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5 Homotopy, star-shaped regions

We’ve computed the homology of a point. Let’s now compare the homology of a general space X
to this example. There’s always a unique map X → ∗: ∗ is a “terminal object” in Top. We have
an induced map

Hn(X)→ Hn(∗) =

{
Z n = 0

0 otherwise .

Any formal linear combination c =
∑
aixi of points of X is a 0-cycle. The map to ∗ sends c to∑

ai ∈ Z. This defines the augmentation ε : H∗(X) → H∗(∗). If X is nonempty, the map X → ∗
is split by any choice of point in X, so the augmentation is also split epi. The kernel of ε is the
reduced homology H̃∗(X) of X, and we get a canonical splitting

H∗(X) ∼= H̃∗(X)⊕ Z .

Actually, it’s useful to extend the definition to the empty space by the following device. Extend
the singular chain complex for any space to include Z in dimension −1, with d : S0(X)→ S−1(X)
given by the augmentation ε sending each 0-simplex to 1 ∈ Z. Let’s write S̃∗(X) for this chain
complex, and H̃∗(X) for its homology. When X 6= ∅, ε is surjective and you get the same answer
as above. But

H̃q(∅) =

{
Z for q = −1

0 for q 6= −1 .

This convention is not universally accepted, but I find it useful. H̃∗(X) is the reduced homology of
X.

What other spaces have trivial homology? A slightly non-obvious way to reframe the question
is this:

When do two maps X → Y induce the same map in homology?

For example, when do 1X : X → X and X → ∗ → X induce the same map in homology? If they
do, then ε : H∗(X)→ Z is an isomorphism.

The key idea is that homology is a discrete invariant, so it should be unchanged by deformation.
Here’s the definition that makes “deformation” precise.

Definition 5.1. Let f0, f1 : X → Y be two maps. A homotopy from f0 to f1 is a map h : X×I → Y
(continuous, of course) such that h(x, 0) = f0(x) and f(x, 1) = f1(x). We say that f0 and f1 are
homotopic, and that h is a homotopy between them. This relation is denoted by f0 ' f1.

Homotopy is an equivalence relation on maps from X to Y . Transitivity follows from the gluing
lemma of point set topology. We denote by [X,Y ] the set of homotopy classes of maps from X to
Y . A key result about homology is this:

Theorem 5.2 (Homotopy invariance of homology). If f0 ' f1, then H∗(f0) = H∗(f1): homology
cannot distinguish between homotopic maps.

Suppose I have two maps f0, f1 : X → Y with a homotopy h : f0 ' f1, and a map g : Y → Z.
Composing h with g gives a homotopy between g ◦ f0 and g ◦ f1. Precomposing also works: If
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g : W → X is a map and f0, f1 : X → Y are homotopic, then f0 ◦ g ' f1 ◦ g. This lets us compose
homotopy classes: we can complete the diagram:

Top(Y,Z)×Top(X,Y )

��

// Top(X,Z)

��
[Y,Z]× [X,Y ] // [X,Z]

Definition 5.3. The homotopy category (of topological spaces) Ho(Top) has the same objects as
Top, but Ho(Top)(X,Y ) = [X,Y ] = Top(X,Y )/ '.

We may restate Theorem 5.2 as follows:

For each n, the homology functor Hn : Top→ Ab factors as Top→ Ho(Top)→ Ab;
it is a “homotopy functor.”

We will prove this in the next lecture, but let’s stop now and think about some consequences.

Definition 5.4. A map f : X → Y is a homotopy equivalence if [f ] ∈ [X,Y ] is an isomorphism in
Ho(Top). In other words, there is a map g : Y → X such that fg ' 1Y and gf ' 1X .

Such a map g is a homotopy inverse for f ; it is well-defined only up to homotopy.
Most topological properties are not preserved by homotopy equivalences. For example, com-

pactness is not a homotopy-invariant property: Consider the inclusion i : Sn−1 ⊆ Rn − {0}. A
homotopy inverse p : Rn − {0} → Sn−1 can be obtained by dividing a (always nonzero!) vector
by its length. Clearly p ◦ i = 1Sn−1 . We have to find a homotopy i ◦ p ' 1Rn−{0}. This is a map
(Rn − {0})× I → Rn − {0}, and we can use (v, t) 7→ tv + (1− t) v

||v|| .
On the other hand:

Corollary 5.5. Homotopy equivalences induce isomorphisms in homology.

