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36 The fully relative cap product

Cech cohomology appeared as the natural algebra acting on H*(X, X — K), where K is a closed
subspace of X:

N:HY(K)® Hy(X, X —K) = H(X, X - K), p+q=n.
If we fix zx € H,(X, X — K), then capping with zx gives a map
Nzg : HP(K) — Hy(X,X - K), p+q=n.

We will be very interested in showing that this map is an isomorphism under certain conditions.
This is a kind of duality result, comparing cohomology and relative homology and reversing the
dimensions. We'll try to show that such a map is an isomorphism by embedding it in a map of long
exact sequences and using the five-lemma.

For a start, let’s think about how these maps vary as we change K. So let L be a closed subset
of K,s0 X — K C X — L and we get a “restriction map”

ist Ho(X, X —K) - Hy (X, X - L).
Define z;, as the image of xx. The diagram

HP(K) HP(L)

ﬂwkl ﬂxLi

Hy(X,X — K)—> Hy(X,X — L)

commutes by the projection formula. This embeds into a ladder shown in the theorem below. We
will accompany this ladder with a second one, to complete the picture.

Theorem 36.1. Let L C K be closed subspaces of a space X. There is a “fully relative” cap product
N: (K, L)@ Hy(X,X —K) > H(X - L, X - K), p+tq=n,

such that for any v € Hp(X, X — K) the ladder

HP(K, L) HP(K) HP(L) ' . HPTYK,L)
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commutes, where xy, is the restriction of xx to Hy(X,X — L), and for any x € Hy(X)

> HP(X,K) — HP(X, L) HP(K,L) o HPH(X,K) —> -

lm lm l”” im

> Hy(X ~K)—>Hy (X — L) —> Hy (X ~ L, X - K) 2> H, (X - K)—---

commutes, where xg is the restriction of x to Hp(X, X — K).

Proof. What 1 have to do is define a cap product along the bottom row of the diagram (with
p+q=n)
HY(K)® Hy(X, X — K) —— H, (X, X — K)

T T

HY(K,L)® Hy(X, X — K)-">H/ (X — L, X — K)

This requires going back to the origin of the cap product. Our map HP(K)® H,(X, X — K) —
Hy(X, X — K) came (via excision) from a chain map SP(U) ® S, (U,U — K) — S,(U,U — K) where
U D K, defined by f ® 0+ f(0 0 ayp) - (0 0owy). Now given inclusions

L C K
N N
vV C U

we can certainly fill in the bottom row of the diagram

SPU) ® Su(U)/Sn(U = K) Sq(U)/5(U = K)

| |

SP(U,V) @ Su(U)/Sn(U — K) —= Sy(U — L)/S,(U — K)

Since cochains in SP(U, V) kill chains in V', we can extend the bottom row to

SP(U) & Sp(U,U — K) S,(U,U — K)

| |

SPUV) @ (Sn(U = L) + 5u(V)) /50 (U = K) — S(U — L)/ 54(U - K)

i:

SP(U, V) ® Sn(U)/Sn(U - K)

But L C V,so (U—L)UV = U, and the locality principle then guarantees that S, (U —L)+S,(V) —
Sp(U) is a quasi-isomorphism. By excision, H,(U,U — K) — H,(X,X — K) is an isomorphism.
Now use our standard map p : H.(C) @ H.(D) — H.(C ® D).

This gives the construction of the fully relative cap product. We leave the checks of commuta-
tivity to the listener. O

The diagram

HP(L) 0 HP (K, L)

l—ﬁmL l—ﬂmK

Hy(X, X -L)—?~H, (X - L, X —K)
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provides us with the memorable formula
((5()) Nrg = 8(bﬂ .%'L) .
The construction of the Mayer-Vietoris sequences now gives:

']_Zheorem 36.2. Let A, B be closed in a normal space or compact in a Hausdorff space. The
Cech cohomology and singular homology Mayer-Vietoris sequences are compatible: for any x aup €
H,(X,X — AU B), there is a commutative ladder (where again we use the notation Hy(X|A) =
Hy(X,X —A), and again p+q=n)

AP (AUB) —— - -

HP(A) @ HP(B) HP(AN B)

..——= HP(AUB)

lmxAuB i(ﬂxA)GB(ﬂxB) lmxAﬁB J/mxAUB

-« ——> Hy(X|AUB) — Hy(X|A) ® Hy(X|B) —= Hy(X|ANB) —= H,; 1(X|AUB) —
in which the homology classes x4, xp,xanp are restrictions of the class T aup in the diagram

(X, X —A)

/\

H,(X,X — AUB) (X, X —ANB)
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