
The proof uses naturality (a lot). For a start, notice that if k : g0 ' g1 : C∗ → D∗ is a chain
homotopy, and j : D∗ → E∗ is another chain map, then the composites j ◦ kn : Cn → En+1 give
a chain homootpy j ◦ g0 ' j ◦ g1. So if we can produce a chain homotopy between the chain
maps induced by the two inclusions i0, i1 : X → X × I, we can get a chain homotopy k between
f0∗ = h∗ ◦ i0∗ and f1∗ = h∗ ◦ i1∗ in the form h∗ ◦ k.

So now we want to produce a natural chain homotopy, with components kn : Sn(X)→ Sn+1(X×
I). The unit interval hosts a natural 1-simplex given by an identification ∆1 → I, and we should
imagine k as being given by “multiplying” by that 1-chain. This “multiplication” is a special case of
a chain map

× : S∗(X)× S∗(Y )→ S∗(X × Y ) ,

defined for any two spaces X and Y , with lots of good properties. It will ultimately be used to
compute the homology of a product of two spaces in terms of the homology groups of the factors.

Here’s the general result.

Theorem 6.2. There exists a map × : Sp(X)× Sq(Y )→ Sp+q(X × Y ), the cross product, that is:

• Natural, in the sense that if f : X → X ′ and g : Y → Y ′, and a ∈ Sp(X) and b ∈ Sp(Y ) so
that a× b ∈ Sp+q(X × Y ), then f∗(a)× g∗(b) = (f × g)∗(a× b).

• Bilinear, in the sense that (a+ a′)× b = (a× b) + (a′ × b), and a× (b+ b′) = a× b+ a× b′.

• The Leibniz rule is satisfied, i.e., d(a× b) = (da)× b+ (−1)pa× db.

• Normalized, in the following sense. Let x ∈ X and y ∈ Y . Write jx : Y → X × Y for
y 7→ (x, y), and write iy : X → X × Y for x 7→ (x, y). If b ∈ Sq(Y ), then c0

x × b = (jx)∗b ∈
Sq(X × Y ), and if a ∈ Sp(X), then a× c0

y = (iy)∗a ∈ Sp(X × Y ).

The Leibniz rule contains the first occurence of the “topologist’s sign rule”; we’ll see these signs
appearing often. Watch for when it appears in our proof.

Proof. We’re going to use induction on p+q; the normalization axiom gives us the cases p+q = 0, 1.
Let’s assume that we’ve constructed the cross-product in total dimension p + q − 1. We want to
define σ × τ for σ ∈ Sp(X) and τ ∈ Sq(Y ).

Note that there’s a universal example of a p-simplex, namely the identity map ιp : ∆p → ∆p.
It’s universal in the sense any p-simplex σ : ∆p → X can be written as σ∗(ιp) where σ∗ : Sinp(∆

p)→
Sinp(X) is the map induced by σ. To define σ × τ in general, then, it suffices to define ιp × ιq ∈
Sp+q(∆

p ×∆q); we can (and must) then take σ × τ = (σ × τ)∗(ιp × ιq).
Our long list of axioms is useful in the induction. For one thing, if p = 0 or q = 0, normalization

provides us with a choice. So now assume that both p and q are positive. We want the cross-product
to satisfy the Leibnitz rule:

d(ιp × ιq) = (dιp)× ιq + (−1)pιp × dιq ∈ Sp+q−1(∆p ×∆q)

Since d2 = 0, a necessary condition for ιp × ιq to exist is that d((dιp) × ιq + (−1)pιp × dιq) = 0.
Let’s compute what this is, using the Leibnitz rule in dimension p+ q − 1 where we have it by the
inductive assumption:

d((dιp)×ιq+(−1)pιp×(dιq)) = (d2ιp)×ιq+(−1)p−1(dιp)×(dιq)+(−1)p(dιp)×(dιq)+(−1)qιp×(d2ιq) = 0

because d2 = 0. Note that this calculation would not have worked without the sign!

6 Homotopy invariance of homology

We now know that the homology of a star-shaped region is trivial: in such a space, every cycle with 
augmentation 0 is a boundary. We will use that fact, which is a special case of homotopy invariance 
of homology, to prove the general result, which we state in somewhat stronger form:

Theorem 6.1. A homotopy h : f0 ' f1 : X → Y determines a natural chain homotopy f0∗ ' f1∗ : S∗(X) 
→ S∗(Y ).
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7. HOMOLOGY CROSS PRODUCT 15

The subspace ∆p×∆q ⊆ Rp+1×Rq+1 is convex and nonempty, and hence star-shaped. Therefore
we know that Hp+q−1(∆p × ∆q) = 0 (remember, p + q > 1), which means that every cycle is a
boundary. In other words, our necessary condition is also sufficient! So, choose any element with
the right boundary and declare it to be ιp × ιq.

The induction is now complete provided we can check that this choice satisfies naturality, bilin-
earity, and the Leibniz rule. I leave this as a relaxing exercise for the listener.

The essential point here is that the space supporting the universal pair of simplices – ∆p ×∆q

– has trivial homology. Naturality transports the result of that fact to the general situation.
The cross-product that this procedure constructs is not unique; it depends on a choice a choice

of the chain ιp × ιq for each pair p, q with p + q > 1. The cone construction in the proof that
star-shaped regions have vanishing homology provids us with a specific choice; but it turns out that
any two choices are equivalent up to natural chain homotopy.

We return to homotopy invariance. To define our chain homotopy hX : Sn(X)→ Sn+1(X × I),
pick any 1-simplex ι : ∆1 → I such that d0ι = c0

1 and d1ι = c0
0, and define

hXσ = (−1)nσ × ι .

Let’s compute:
dhXσ = (−1)nd(σ × ι) = (−1)n(dσ)× ι+ σ × (dι)

But dι = c0
1 − c0

0 ∈ S0(I), which means that we can continue (remembering that |∂σ| = n− 1):

= −hXdσ + (σ × c0
1 − σ × c0

0) = −hXdσ + (ι1∗σ − ι0∗σ) ,

using the normalization axiom of the cross-product. This is the result.

7 Homology cross product

In the last lecture we proved homotopy invariance of homology using the construction of a chain
level bilinear cross-product
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