Proof. If f has homotopy inverse g, then f∗ has inverse g∗.

Definition 5.6. A space X is contractible if the map X → ∗ is a homotopy equivalence.

Corollary 5.7. Let X be a contractible space. The augmentation ε : H∗(X)→ Z is an isomorphism.

Homotopy equivalences in general may be somewhat hard to visualize. A particularly simple
and important class of homotopy equivalences is given by the following definition.

Definition 5.8. An inclusion A ↪→ X is a deformation retract provided that there is a map h :
X × I → X such that h(x, 0) = x and h(x, 1) ∈ A for all x ∈ X and h(a, t) = a for all a ∈ A and
t ∈ I.

For example, Sn−1 is a deformation retract of Rn − {0}.

We now set about constructing a proof of homotopy invariance of homology. The first step is to
understand the analogue of homotopy on the level of chain complexes.

Definition 5.9. Let C∗, D∗ be chain complexes, and f0, f1 : C∗ → D∗ be chain maps. A chain
homotopy h : f0 ' f1 is a collection of homomorphisms h : Cn → Dn+1 such that dh+hd = f1− f0.
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This relation takes some getting used to. It is an equivalence relation. Here’s a picture (not a
commutive diagram).

· · · // Cn+1

��

d // Cn
h

|| ��

d // Cn−1

h

|| ��

// · · ·

· · · // Dn+1
d // Dn

d // Dn−1
// · · ·

Lemma 5.10. If f0, f1 : C∗ → D∗ are chain homotopic, then f0∗ = f1∗ : H∗(C)→ H∗(D).

Proof. We want to show that for every c ∈ Zn(C∗), the difference f1c− f0c is a boundary. Well,

f1c− f0c = (dh+ hd)c = dhc+ hdc = dhc .

So homotopy invariance of homology will follow from

Proposition 5.11. Let f0, f1 : X → Y be homotopic. Then f0∗, f1∗ : S∗(X) → S∗(Y ) are chain
homotopic.

To prove this we will begin with a special case.

Definition 5.12. A subset X ⊆ Rn is star-shaped with respect to b ∈ X if for every x ∈ X the
interval

{tb+ (1− t)x : t ∈ [0, 1]}

lies in X.

Any nonempty convex region is star shaped. Any star-shaped region X is contractible: A
homotopy inverse to X → ∗ is given by sending ∗ 7→ b. One composite is perforce the identity. A
homotopy from the other composite to the identity 1X is given by (x, t) 7→ tb+ (1− t)x.

So we should expect that ε : H∗(X) → Z is an isomorphism if X is star-shaped. In fact, using
a piece of language that the reader can interpret:

Proposition 5.13. S∗(X)→ Z is a chain homotopy equivalence.

Proof. We have maps S∗(X)
ε−→ Z

η−→ S∗(X) where η(1) = c0
b . Clearly εη = 1, and the claim is

that ηε ' 1 : S∗(X)→ S∗(X). The chain map ηε concentrates everything at the point b: ηεσ = cnb
for all σ ∈ Sinn(X). Our chain homotopy h : Sq(X) → Sq+1(X) will actually send simplices to
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simplices. For σ ∈ Sinq(X), define the chain homotopy evaluated on σ by means of the following
“cone construction”: h(σ) = b ∗ σ, where

(b ∗ σ)(t0, . . . , tq+1) = t0b+ (1− t0)σ

(
(t1, . . . , tq+1)

1− t0

)
.

Explanation: The denominator 1− t0 makes the entries sum to 1, as they must if we are to apply
σ to this vector. When t0 = 1, this isn’t defined, but it doesn’t matter since we are multiplying by
1− t0. So (b ∗ σ)(1, 0, . . . , 0) = b; this is the vertex of the cone.

0
1

0

1
2

Setting t0 = 0, we find
d0b ∗ σ = σ .

Setting ti = 0 for i > 0, we find
dib ∗ σ = hdi−1σ .

Using the formula for the boundary operator, we find

db ∗ σ = σ − b ∗ dσ

. . . unless q = 0, when
db ∗ σ = σ − c0

b .

This can be assembled into the equation

db ∗+b ∗ d = 1− ηε

which is what we wanted.
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