Sq(X)

��
Sp(X)⊗ Sn(X,A)

��

// Sq(X,A)

��
0 0

The left sequence is exact because 0→ Sn(A)→ Sn(X)→ Sn(X,A)→ 0 splits and tensoring with
Sp(X) (which is not free!) therefore leaves it exact. The solid arrow diagram commutes precisely
by the chain-level projection formula. There is therefore a uniquely defined map on cokernels.

This chain map yields the relative cap product

∩ : Hp(X)⊗Hn(X,A)→ Hq(X,A)

It renders H∗(X,A) a module for the graded algebra H∗(X).
I want to come back to an old question, about the significance of relative homology. Suppose

that K ⊆ X is a subspace, and consider the relative homology H∗(X,X−K). Since the complement
of X −K in X is K, these groups should be regarded as giving information about K. If I enlarge
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K, I make X −K smaller: K ⊆ L induces H∗(X,X − L)→ H∗(X −K); the relative homology is
contravariant in the variable K (regarded as an object of the poset of subspaces of X).

Excision gives insight into how H∗(X,X − K) depends on K. Suppose K ⊆ U ⊆ X with
K ⊆ Int(U). To simplify things, let’s just suppose that K is closed and U is open. Then X − U is
closed, X −K is open, and X − U ⊆ X −K, so excision asserts that the inclusion map

H∗(U,U −K)→ H∗(X,X −K)

is an isomorphism.
The cap product puts some structure on H∗(X,X − K): it’s a module over H∗(X). But we

can do better! We just decided that H∗(X,X −K) = H∗(U,U −K), so the H∗(X) action factors
through an action by H∗(U), for any open set U containing K. How does this refined action change
when I decrease U?

Lemma 34.3. Let K ⊆ V ⊆ U ⊆ X, with K closed and U, V open. Then:

Hp(U)⊗Hn(X,X −K)

i∗⊗1

��

∩

**
Hq(X,X −K)

Hp(V )⊗Hn(X,X −K)

∩
44

commutes.

Proof. This is just the projection formula again!

Let UK be the set of open neighborhoods of K in X. It is partially ordered by reverse inclusion.
This poset is directed, since the intersection of two opens is open. By the lemma, Hp : UK → Ab
is a directed system.

Definition 34.4. The Čech cohomology of K is

Ȟp(K) = lim−→
U∈UK

Hp(U) .

I apologize for this bad notation; its possible dependence on the way K is sitting in X is not
recorded. The maps in this directed systen are all maps of graded algebras, so the direct limit is
naturally a commutative graded algebra. Since tensor product commutes with direct limits, we now
get a cap product pairing

∩ : Ȟp(K)⊗Hn(X,X −K)→ Hq(X,X −K)

satifying the expected properties. This is the best you can do. It’s the natural structure that this
relative homology has: H∗(X,X −K) is a module over Ȟ∗(K).

There are compatible restriction maps Hp(U)→ Hp(K), so there is a natural map

Ȟ∗(K)→ H∗(K) .

This map is often an isomorphism. Suppose K ⊆ X satisfies the following “regular neighborhood”
condition: For every open U ⊇ K, there exists an open V with U ⊇ V ⊇ K such that K ↪→ V is a
homotopy equivalence (or actually just a homology isomorphism).



96 CHAPTER 3. COHOMOLOGY AND DUALITY

Lemma 34.5. Under these conditions, Ȟ∗(K)→ H∗(K) is an isomorphism.

Proof. We will check that the map to Hp(K) satisfies the conditions we established in Lecture 23
to be a direct limit.

So let x ∈ Hp(K). Let U be a neighborood of K in X such that Hp(U) → Hp(K) is an
isomorphism. Then indeed x is in the image of Hp(U).

Then let U be a neighborhood of K and let x ∈ Hp(U) restrict to 0 in Hp(K). Let V be a
sub-neighborood such that Hp(V )→ Hp(K) is an isomorphism. Then x restricts to 0 in Hp(V ).

On the other hand, here’s an example that distinguishes Ȟ∗ from H∗. This is a famous example.
The “topologist’s sine curve” is the subspace of R2 defined as follows. It is union of three subsets,
A, B, and C. A is the graph of sin(π/x) where 0 < x < 1. B is the interval 0 × [−1, 1]. C
is a continuous curve from (0,−1) to (1, 0) and meeting A ∪ B only at its endpoints. This is a
counterexample for a lot of things; you’ve probably seen it in 18.901.

What is the singular homology of the topologist’s sine curve? Use Mayer-Vietoris! I can choose
V to be some connected portion of the continuous curve from (0,−1) to (1, 0), and U to contain
the rest of the space in a way that intersects V in two open intervals. Then V is contractible, and
U is made up of two contractible connected components. (This space is not locally path connected,
and one of these path components is not closed.)

The Mayer-Vietoris sequence looks like

0→ H1(X)
∂−→ H0(U ∩ V )→ H0(U)⊕H0(V )→ H0(X)→ 0 .

The two path components of U ∩ V do not become connected in U , so ∂ = 0 and we find that
ε : H∗(X)

∼=−→ H∗(∗) and hence H∗(X) ∼= H∗(∗).
How about Ȟ∗? Let X ⊂ U be an open neighborhood. The interval 0 × [−1, 1] has an ε-

neighborhood, for some small ε, that’s contained in U . This implies that there exists a neighborhood
X ⊆ V ⊆ U such that V ' S1. This implies that

lim−→
U∈UX

H∗(U) ∼= H∗(S1)

by a cofinality argument that we will detail later. So Ȟ∗(X) 6= H∗(X).
Nevertheless, under quite general conditions the Čech cohomology of a compact Hausdorff space

is a topological invariant. The Čech construction forms a limit over open covers of the cohomology
of the nerve of the cover. It is a topological invariant by construction.

Theorem 34.6. Let X be a compact subset of some Euclidean space. If there is an open neigh-
borhood of which it is a retract, then Ȟ∗(X;R) is canonically isomorphic to the cohomology defined
using the Čech construction, and is therefore independent of the embedding into Euclidean space.

See Dold’s beautiful book [3] for this and other topics discussed in this chapter.
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